2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

Größe: px
Ab Seite anzeigen:

Download "2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6"

Transkript

1 $Id: dreieck.tex,v /06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die In- und Umkreismittelpunkte sowie den Höhenschnittpunkt behandeln. Den Schwerpunkt hatten wir bereits in 1 mit Hilfe des Satzes von Ceva behandelt, und nun wollen wir zum Schnittpunkt der Winkelhalbierenden kommen. Hierzu sollten wir uns erst einmal überlegen welche Bedeutung die Winkelhalbierende überhaupt hat. Wie sich herausstellt ist der Begriff der Winkelhalbierenden in gewissen Sinne dual zum Begriff der Mittelsenkrechten, es werden zwei Geraden betrachtet und nach der Menge aller Punkte gefragt die von beiden Geraden denselben Abstand haben. Diese Menge wird die Vereinigung zweier senkrecht aufeinander stehender Geraden sein, diese Geraden sind dabei gerade die beiden durch die Ausgangsgeraden gegebenen Winkelhalbierenden. Es ist einfacher sich zunächst auf einen der vier von den beiden Geraden gebildeten Sektoren zu beschränken, die Punkte innerhalb dieses Sektors die von beiden Geraden denselben Abstand haben bilden dann einen Strahl der den Sektor halbiert, also eine Winkelhalbierende des zugehörigen Winkels ist. Wir formulieren diese Aussage als ein kleines Lemma, das aufgrund der hierbei auftretenden Figur gerne als das Drachenlemma bezeichnet wird. In der Formulierung dieses Lemmas sagen wir dabei das zwei Strecken aufeinander senkrecht sind wenn die sie enthaltenden Geraden dies sind. Lemma.11 (Bestimmung der Winkelhalbierenden) Seien u, v zwei Strahlen mit demselben Startpunkt A, B u\{a} und C v\{a}. Bezeichne S := S(u, v)\(u v) das Innere das Sektors zwischen u und v und sei P S so, dass BP senkrecht auf AB ist und CP senkrecht auf AC ist. Schließlich sei α := (BAC). Dann sind die folgenden Aussagen äquivalent: (a) Es ist d(p, AB) = d(p, AC). (b) Es ist BP = CP. (c) Es ist AB = AC. (d) Die Dreiecke ABP und ACP sind kongruent. (e) Die Strecke AP ist die Winkelhalbierende von α. 15-1

2 C A α P B Beweis: (a) (b). Wegen BP AB und CP AC sind d(p, AB) = BP und d(p, AC) = CP (die Schreibweise ist hier etwas ungenau, gemeint ist der Abstand zur jeweiligen Geraden und nicht zur Strecke), also sind (a) und (b) äquivalent. (b) (c). Wenden wir den Satz des Pythagoras 1.Korollar 4 in den beiden rechtwinkligen Dreiecken ABP und ACP an, so ergibt sich AB + BP = AP = AC + CP, und damit ist genau dann AB = AC wenn BP = CP gilt. (a)= (d). Da die Implikationen von (a) nach (b) und (c) bereits gezeigt sind, haben wir AB = AC und BP = CP, d.h. die beiden Dreiecke ABP und ACP sind nach 1.Satz 40.(b) kongruent. (d)= (b). Klar nach 1.Satz 40.(a). (d) (e). Die Dreiecke ABP und ACP stimmen in der Seite AP überein und haben bei B beziehungsweise C gleiche, nämlich rechte, Winkel. Nach dem Kongruenzsatz SWW Satz 7 sind die beiden Dreiecke damit genau dann kongruent wenn ihre Winkel in A übereinstimmen, wenn also AP den Winkel α halbiert. B C A w β α g w 1 B h A C Gleicher Abstand zu zwei Geraden Winkelhalbierende im Dreieck 15-

3 Beachte das sich das Drachenlemma auf Punkte P innerhalb des Winkels α bezieht. Haben wir zwei verschiedene Geraden g, h die sich in einem Punkt schneiden, so setzt sich die Menge M := {P R d(p, g) = d(p, h)} aller Punkte die von g und h denselben Abstand haben aus zwei Geraden zusammen die senkrecht aufeinander sind. Um dies zu sehen, unterteilen wir die Ebene in einen von g, h gebildeten Winkel α zusammen mit seinem Gegenwinkel und den anderen von g, h gebildeten Winkel β zusammen mit seinem Gegenwinkel. Der Teil von M innerhalb von α ist nach dem Drachenlemma die Winkelhalbierende w 1 von α und diese ist auch gleich der Winkelhalbierenden des Gegenwinkels und der Teil innerhalb von β und dem Gegenwinkel von β ist die Winkelhalbierende w von β. Der Winkel zwischen w 1 und w ist α/ + β/ = (α + β)/ = π/, die beiden stehen also senkrecht aufeinander. Damit haben wir M = w 1 w, wie behauptet. Bei zwei beliebigen Geraden gibt es keine Möglichkeit zwischen w 1 und w zu unterscheiden, haben wir dagegen ein Dreieck = ABC so betrachten wir in jedem Eckpunkt den das Dreieck enthaltenden Winkel und nennen seine Winkelhalbierende die Winkelhalbierende von durch die entsprechende Ecke. Die auf der Winkelhalbierenden von durch eine Ecke senkrecht stehende andere Winkelhalbierende nennt man dann die äußere Winkelhalbierende von durch den betrachteten Eckpunkt. Schneiden wir diese paarweise, so erhalten wir wie oben abgebildet ein neues Dreieck A B C, mit dem wir uns in den Übungsaufgaben beschäftigen werden. Nach diesen Vorbereitungen können wir die Existenz des Schnittpunkts der Winkelhalbierenden in einem Dreieck sehr bequem einsehen. Satz.1 (Der Schnittpunkt der Winkelhalbierenden) Sei = ABC ein Dreieck. Dann schneiden sich die drei Winkelhalbierenden von in einem Punkt S w und dieser ist der eindeutige Punkt in der von allen drei Seiten des Dreiecks denselben Abstand hat. Beweis: Die beiden Winkelhalbierenden durch A und B schneiden sich in einem Punkt S w und nach dem Drachenlemma Lemma 11 angewandt auf diese beiden Winkelhalbierenden gelten d(s w, AB) = d(s w, AC) und d(s w, AB) = d(s w, BC), also ist d(s w, AB) = d(s w, AC) = d(s w, BC) und wieder nach dem Drachenlemma liegt S w auch auf der Winkelhalbierenden durch C. Da der Schnittpunkt S w der Winkelhalbierenden von allen drei Seiten des Dreiecks denselben Abstand r := d(s w, AB) = d(s w, AC) = d(s w, BC) hat, berührt der Kreis mit Mittelpunkt S w und Radius r alle drei Seiten tangential. Man nennt diesen Kreis dann den Inkreis des Dreiecks und r heißt entsprechend der Inkreisradius von. Neben dem Inkreis gibt es noch drei weitere Kreise die alle, als Geraden aufgefasste, Seiten des Dreiecks berühren, diese haben die schon oben 15-3

4 erwähnten Schnittpunkte je zweier äußerer Winkelhalbierenden des Dreiecks als ihre Mittelpunkte. Mit diesen sogenannten Ankreisen von werden wir uns in den Übungen beschäftigen. C r S w A B Der Inkreisradius r ist eine weitere numerische Invariante des Dreiecks zusätzlich zu den drei Seiten a, b, c und den drei Winkeln α, β, γ, und wir wollen die Zahl r nun in Termen der drei Seiten berechnen. Es stellt sich als technisch geschickt heraus hierzu eine weitere Größe zu betrachten nämlich die Fläche F unseres Dreiecks. Bezeichnen wir die Höhen auf den drei Seiten a, b, c wie schon beim Sinussatz mit h a, h b, h c, so ist die Dreiecksfläche gegeben als F = 1 a h a = 1 b h b = 1 c h c. Im Sinussatz Satz 6 hatten wir diese Höhen zu h a = c sin β = b sin γ, h b = c sin α = a sin γ, h c = b sin α = a sin β berechnet, also wird etwa F = 1 ah a = 1 ab sin γ. Die Dreiecksfläche F ist also gleich dem halben Produkt je zweier Seiten und dem Sinus des von diesen eingeschlossenen Winkels. Das ist bereits eine Flächenformel, allerdings noch keine die die Fläche ganz in Termen von a, b, c ausdrückt. Um den Sinus zu eliminieren wollen wir den Cosinussatz verwenden und dazu müssen wir wiederum den Sinus in einen Cosinus umwandeln. Dies gelingt über die Beziehung sin γ + cos γ = 1 indem wir unsere obige Gleichung quadrieren F = 1 4 a b sin γ = a b (1 cos γ). 4 Setzen wir hier den Cosinussatz 1.Satz 3 als ab cos γ = 1 (a + b c ) 15-4

5 ein, so wird a b (1 cos γ) = a b 1 4 (a + b c ) = 1 4 (4a b (a + b c ) ) und insgesamt ist damit F = 4a b (a + b c ). 16 Diese Gleichung ist schon fast unser Ziel, ihr einziger Nachteil ist noch das die Symmetrie in a, b, c in dieser Formel nicht klar zum Vorschein tritt. Schreiben wir diese Formel noch etwas um so ergibt sich: Satz.13 (Heronsche Flächenformel) Sei ein Dreieck mit den Seitenlängen a, b, c. Weiter bezeichne s := (a + b + c)/ den halben Umfang des Dreiecks und F seine Fläche. Dann gilt die Heronsche Flächenformel F = 1 4 (a + b + c)(a + b c)(a + c b)(b + c a) = s(s a)(s b)(s c). Beweis: Wir setzen die obige Rechnung fort und erhalten F = (ab) (a + b c ) 16 = 1 16 (ab (a + b c ))(ab + (a + b c )) = 1 16 (c (a b) )((a + b) c ) = 1 (b + c a)(a + c b)(a + b c)(a + b + c), 16 also F = 1 4 (a + b + c)(a + b c)(a + c b)(b + c a). Beachten wir noch s a = b + c a, s b = a + c b und s c = a + b c, so ergibt sich auch F = s(s a)(s b)(s c). Damit ist die Heronsche Flächenformel bewiesen. Den Zusammenhang zwischen Fläche F und Inkreisradius r eines Dreiecks = ABC können wir der folgenden Skizze entnehmen: 15-5

6 C r r S w r A B Der Inkreisradius r war der gemeinsame Abstand von S w zu den drei Seiten des Dreiecks, fällen wir also von S w aus Lote auf die drei Seiten, so haben die entstehenden Lotfußpunkte jeweils den Abstand r von S w. Zerlegen wir also das Dreieck in drei Teildreiecke, die jeweils S w und zwei der drei Ecken von als ihre Ecken haben, so tritt der Inkreisradius r in jedem dieser Dreiecke als Höhe auf einer der drei Seiten von auf. Damit wird die Fläche F von zur Summe der drei Flächen dieser Teildreiecke, und diese Beobachtung liefert uns einen Zusammenhang zwischen r und F. Korollar.14 (Berechnung des Inkreisradius) Sei ein Dreieck mit Seiten a, b, c, Fläche F, Inkreisradius r und halbem Umfang s := (a + b + c)/. Dann gelten (s a)(s b)(s c) F = rs und r =. s Beweis: Sei = ABC und bezeichne S w den Schnittpunkt der Winkelhalbierenden von. Dann zerlegen wir in die drei Dreiecke ABS w, BCS w und CAS w. In jedem dieser Dreieck ist die Höhe durch S w gleich dem Lot von S w auf die entsprechende Seite von, die Länge dieser Höhe ist also der gemeinsame Abstand r von S w zu diesen drei Seiten. Es folgt F = 1 ar + 1 br + 1 cr = r a + b + c = rs. Mit der Heronschen Flächenformel Satz 13 ergibt sich weiter r = F s = 1 s (s a)(s b)(s c) s(s a)(s b)(s c) =. s 15-6

7 Wir können die Flächenformel (4F ) = 4a b (a + b c ) auch noch auf eine andere Art auswerten und damit den Zusammenhang mit den Klammersymbolen aus 1.3 herstellen. Lemma.15 (Determinantenformel für die Dreiecksfläche) Sei = ABC ein Dreieck und bezeichne F seine Fläche. Dann gilt F = [A, B, C]. Beweis: Bezeichne a, b, c die Seiten von in den Standardbezeichnungen. Dann ist b = AC und da zwei Strecken derselben Länge kongruent sind existiert eine Bewegung ϕ des R mit ϕ(c) = (0, 0) und ϕ(a) = (b, 0). Weiter schreiben wir ϕ(b) = (x, y) und haben a = BC = ϕ(b)ϕ(c) = x + y sowie Es folgt c = AB = ϕ(a)ϕ(b) = (x b) + y = x + y + b xb. und damit ist (4F ) = 4a b (a + b c ) = 4(x + y )b 4x b = 4y b 4F = y b = b x 0 0 y 0 = [ϕ(a), ϕ(b), ϕ(c)]. Mit Aufgabe (19.a) ergibt sich schließlich F = [A, B, C]. Beachten wir [A, B, C] = [B A, C A] so sehen wir das diese Formel gerade die Interpretation der Determinante zweier Vektoren im R als die Fläche des von diesen aufgespannten Parallelograms ist. Die Bedeutung des Vorzeichens von [A, B, C] kennen wir aus Aufgabe (18.a), genau dann ist F = [A, B, C] wenn ABC ein orientiertes Dreieck ist wenn also A, B, C eine positiv orientierte affine Basis des R ist. Beachte das die Formel auch im ausgearteten Fall gilt, sind A, B, C drei kollineare Punkte im R so ist nach 1.Lemma 9 stets [A, B, C] = 0 und dies können wir als die Fläche von ABC interpretieren. Wir können diese Flächenformel auch benutzen um eine Beschreibung der baryzentrischen Koordinaten eines Punktes als Flächenverhältnisse herzuleiten. Lemma.16 (Baryzentrische Koordinaten als Flächenverhältnisse) Seien ABC ein Dreieck mit Fläche F und P R ein weiterer Punkt. Liegt P auf der anderen Seite von BC als A so sei F a das Negative der Fläche von BCP und andernfalls bezeiche F a die Fläche des eventuell ausgearteten Dreiecks BCP. Definiere F b, F c analog. Dann ist P = F a F A + F b F B + F c F C die Darstellung von P in baryzentrischen Koordinaten. 15-7

8 Beweis: Die baryzentrische Koordinate λ von P bei A ist nach 1.Lemma 1 gleich [P, B, C]/[A, B, C], ist also F die Fläche des eventuell ausgearteten Dreiecks BCP so ist nach Lemma 15 auch λ = F /F. Im Fall F = 0 ist damit bereits λ = F /F = F a /F. Nun betrachten wir den Fall F 0, d.h. B, C, P sind nicht kollinear. Nach Aufgabe (18.c) liegen P und A genau dann auf derselben Seite von BC wenn ABC und P BC beides positiv oder beides negativ orientierte affine Basen des R sind, nach Aufgabe (18.b) ist also sign(f a /F ) = sign([p, B, C]/[A, B, C]) = sign(λ). Damit haben wir λ = F a /F und die Formeln für die anderen beiden baryzentrischen Koordinaten ergeben sich analog. Damit kommen wir nun zum Schnittpunkt der Mittelsenkrechten, die Existenz dieses Schnittpunkts ist dabei analog zum Fall der Winkelhalbierenden. Erinnern Sie sich dazu daran, dass die Mittelsenkrechte zweier Punkte A, B nach Aufgabe (16.a) genau aus denjenigen Punkten X besteht die zu A und B denselben Abstand haben, für die also AX = BX gilt. Satz.17 (Der Schnittpunkt der Mittelsenkrechten) Sei = ABC ein Dreieck. Dann schneiden sich die drei Mittelsenkrechten von in einem Punkt S u und dieser ist der eindeutige Punkt der von allen drei Ecken des Dreiecks denselben Abstand hat. Beweis: Sei S der Schnittpunkt der Mittelsenkrechten auf AB und auf AC. Dann gelten AS = BS und AS = CS, also auch BS = CS und S liegt auch auf der Mittelsenkrechten auf BC. Dass alle drei Ecken von S u denselben Abstand R haben, bedeutet das der Kreis mit Radius R und Mittelpunkt S u durch alle drei Ecken des Dreiecks = ABC geht, und da S u der einzige Punkt ist der von allen drei Ecken gleich weit entfernt ist, ist dieser Kreis auch der einzige Kreis der durch A, B, C geht. Man nennt den Kreis durch die Ecken von auch den Umkreis von und der Schnittpunkt S u ist daher der Mittelpunkt des Umkreises. Der Radius R des Umkreises heißt dann der Umkreisradius von. 15-8

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.23 2017/07/10 14:46:08 hk Exp $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung In der letzten Sitzung haben wir begonnen uns mit sphärischer Trigonometrie zu beschäftigen.

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.34 018/04/19 14:11:43 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit Aussagen über ebene Geraden und haben einige

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $ $Id: dreieck.tex,v 1.11 2013/04/29 15:15:02 hk Exp $ $Id: trig.tex,v 1.2 2013/04/29 15:15:28 hk Exp hk $ 1 Dreiecke 1.6 Einige Sätze über Kreise m Ende der letzten Sitzung hatten wir den Feuerbachkreis

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel LSGM Leipziger Schülergesellschaft f ur Mathematik Dreiecksgeometrie 2 Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel Inhaltsverzeichnis 1 Ankreise 2 1.1 Grundlegendes................................

Mehr

Mathematische Probleme, SS 2017 Donnerstag 22.6

Mathematische Probleme, SS 2017 Donnerstag 22.6 $Id: dreieck.tex,v 1.38 017/06/19 16:13:49 hk Exp $ $Id: trig.tex,v 1.17 017/06/ 1:46:01 hk Exp $ Dreiecke.4 Einige Sätze üer Kreise m Ende der letzten Sitzung hatten wir den Umkreisradius R eines Dreiecks

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

1 Einleitung 3. 2 Notation 3

1 Einleitung 3. 2 Notation 3 Inhaltsverzeichnis 1 Einleitung 3 2 Notation 3 3 Wiederholung 09.05 3 3.1 Definition: Höhenfußpunktdreieck....................... 4 3.2 Definition: Mittendreieck............................ 4 3.3 Definition:

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $ $Id: dreieck.tex,v 1.3 2013/04/12 15:30:18 hk Exp hk $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke betrachtet haben, kommen wir nun zur Einführung der trigonometrischen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Übungen zur Vorlesung Elementare Geometrie

Übungen zur Vorlesung Elementare Geometrie Westfälische Wilhelms-Universität Münster Mathematisches Institut al. Prof. Dr. Lutz Hille Dr. Karin Haluczok Übungen zur Vorlesung Elementare Geometrie Sommersemester 00 Musterlösung zu Blatt 3 vom 6.

Mehr

FUSSPUNKT - DREIECKE. [Text eingeben]

FUSSPUNKT - DREIECKE. [Text eingeben] FUSSPUNKT - DREIECKE [Text eingeben] Während das Fußpunktdreieck bezüglich der Inkreismitte M i das Kontaktdreieck liefert, ist das Fußpunktdreieck bezüglich M u das Mittendreieck. Das Höhenfußpunktdreieck

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Vorlesung Sommer 2007 Elementare Geometrie

Vorlesung Sommer 2007 Elementare Geometrie Vorlesung Sommer 2007 Elementare Geometrie 1 Isometrien der Ebene Aus der Anschauung kennen wir den Begriff der Bewegung einer Ebene E. Wir zählen die wichtigen Eigenschaften von Bewegungen auf. Eine Bewegung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

Tipps Geometrie II. Aktualisiert: 29. Januar 2016 vers EG EF = P A. q 1 q. P B =

Tipps Geometrie II. Aktualisiert: 29. Januar 2016 vers EG EF = P A. q 1 q. P B = Schweizer Mathematik-Olympiade smo osm Tipps Geometrie II Aktualisiert: 9. Januar 016 vers..0.0 Ähnliche Dreiecke 1. Zweimal Strahlensatz beim Scheitelpunkt A ergibt DB = 15.. Wende zweimal den zweiten

Mehr

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

1 Einleitung 1. 2 Notation 1

1 Einleitung 1. 2 Notation 1 Inhaltsverzeichnis 1 Einleitung 1 2 Notation 1 3 Definitionen & Hilfssätze 1 3.1 Definition (Sehne)............................... 1 3.2 Satz (Peripheriewinkelsatz).......................... 2 3.3 Lemma.....................................

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.15 2016/07/08 13:57:53 hk Exp $ 5 Sphärische Trigonometrie 5.3 Kleinkreise als sphärische Kreise In der letzten Sitzung hatten wir eingesehen das die sphärischen Kreise auf einer Sphäre

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Ein Problem der Dreiecksspiegelung

Ein Problem der Dreiecksspiegelung Ein Problem der Dreiecksspiegelung Tobias Schoel 10. Februar 2008 1 Die Dreiecksspiegelung 1.1 Spiegelung eines Punktes Es sei ein Dreieck ABC mit den Seiten BC = a, AC = b und AB = c gegeben und P sei

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $ $Id: anageo.tex,v 1.3 9/1/18 1:4:38 hk Exp hk $ II. Lineare Algebra 1 Analytische Geometrie 1.1 Das Skalarprodukt v w u p Wir wollen noch eine weiteres Ergebnis der eben durchgeführten Überlegung festhalten.

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Kongruenz Dreiecke.notebook. April 08, Feb 21 10:31. Feb 20 12:03. Feb 26 06:57. Feb 26 09:18. Feb 20 12:02. Feb 20 12:02

Kongruenz Dreiecke.notebook. April 08, Feb 21 10:31. Feb 20 12:03. Feb 26 06:57. Feb 26 09:18. Feb 20 12:02. Feb 20 12:02 Thema: Konstruktion von Dreiecken und besondere Linien im Dreieck. Konstruktion von Dreiecken Wir einigen uns auf folgende Regeln der Geometrie: Hauptlinien und Hilfslinien werden unterschiedlich dick

Mehr

1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $

1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $ $Id: dreieck.tex,v 1.54 2019/04/16 09:08:06 hk Exp $ 1 Dreiecke 1.3 Teilungsverhältnisse Wir kommen nun zum Begriff des Teilungsverhältnis und allgemeiner des Verhältnis zweier Strecken AB und CD. Eine

Mehr

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel Trigonometrie Unterrichtsinhalte und Beispiele Olaf Schimmel 1 Die Definition der Winkelfunktioen 1.1 Die Winkelfunktionen im rechtwinkligen Dreieck Gegeben sei ein rechtwinkliges Dreieck mit den Katheten

Mehr

Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11

Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11 Inhaltsverzeichnis 1. Einleitung...2 2. Eigenschaften von Kreisen... 3 2.1 Sehnensatz.................................................... 3 2.2 Sekantensatz..................................................

Mehr

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte 1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.5 2013/08/13 17:21:33 hk Exp $ 5 Sphärische Trigonometrie m Ende der letzten Sitzung hatten wir mit der Untersuchung sphärischer Dreiecke begonnen. Gegeben war eine Sphäre K, oder

Mehr

a,b, c R nicht kollinear. Die Höhen sind kopunktal mit eindeutigem

a,b, c R nicht kollinear. Die Höhen sind kopunktal mit eindeutigem 1 Vorlesungsausarbeitung vom 11.01.010 vorgelegt von Bastian Freese und Laura Höffer Einordnung in die Vorlesung Die Vorlesung vom 11.01.010 gehört zu 6 Anfänge der euklidischen Elementargeometrie. Ein

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

Vorlesung Winter 2009/2010 Elementare Geometrie

Vorlesung Winter 2009/2010 Elementare Geometrie Vorlesung Winter 2009/2010 Elementare Geometrie 1 Homothetien Es sei Z E ein Punkt der Ebene. Es sei λ 0 eine reelle Zahl. Die zentrale Homothetie mit dem Zentrum Z und dem Streckungsfaktor λ ist folgende

Mehr

Elementare Geometrie - Das Dreieck Teil II

Elementare Geometrie - Das Dreieck Teil II Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Das Dreieck Teil II Eingereicht von: Manuel Krischke 176680 manuel.krischke@tu-dortmund.de Eingereicht bei: Prof. L. Schwachhöfer

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel

Mehr

1 Zahlen und Funktionen

1 Zahlen und Funktionen 1 Zahlen und Funktionen 1.1 Variablen Variablen sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge. Bsp.: a IN, b Z oder x QI Betrag einer Variablen a falls a 0 a = Bsp.: 7 = 7; -5 = -(-5) =

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.28 2017/05/29 14:49:16 hk Exp $ $Id: dreieck.tex,v 1.29 2017/05/29 14:54:26 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir hatten zwei Teilmengen

Mehr