Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Größe: px
Ab Seite anzeigen:

Download "Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze"

Transkript

1 Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

2 Im Folgenden werden Maßzahlen für Winkelgrößen (i.d.r ) und für Streckenlängen (in der Regel in cm, oder ganz ohne Maßeinheit) so genutzt, als wären sie formal und korrekt eingeführt worden. Wir verlassen uns da auf unser Schulwissen. Die Flächenmessung beruht auf folgender Idee: So wie die Einheitsstrecke (Länge 1) genutzt wird um eine Strecke auszumessen, soll eine Fläche mit Einheitsquadraten (Seitenlängen 1(cm), Flächeninhalt 1(cm 2 ) ausgelegt werden. 2 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

3 In einem Rechteck mit ganzzahligen Seitenlängen a und b ist offensichtlich die Maßzahl seiner Flächengröße gleich dem Produkt der Maßzahlen seiner Seitenlängen. Dies gilt aber sogar für alle a, b R. Wir definieren: Der Flächeninhalt A eines Rechtecks R mit den Seitenlängen a und b ist das Produkt der Längen a und b: A(R) = a b Flächeninhalte weiterer n-ecke lassen sich über die anschauliche Eigenschaft der Zerlegungsgleichheit definieren. Wir nennen zwei n-ecke P, Q zerlegungsgleich, wenn sie sich so in gleichviele Teilpolygone zerlegen lassen, dass es eine 1-zu-1-Zuordnung kongruenter Teilpolygone von P und Q gibt. 3 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

4 Ein Parallelogramm P = ABCD ist ein konvexes Viereck, bei dem gegenüberliegende Seiten parallel sind. Die Höhe eines Parallelogramms ist der Abstand der Trägergeraden zweier paralleler Seiten. Ist z.b. [AB] eine dieser Seiten, bezeichnen wir die Höhe mit h [AB]. Ein Parallelogramm hat zwei i.d.r. verschiedene Höhen. Für ein Parallelogramm P gilt A(P) = AB h [AB] P hat somit den gleichen Flächeninhalt wie ein Rechteck mit den Seitenlängen AB und h [AB]. 4 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

5 A(P) = AB h [AB] P = ABCD hat den gleichen Flächeninhalt wie R = ABEF h [AB] = BE 5 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

6 Gilt [CD] [EF] = φ, ist der Nachweis nicht ganz so einfach 6 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

7 Gilt [CD] [EF] = φ, ist der Nachweis nicht ganz so einfach Eine Parallele zu AB liefert zwei kongruente Dreiecke. 7 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

8 Gilt [CD] [EF] = φ, ist der Nachweis nicht ganz so einfach Eine Parallele zu AB liefert zwei kongruente Dreiecke. Nun ist noch die Flächengleichheit des übrigen Rechtecks und übrigen Parallelogramms nachzuweisen. 8 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

9 Gilt [CD] [EF] = φ, ist der Nachweis nicht ganz so einfach Eine Parallele zu AB liefert zwei kongruente Dreiecke. Nun ist noch die Flächengleichheit des übrigen Rechtecks und übrigen Parallelogramms nachzuweisen. Die beiden grün markierten Rechtecke sind kongruent. 9 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

10 Die Höhe eines Dreiecks ABC ist der Abstand der Trägergeraden einer Seite zum Punkt außerhalb dieser Geraden. Z.B. ist h [AB] = d(ab, C) eine dieser Seiten, bezeichnen wir die Höhe mit. Ein Dreieck hat drei i.d.r. verschiedene Höhen. Für ein Dreieck Δ = ABC gilt A(Δ) = 1 2 AB h [AB] Dies folgt aus der Betrachtung eines entsprechenden Parallelogramms. 10 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

11 Ein Trapez T = ABCD ist ein konvexes Viereck mit eiem Paar symmetrischer Seiten. Die Höhe eines Trapezes ABCD ist der Abstand der Trägergeraden der parallelen Seiten. Ist z.b. [AB] eine dieser Seiten, bezeichnen wir die Höhe mit h [AB]. Ein Trapez, das kein Parallelogramm ist, hat eine eindeutige Höhe. Ein symmetrisches Trapez T s = ABCD ist ein Trapez, und es gibt eine Symmetrieachse m mit AB m CD S m (A) = B S m (C) = D. Flächenformel: A(T s ) = AB + CD 2 h [AB] 11 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

12 Kurzdefinitionen der besonderen (einfachen) Vierecke: Das Parallelogramm hat zwei Paar gegenüberliegender paralleler Seiten Das symmetrische Trapez hat ein Paar gegenüberliegender paralleler Seiten und eine zu diesen senkrechte Symmetrieachse. Das Drachenviereck hat zwei Paar benachbarter Seiten gleicher Länge. Die Raute hat vier gleichlange Seiten Das Rechteck hat vier rechte Innenwinkel. Das Quadrat hat vier gleichlange Seiten und vier rechte Winkel. 12 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

13 Das Haus der Vierecke Eine Möglichkeit, die besonderen Vierecke zu charakterisieren, führt über die Betrachtung der Punktund Achsensymmetrien., ist ein 13 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

14 Eine letzte Formel für die Berechnung der Fläche eines besonderen Vierecks fehlt noch: Für ein Drachenviereck D = ABCD gilt: A(T s ) = 1 2 AC BD Einer der bekanntesten Sätze im Zusammenhang mit Flächenberechnung ist der Satz des Pythagoras: a 2 + b 2 = c 2 14 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

15 In einem rechtwinkligen Dreieck ist die Hypotenuse die dem rechten Winkel gegenüberliegende Seite; die Katheten sind die am rechten Winkel anliegenden Seiten. Im Folgenden liegt der rechte Winkel immer am Punkt C. Satz des Pythagoras: Bei jedem rechtwinkligen Dreieck ist die Summe der Flächeninhalte der Quadrate über den Katheten mit den Längen a, b gleich dem Flächeninhalt des Quadrates über der Hypotenuse mit der Länge c. Es gilt also: a 2 + b 2 = c 2 15 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

16 Dieser Satz bildet gemeinsam mit den folgenden beiden Sätzen die Satzgruppe des Pythagoras: Sei D der Fußpunkt des Lots auf AB durch C. Wir nennen AD, BD Hypotenusenabschnitte, und es sei p = AD q = BD. Kathetensatz (des Euklid) Bei jedem rechtwinkligen Dreieck hat das Quadrat über einer Kathete denselben Flächeninhalt wie das Rechteck über dem anliegenden Hypotenusenabschnitt mit der Seitenlänge der Hypotenuse. a 2 = c p b 2 = c q 16 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

17 Höhensatz (des Euklid) Bei jedem rechtwinkligen Dreieck hat das Höhenquadrat denselben Flächeninhalt wie ein Rechteck mit den beiden Hypotenusenabschnitten als Seitenlängen. h 2 = p q ä (Das Höhenquadrat ist das Quadrat über CD) Für alle drei Sätze gilt auch die Umkehrung, bzw.: In einem nicht rechtwinkligen Dreieck gilt keine dieser Gleichungen. 17 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

18 Es gibt eine Vielzahl an Beweisen für diese Sätze, Euklid beweist den Kathetensatz über Kongruenzen. Daraus folgt dann direkt der Satz des Pythagoras. Satz des Pythagoras Kongruenzbeweis: Aus den gegebenen rechten Winkeln und den rechten Winkeln im Quadrat folgt: AC BE CD BH 18 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

19 Satz des Pythagoras Kongruenzbeweis: Aus den gegebenen rechten Winkeln und den rechten Winkeln im Quadrat folgt: AC BE CD BH Mit Kongruenzsatz SWS gilt ABE HBC, denn [AB] [HB] und [BE] [BC] und EBA CBH Damit gilt auch A(ABE) = A(HBC) 19 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

20 Satz des Pythagoras Kongruenzbeweis: Aus den gegebenen rechten Winkeln und den rechten Winkeln im Quadrat folgt: AC BE CD BH Mit Kongruenzsatz SWS gilt ABE HBC, denn [AB] [HB] und [BE] [BC] und EBA CBH Damit gilt auch A(ABE) = A(HBC) A(HBC) = A(HBD) und A(ABE) = A(CBE) A(HBD) = A(CBE) A(HBDG) = A(CBEF) 20 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

21 Satz des Pythagoras Kongruenzbeweis: Aus den gegebenen rechten Winkeln und den rechten Winkeln im Quadrat folgt: AC BE CD BH Mit Kongruenzsatz SWS gilt ABE HBC, denn [AB] [HB] und [BE] [BC] und EBA CBH Damit gilt auch A(ABE) = A(HBC) A(HBC) = A(HBD) und A(ABE) = A(CBE) A(HBD) = A(CBE) A(HBDG) = A(CBEF) Damit ist ein Teil des Kathetensatzes bewiesen. Der zweite Teil wird analog bewiesen. Der Satz des Pythagoras folgt direkt 21 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

22 Winkel am Kreis In einem Kreis k = k(m, r) nennen wir einen orientierten Winkel AMB, wobei A,B k Kreispunkte sind, einen Zentri- oder Mittelpunktswinkel. Einen gleich orientierten, nicht überstumpfen Winkel ACB mit C k nennen wir zugehörigen Peripherie- oder Umfangswinkel über der Sehne [AB]. Achtung: Oft findet man in der Literatur keine Festlegung der Orientierung. Dann sind die Bezeichnungen und viele Aussagen nicht eindeutig! 22 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

23 Zentri-Peripheriewinkelsatz Jeder Zentriwinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel. Im ZPWS enthalten: Umfangswinkelsatz Alle Peripheriewinkel über derselben Sehne sind kongruent. Sonderfall des ZPWS: Satz des Thales Die Sehne [AB] ist der Durchmesser des Kreises 23 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

24 Beweis: Gegeben: Peripheriewinkel: ACB, γ = ACB Und Zentriwinkel AMB, μ = AMB Sei g = m [AC], h = m [BC] g h = {M} S g (A) = C S h (C) = B (S h S g )(A) = S h (C) = B S h S g = D M,μ μ = 2 (g, h) Noch zu zeigen: γ = (g, h) 24 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

25 Wir zeigen, dass es eine Kongruenzabbildung φ gibt mit φ( (g, h) ) = ACB, also gilt: ACB (g, h) Mit D M,90 ( (g, h)) = (g, h ) gilt g, h = g, h und AC g g g AC und BC h h h BC Damit kann der Winkel (g, h ) auf den Winkel ACB geschoben werden: T MC (M) = C T MC ( (g, h )) = ACB γ = ACB = (g, h ) = (g, h) 25 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

26 Satz des Thales (nach Thales von Milet, ca. 600 v. Chr.): Jeder Peripheriewinkel über dem Durchmesser eines Kreises ist ein rechter Winkel. Der Zentriwinkel ist gestreckt. Bekanntere Formulierung: Liegt der Punkt C eines Dreiecks ABC auf einem Halbkreis über der Strecke AB, dann hat das Dreieck bei C immer einen rechten Winkel. Die Umkehrung gilt auch (zwei Formulierungen): Bei rechtwinkligen Dreiecken liegt der Punkt, an dem der rechte Winkel liegt, auf einem Halbkreis über der Hypotenuse. Bei rechtwinkligen Dreiecken liegt der Umkreismittelpunkt auf der Hypotenuse. 26 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

27 Der Goldene Schnitt in 5-Eck und Pentagramm Beim regelmäßigen Fünfeck sind alle Seiten gleich lang und alle Innenwinkel gleich groß. Beim einfachen regelmäßigen Fünfeck messen alle Innenwinkel = 108 Ein überschlagenes regelmäßiges Fünfeck besteht aus den fünf Diagonalen des einfachen regelmäßigen Fünfecks und heißt Pentagramm (fünfzackiger Stern). Dieses hat eine mannigfaltige kulturelle und ästhetische Bedeutung Symbol der Venus, des Abraxas und anderer Götter Symbol für Gesundheit, u.a. bei Pythagoras Symbol der Freimaurer in der Heraldik und Numismatik (auf Wappen/Flaggen und Münzen) in Religion und Okkultismus 27 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

28 Seine besondere Ästhetik wird oft mit dem Goldenen Schnitt in Verbindung gebracht: Als Goldenen Schnitt bezeichnet man die Teilung einer Strecke (auch Fläche oder anderen Größe), bei dem das Verhältnis des Ganzen zu seinem größeren Teil a gleich dem Verhältnis des größeren zum kleineren Teil b ist: a + b a = a b Im Pentagramm und der Figur F (rechts) haben alle Strecken nur vier verschiedene Längen 2a + b, a + b, a, b Es gilt sogar 2a + b a + b = a + b a = a b 28 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

29 Ausführliche Untersuchung/Beweisskizze: 5-Eck P und Pentagramm Dsind drehsymmetrisch mit dem Winkel 360 = 72 : D M,72 (P D) = P D 5 Die Größe aller in der Figur P D eingezeichneten Winkel ein ganzzahliges Vielfaches von 36 ist. Es folgt: (1) Die Schnittpunkte der Diagonalen bilden ein weiteres einfaches regeläßiges 5-Eck (2) Jede Diagonale ist parallel zu einer Seite. 29 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

30 Mit den vielfachen Winkelkongruenzen können wir die Existenz vieler gleichschenkliger Dreiecke nachweisen: A A B, A B B BA B, BA B Es folgen sämtliche Kongruenzen, insbesondere gelten A B B B und ZB A B Damit gilt nämlich: d(p) s(p) = s(p) d(p) s(p) = s(p) d(q) = d(q) s(q) Mit den Bezeichnungen Diagonalenlänge d, Seitenlänge s, großes 5-eck P, kleines 5-eck Q 30 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Aufgabe 1. Wie muss? richtig angeschrieben werden?

Aufgabe 1. Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Vierecke Kurzfragen. 2. Juli 2012

Vierecke Kurzfragen. 2. Juli 2012 Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Geometrie 3.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 3.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 3.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 3.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Vierte Schularbeit Mathematik Klasse 3E am

Vierte Schularbeit Mathematik Klasse 3E am Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Geometrie Satz des Pythagoras

Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

11. Landeswettbewerb Mathematik Bayern

11. Landeswettbewerb Mathematik Bayern 11 Landeswettbewerb Mathematik Bayern Aufgaben und Lösungsbeispiele 1 Runde 008 Aufgabe 1 Das abgebildete Viereck soll durch einen einzigen geraden Schnitt so zerlegt werden, dass zwei Teile gleicher Form

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 16. Juni 016 Aufgabe 1. Man bestimme alle natürlichen Zahlen n mit zwei verschiedenen positiven Teilern, die von n

Mehr

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15 Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Kapitel 2. Abbildungsgeometrie

Kapitel 2. Abbildungsgeometrie Kapitel 2 Abbildungsgeometrie 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden 1 Vierecke Vierecke haben - wie der Name schon sagt - vier Ecken und vier Seiten. Die vier Ecken des Vierecks werden in der Regel mit A, B, C und D bezeichnet. Die Seite zwischen den Punkten A und B ist

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Peripheriewinkelsatz (auch Umfangswinkelsatz)

Peripheriewinkelsatz (auch Umfangswinkelsatz) Peripheriewinkelsatz (auch Umfangswinkelsatz) Für die Einführung des Peripheriewinkelsatzes (auch Umfangwinkelsatz) machen wir uns mit dem Satz des Thales vertraut. Der Satz des Thales besagt, dass Dreiecke,

Mehr

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Aehnlichkeit 1. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 31. Oktober 2009 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Geometrie Begriffe und Formeln

Geometrie Begriffe und Formeln Geometrie Begriffe und Formeln Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres Universums

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr