49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag

Größe: px
Ab Seite anzeigen:

Download "49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag"

Transkript

1 49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag c 010 Aufgabenausschuss des Mathematik-Olympiaden e.v. Alle Rechte vorbehalten Lösung 6 Punkte Es wird bewiesen, dass es keine ganzen Zahlen x und y gibt, für die gilt. 010 x 009 y = 50 (1) Angenommen, es gibt solche Zahlen x und y. Dann ist y = (010 x 009 y ) 010 (x y ) = (x y ) = 3 ( (x y ) ) +, weshalb y bei Division durch 3 den Rest lässt. Dies ist aber unmöglich, denn Quadratzahlen können bei Division durch 3 bekanntlich nur die Reste 0 oder 1 lassen. Zweite Lösung: Wir nehmen wiederum an, es gebe zwei ganze Zahlen x und y, die der Gleichung (1) genügen. Wegen 009 y = 010 x 50 = 5 (40 x 10) muss y und mithin auch y selbst durch 5 teilbar sein. Man setze also y = 5b, wobei b für eine geeignete ganze Zahl steht. Setzen wir dies in (1) ein, so erhalten wir nach Division durch 5 sofort 40 x b = 10. Wiederholen wir das soeben für y benutzte Argument, so sehen wir, dass auch x durch 5 teilbar sein muss. Somit gibt es auch eine ganze Zahl a mit x = 5a. In () eingesetzt ergibt dies 010 a 009 b =, also b = 5 40 (b a ) +. Dies ist jedoch ein Widerspruch, denn eine Quadratzahl kann bei Division durch 5 niemals den Rest, sondern nur einen der Reste 0, 1 oder 4 lassen. Rest von b bei Division durch Rest von b bei Division durch Bemerkung: Eine weitere Variante ergibt sich, wenn man zunächst in Analogie mit der ersten Lösung die Umformung y = (y x ) + 50 vornimmt. Nun kann man sich, z. B. durch eine (längere) Fallunterscheidung, davon überzeugen, dass sich bei Division einer Quadratzahl durch 67 niemals der Rest 50 ergibt. 1 ()

2 49113 Lösung 7 Punkte Wir zeigen, dass es genau für n = 3 und für n > 4 möglich ist, solche Fabriken zu bauen. Mit AB bezeichnen wir im Folgenden ein Förderband, das von Produktionshalle A nach B transportiert. Für n = ist es nicht möglich, da zwischen den beiden Hallen nur ein Förderband existiert, das nur in eine Richtung transportieren kann. Für n = 3 kann man zwischen den Hallen A, B, C die Förderbänder AB, BC und CA bauen. In dieser Fabrik ist es sofort einsichtig, dass man jede Halle als Lagerhalle benutzen kann. Für n = 4 gibt es 6 Förderbänder. Angenommen, es existiert eine Fabrik dieses Typs. Dann müssen zu jeder Halle Förderbänder hin- und wegführen. Nach Schubfachprinzip muss es auch eine Halle geben, von der zwei Förderbänder wegführen. Ohne Einschränkung der Allgemeingültigkeit kann angenommen werden, dass dies die Halle A ist, dass es die Förderbänder AB, AC, DA sowie BC gibt. Um von C nach B zu transportieren, muss es jetzt die Förderbänder CD und DB geben. Damit ergibt sich ein Widerspruch, da man nicht mehr mit zwei Förderbändern von B nach A kommt. Für n = 6 geben wir ebenfalls eine mögliche Konstruktion an: Man verbindet die sechs Hallen A bis F durch den Zyklus von Förderbändern AB, BC, CD, DE, EF, F A. Dazu kommen, jeweils eine Halle des Zyklus überspringend, die Bänder AC, CE, EA (in der Umlaufrichtung des Zyklus) und DB, F D, BF (in entgegengesetzter Richtung). Mit den bisher beschriebenen Bändern gelangt man von A zu B und C direkt, zu D und E jeweils über C und zu F über B. Von B gelangt man zu C und F direkt, zu A und D über F sowie zu E über C. Für C und E sind aufgrund der Symmetrie der beschriebenen Anordnung die Verhältnisse analog zu A, für D und F analog zu B. Damit gilt die geforderte Eigenschaft bereits für alle Hallen. Für die drei noch einzufügenden Bänder wählt man beliebig die Richtungen AD oder DA, CF oder F C sowie EB oder BE. Wählt man beispielsweise jeweils die erstgenannte Richtung, so hat man insgesamt AB, AC, AD, BC, BF, CD, CE, CF, DB, DE, EA, EB, EF, F A, F D. Bemerkung: Selbstverständlich ist die Angabe einer Konstruktion wie hier beschrieben nicht zwingend notwendig. Stattdessen kann der Nachweis für n = 6 auch erfolgen, indem eine geeignete Wahl der 15 Förderbänder angegeben und dann schlüssig begründet wird, dass diese die Bedingungen erfüllt. Zwei weitere Beispiele, die sich von dem oben angegebenen durch eine andere Wahl der letzten drei Bänder unterscheiden, sind und AB, AC, AD, BC, BE, BF, CD, CE, DB, DE, EA, EF, F A, F C, F D AB, AC, AD, BC, BE, BF, CD, CE, CF, DB, DE, EA, EF, F A, F D. Die Existenz von solchen Fabriken mit einer ungeraden Anzahl von n 3 oder einer geraden Anzahl von n 6 Hallen zeigen wir jetzt, indem wir zeigen, dass man aus einer Fabrik mit n Hallen C 1,..., C n, die die geforderte Eigenschaft hat, eine solche mit n+ Hallen konstruieren kann:

3 Es mögen die beiden Hallen A und B hinzukommen. Wir bauen die Förderbänder AC i und C i B für alle i = 1,..., n sowie BA. Die Verbindung von C i nach C j ist nach Voraussetzung gesichert. Ebenso kommt man von C i nach B direkt und nach A mit dem Umweg über B. Außerdem kommt man von A direkt zu allen C i und nach B über C 1. Von B kommt man zu A direkt und mit dem Umweg über A zu allen C i. Hiermit ist alles gezeigt. Bemerkung: Für n = 3 gibt es genau zwei nichtisomorphe Fabriken (also solche, die sich nicht durch eine Umbenennung der Hallen ineinander überführen lassen). Genau die oben angegebene hat die geforderte Eigenschaft. Für n = 4 gibt es 4 nichtisomorphe Fabriken. Wie gezeigt, erfüllt keine davon die Bedingung der Aufgabe. Für n = 5 gibt es 1 nichtisomorphe Fabriken. Genau zwei haben die geforderte Eigenschaft. Für n = 6 gibt es 56 nichtisomorphe Fabriken. Genau die drei oben angegebenen haben die geforderte Eigenschaft Lösung 7 Punkte Es sei S der Schnittpunkt der vier in der Aufgabenstellung genannten Geraden. Der Inkreis des Dreiecks ABC berühre dessen Seite AB im Punkt Q. In der durch Q verlaufenden und auf der Geraden AB senkrecht stehenden Ebene E liegen nun die Punkte I D und S und mithin auch der Punkt I C. Deshalb stehen die Geraden I C Q und AB aufeinander senkrecht; infolgedessen berührt auch der Inkreis des Dreiecks ABD die Seite AB in Q. Nach einer bekannten Formel für Tangentenabschnitte am Inkreis gilt also sowohl AB + AC BC AQ = als auch AB + AD BD AQ =. Beides zusammengenommen liefert AC + BD = AD + BC. Ebenso lässt sich zeigen, dass auch AB + CD = AC + BD gilt. Zweite Lösung: Wir beginnen den Beweis mit dem folgenden Lemma. Lemma: Es bezeichne I den Inkreismittelpunkt des Dreiecks ABC sowie S einen beliebigen Punkt auf der durch I gehenden und auf der Ebene ABC senkrecht stehenden Geraden. Dann ist S von den drei Geraden BC, CA, AB gleich weit entfernt, d. h. die Lote von S auf die genannten Geraden sind von gleicher Länge. Beweis des Lemmas: Siehe auch Abbildung L , der Inkreis berühre die Seiten BC, CA, AB des Dreiecks ABC in den Punkten D, E, F. Im Fall S = I handelt es sich bei den betrachteten Loten offenbar um die Strecken ID, IE, IF, und der Inkreisradius des Dreiecks ABC ist offenbar deren gemeinsame Länge. Es sei also von nun an S I. Indem wir den Satz des Pythagoras nacheinander auf die rechtwinkligen Dreiecke AIS, AF I und F IS anwenden, erhalten wir AS = AI + IS = AF + F I + IS = AF + F S, 3

4 Abbildung L woraus über die Umkehrung des Satzes des Pythagoras AF F S folgt. Das Lot von S auf die Gerade AB hat also den Fußpunkt F ; aus demselben Grund müssen die von S auf BC und CA gefällten Lote diese Geraden in D und E treffen. Nun haben die bei I rechtwinkligen Dreiecke SID, SIE, SIF die Kathete SI gemeinsam, und ihre jeweils zweiten Katheten, also ID, IE, IF, sind von gleicher Länge. Mithin sind auch ihre Hypotenusen SD, SE, SF gleich lang, was zu beweisen war. Lösung der Aufgabe mit Hilfe des Lemmas. Es sei nun S der Schnittpunkt der vier in der Aufgabenstellung betrachteten Geraden. Durch mehrmalige Anwendung des Lemmas folgt, dass dieser Punkt von allen sechs Geraden AB, BC, CA, AD, BD, CD gleich weit entfernt ist. Wenn wir also die Fußpunkte der von S auf diese Geraden gefällten Lote in dieser Reihenfolge als U, V, W, X, Y, Z bezeichnen, gilt SU = SV = SW = SX = SY = SZ. (1) Aus dem Satz des Pythagoras in den rechtwinkligen Dreiecken AUS, AW S und AXS folgt AS = AU + US = AW + W S = AX + XS. Daraus und aus (1) erhalten wir AU = AW = AX. In gleicher Weise zeigt man BU = BV = BY, CV = CW = CZ sowie DX = DY = DZ. Bezeichnen wir diese vier Längen nun mit a, b, c, d, so ergibt sich AB + CD = AC + BD = AD + BC = a + b + c + d. 4

5 Punktverteilungsvorschläge Die Punktzahlen für die einzelnen Aufgaben sind verbindlich, um Vergleiche z. B. zum Zweck der Entscheidung über die Teilnahme an der 4. Stufe (Bundesrunde) zu ermöglichen. Die Einschätzung der Punktzahlen für einzelne Teilschritte einer Schülerlösung (nach dem Maßstab Verwendbarkeit des Teilschrittes in einem zum Ziel führenden Lösungsweg ) liegt beim Korrektor; die folgenden Aufteilungen sind möglicherweise dem Vorgehen in einer Schülerlösung anzupassen und können in diesem Sinne gelegentlich abgeändert werden. Aufgabe Insgesamt: 6 Punkte Bei Ansätzen, die vergleichbar dem 1. und. Lösungsvorschlag eine Rückführung auf quadratische Reste bezüglich kleiner Moduln beinhalten: Geeignete Umformungen algebraischer Ausdrücke, die eine Rückführung auf einen geeigneten kleinen Modul ermöglichen Punkte Betrachtung quadratischer Reste z. B. modulo 3 oder 5 und Schluss, dass keine Lösungen existieren Punkte Alternativ, wenn Lösungswege im Sinne der Bemerkung eingeschlagen werden, die die Betrachtung größerer Moduln und dementsprechend längere Fallunterscheidungen erfordern: Algebraische Umformungen Punkte Formulierung einer notwendigen Lösungsbedingung in quadratischen Resten bezüglich eines geeigneten Moduls (z. B. 67) Punkt Fallunterscheidung für die quadratischen Reste und Schluss, dass keine Lösungen existieren Punkte Aufgabe Insgesamt: 7 Punkte Fall n = Punkt Fall n = Punkt Fall n = Punkt Fall n = Punkte Schluss von n auf n + und Zusammenfassung zur Antwort Punkte Aufgabe Insgesamt: 7 Punkte Feststellung geeigneter Lagebeziehungen (gemeinsame Berührungspunkte benachbarter Inkreise) oder Formulierung und Beweis des Lemmas Punkte Weitere Umformungen von Streckenlängen Punkte Schluss auf Behauptung Punkte 5

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561221

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

Beispiellösungen zu Blatt 96

Beispiellösungen zu Blatt 96 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 96 Gegeben sei ein Oktaeder. Auf dessen Kanten suchen wir Wege von einer

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551221

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 56083 Lösung

Mehr

Ein Problem der Dreiecksspiegelung

Ein Problem der Dreiecksspiegelung Ein Problem der Dreiecksspiegelung Tobias Schoel 10. Februar 2008 1 Die Dreiecksspiegelung 1.1 Spiegelung eines Punktes Es sei ein Dreieck ABC mit den Seiten BC = a, AC = b und AB = c gegeben und P sei

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561211

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen nolympiadeklasse 11 1 57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 57111 Lösung

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass10 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten.

Mehr

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel LSGM Leipziger Schülergesellschaft f ur Mathematik Dreiecksgeometrie 2 Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel Inhaltsverzeichnis 1 Ankreise 2 1.1 Grundlegendes................................

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

VERTIEFUNGSKURS MATHEMATIK

VERTIEFUNGSKURS MATHEMATIK VERTIEFUNGSKURS MATHEMATIK KLAUSUR 1, 8.12.2015 (1) Verwandle die folgenden Zahlen in Keilschrift bzw. in unsere Schreibweise: a) 14 b) 30 c) 100 d) 1 2 e) 1 1 3 (2) a) Begründe, warum für kleine x die

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag 56. Mathematik-Olympiade 4. Stufe Bundesrunde) Olympiadeklasse 10 Lösungen. Tag c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561044 Lösung

Mehr

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Elementare Geometrie Wiederholung 3

Elementare Geometrie Wiederholung 3 Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551041

Mehr

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 30 Mathematik Olympiade 4 Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30 Mathematik-Olympiade 4 Stufe (Bundesrunde) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen 6. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 0 Lösungen c 206 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 602 Lösung 0 Punkte

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551241

Mehr

Drei Kreise im Dreieck

Drei Kreise im Dreieck Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt

Mehr

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560831 Lösung

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Elementare Geometrie Vorlesung 19

Elementare Geometrie Vorlesung 19 Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass8 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580821

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Übungen zur. x 2y = 0.

Übungen zur. x 2y = 0. Übungen zur Geometrie WS 2015/16 Blatt 3 Prof. Fritzsche Lösung zu Afg. 9: Im R 2 kann man wahlweise mit Koordinaten rechnen oder die reine Vektorschreibweise verwenden. Möchte man die affine Struktur

Mehr

Städtewettbewerb Frühjahr 2008

Städtewettbewerb Frühjahr 2008 Städtewettbewerb Frühjahr 2008 Lösungsvorschläge Hamburg 5. März 2008 [Version 7. April 2008] M Mittelstufe Aufgabe M.1 (3 P.). Die gegenüberliegenden Seiten eines konvexen Sechsecks ABCDEF seien jeweils

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Geraden am Kreis Stefan Witzel Segmente und Geraden am Kreis Sei k ein Kreis. Eine Sekante ist eine Gerade, die k in zwei Punkten schneidet.

Mehr

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung: Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung

Mehr

Der Satz von Ceva & Satz von Menelaus

Der Satz von Ceva & Satz von Menelaus Der Satz von Ceva & Satz von Menelaus Fast Viktor 21. November 2007 Inhaltsverzeichnis Sätze und ihre Beweise Satz von Menelaus Satz von Ceva Winkelhalbierendenschnittpunkt Höhneschnittpunkt Winkelhalbierendenschnittpunkt

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Geraden am Kreis Stefan Witzel Segmente und Geraden am Kreis Sei k ein Kreis. Eine Sekante ist eine Gerade, die k in zwei Punkten schneidet.

Mehr

Übungen zu Geometrie und Lineare Algebra für das Lehramt

Übungen zu Geometrie und Lineare Algebra für das Lehramt Übungen zu Geometrie und Lineare Algebra für das Lehramt zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163) 2. Übungsblatt für die Woche vom 11. bis 15. März 2019 Aufgabe 2.1. Wiederhole

Mehr

Die Quadratur des Kreises: Transzedenzbeweis von e

Die Quadratur des Kreises: Transzedenzbeweis von e Seminar Analysis III Universität Dortmund / Fachbereich Mathematik Die Quadratur des Kreises: Transzedenzbeweis von e Seminar vom 15.7.213 von Stephan Wolf (136425) Stephan Wolf: 1888s@web.de INHALTSVERZEICHNIS

Mehr

20. Landeswettbewerb Mathematik Bayern

20. Landeswettbewerb Mathematik Bayern 20. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2017/2018 Aufgabe 1 Eine Folge a0,a1,... natürlicher Zahlen ist durch einen Startwert a 0 1 und die folgende Vorschrift

Mehr

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 16. Juni 016 Aufgabe 1. Man bestimme alle natürlichen Zahlen n mit zwei verschiedenen positiven Teilern, die von n

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550821 Lösung

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

Elementare Geometrie Vorlesung 12

Elementare Geometrie Vorlesung 12 Elementare Geometrie Vorlesung 12 Thomas Zink 31.5.2017 1.Die Winkelhalbierende Es seien s und t zwei Strahlen, die sich in einem Punkt O schneiden. Es sei (s, t) < 180 o. Die Winkelfläche besteht aus

Mehr

Konstruktionen mit Kreisen

Konstruktionen mit Kreisen Konstruktionen mit Kreisen Kreis und Gerade 1. Gegeben: k(m 5); Punkt P mit M P = 4. Konstruiere Sehnen der Länge 8 durch P (mit KB). 2. Gegeben: k(m 4); P k, Q k mit P Q = 5. Gesucht: Kreis durch P und

Mehr

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2015/2016

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2015/2016 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 05/06 Aufgabe An der Tafel steht eine positive ganze Zahl. Abwechselnd ersetzen Nora und Marius die Zahl an der Tafel durch eine neue

Mehr

Inhaltsverzeichnis. 1 Einführung 1

Inhaltsverzeichnis. 1 Einführung 1 Inhaltsverzeichnis 1 Einführung 1 2 Der Inkreis und die Ankreise eines Dreiecks 1 2.1 Kreistangente und Berührradius....................... 1 2.2 Konstruktion von Kreistangenten mit Hilfe des Satzes von

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2018/2019

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2018/2019 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2018/2019 Aufgabe 1 Zwölf Schüler einer Klasse haben ein Schere-Stein-Papier-Turnier ausgetragen. Dabei trat jeder gegen jeden genau

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551141

Mehr

4.17 Buch III der Elemente

4.17 Buch III der Elemente 4.17 Buch III der Elemente Buch III behandelt Kreise und ihre Eigenschaften. Einige bekannte darin enthaltenen Resultate sind: Buch III, 10 Zwei Kreise haben höchsten zwei Schnittpunkte. Buch III, 13 Zwei

Mehr

19. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2016/2017

19. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2016/2017 19. Landeswettbewerb Mathematik ayern Lösungsbeispiele für die ufgaben der 2. Runde 2016/2017 ufgabe 1 Paul soll fünf positive ganze Zahlen nebeneinander schreiben. Dabei muss er Folgendes beachten: Die

Mehr

Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11

Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11 Inhaltsverzeichnis 1. Einleitung...2 2. Eigenschaften von Kreisen... 3 2.1 Sehnensatz.................................................... 3 2.2 Sekantensatz..................................................

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Lösungen Klasse / 11. Schulstufe

Lösungen Klasse / 11. Schulstufe 11. Klasse / 11. Schulstufe Lösungen - 11. Klasse / 11. Schulstufe 1. An einer Tafel stehen die Zahlen 51 und 30. In einem ersten Schritt bildet Daniel die positive Differenz dieser Zahlen (also 51 30

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b)

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b) 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550721 Lösung

Mehr

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich: Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 24. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und.

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und. Seminar zur Zahlentheorie Prof. Dr. T. Wedhorn Vortrag zum Thema Euklidische und faktorielle Ringe 13.11.2007 Peter Picht und Stephan Schmidt 4 Euklidische und faktorielle Ringe (A) Assoziierheit, Irreduziblität,

Mehr

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb athematik aden-württemberg Lösungsvorschläge für die ufgaben der Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt Für die ganze Figur sind

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

4.18 Buch IV der Elemente

4.18 Buch IV der Elemente 4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Beispiellösungen zu Blatt 89

Beispiellösungen zu Blatt 89 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 89 Aufgabe 1 Für welche ganzen Zahlen n ist eine ganze Zahl? Lösung: Es ist 3n

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathematik Wissenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-9 59 15-0 Fax: 08-9 59 15-9 e-mail: info@bundeswettbewerb-mathematik.de www.bundeswettbewerb-mathematik.de Korrekturkommission

Mehr

Zum Satz von Brianchon Darij Grinberg C D. Fig. 1 Im folgenden werden wir den Schnittpunkt zweier Geraden g und h kurz mit g \ h bezeichnen.

Zum Satz von Brianchon Darij Grinberg C D. Fig. 1 Im folgenden werden wir den Schnittpunkt zweier Geraden g und h kurz mit g \ h bezeichnen. um Satz von Brianchon Darij Grinberg B D Y A E k F Fig. 1 Im folgenden werden wir den Schnittpunkt zweier Geraden g und h kurz mit g \ h bezeichnen. 1 F Y E A D B k Fig. 2 Der berühmte Satz von Pascal

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Lösungen Klasse / 10. Schulstufe

Lösungen Klasse / 10. Schulstufe Lösungen - 10. Klasse / 10. Schulstufe 1. Eva trägt in die Felder einer 5 5 Tabelle alle natürlichen Zahlen von 1 bis 5 ein (in jedes Feld genau eine Zahl). Sie achtet darauf, dass sich zwei aufeinanderfolgende

Mehr

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos SWS-Kongruenzsatz. SWS-Kongruenzsatz. Es seien A,B,C und A,B,C Punkte des R 2, s.d. weder A,B,C noch A,B,C auf einer Geraden liegen. Dann gilt: es gibt eine Isometrie I, mit A A, B B, C C, genau dann wenn

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A 1997 Runde ufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten und Der Kreis um k1 k 1 durch schneidet zum zweiten Mal in einem Punkt Zeige, dass die Gerade () Tangente an den

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr