Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges"

Transkript

1 Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang mit dem Geobrett in der Sekundarstufe I

2 Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen - Umgang mit dem Geobrett in der Sekundarstufe I Über diesen Link gelangen Sie zur entsprechenden Produktseite im Web.

3 Station 1 Quadrat und Rechteck (1) Spanne die dargestellten Rechtecke. Betrachte die oben dargestellten Rechtecke und notiere drei Eigenschaften dieser Figur. Aufgabe 3 Spanne die dargestellten Quadrate. Aufgabe 4 Betrachte die oben dargestellten Quadrate und notiere drei Eigenschaften dieser Figuren. Aufgabe 5 Kreuze die wahre Aussage an: Jedes Quadrat ist auch ein Rechteck. Jedes Rechteck ist auch ein Quadrat. Jedes Viereck, das vier gleich lange Seiten besitzt, ist ein Quadrat. 4 4-Geobrett 7

4 4 4-Geobrett Station 2 Quadrat und Rechteck (2) Spanne das Rechteck in verschiedenen Lagen. Zeichne sie hier ein. Spanne das Quadrat in verschiedenen Lagen. Zeichne sie hier ein. Aufgabe 3 Spanne aus dem Quadrat mehrere Rechtecke. Du darfst aber nur zwei Nägel umspannen. Zeichne deine Lösungen hier ein. Aufgabe 4 Wie viele Handgriffe brauchst du jeweils mindestens, um aus dem Quadrat das Rechteck und dann das andere Quadrat zu spannen? Handgriffe Handgriffe 8

5 Station 3 Spanne die dargestellten Parallelogramme. Betrachte die oben dargestellten Parallelogramme und notiere zwei Eigenschaften dieser Figur. Aufgabe 3 Spanne die dargestellten Trapeze. Aufgabe 4 Parallelogramm und Trapez Betrachte die oben dargestellten Trapeze und notiere eine Eigenschaft dieser Figur. Aufgabe 5 Kreuze die wahre Aussage an: Jedes Trapez ist auch ein Parallelogramm. Jedes Parallelogramm ist auch ein Rechteck. Jedes Rechteck ist auch ein Trapez. 4 4-Geobrett 9

6 4 4-Geobrett Station 4 Spanne die Figuren um die schwarz gefärbten Punkte auf dem Geobrett. Schreibe die Namen der Figuren unter die Geobretter. Vierecke Spanne durch Umspannen von nur zwei Nägeln aus dem kleinen Quadrat die unten auf der Seite angegebenen Formen. Finde jeweils zwei Möglichkeiten. Zeichne diese ab. Rechteck Parallelogramm Trapez Dreieck 10

7 Station 5 Am Geobrett werden die Nägel (wie in der Abbildung dargestellt) durch Buchstaben nummeriert. Welche Formen ergeben sich durch das Umspannen folgender Tiere? Spanne diese auf dem Geobrett. Zeichne ab. Wie heißen sie? a) FINK b) HAI c) KALB d) IGEL Spanne folgende Figuren und zeichne sie dann auf das Arbeitsblatt. a) CEOL b) BELHIC c) IOJCLGN d) IOLGBCFN Aufgabe 3 Konstruieren Erfinde selbst Figuren. Spanne sie und schreibe die entsprechenden Bezeichnungen auf. A B C D E F G H I J K L M N O P 4 4-Geobrett 11

8 4 4-Geobrett Station 6 Der Umfang am Geobrett wird als Abstand zweier Nägel mit der Maßeinheit NA (= Nagelabstand) angegeben (keine Diagonale!). Der Abstand zweier Nägel ist also 1 NA ( ). a) Spanne die Figuren und ermittle ihren Umfang b) Miss den Abstand zweier Nägel mit dem Lineal. Er beträgt cm. Berechne den genauen Umfang der oben gespannten Figuren und trage diesen in cm in die Tabelle ein. Umfang Spanne Figuren, die einen Umfang von 10 NA besitzen. Aufgabe 3 Umfang Figur 1 Figur 2 Figur 3 Figur 4 Spanne die abgebildete Figur nach und vergrößere ihren Umfang immer um 2 NA. Zeiche deine Figuren auf. + 2 NA + 2 NA + 2 NA 12

9 Station 7 Verdopple die Fläche folgender Figuren. Benenne jeweils die Ausgangsfigur und die Figur, die durch das Verdoppeln entsteht. a) b) c) d) Verdopple die Fläche des Dreiecks so, dass die angegebenen Figuren entstehen. Aufgabe 3 Verdoppeln Spanne eine Figur, die du insgesamt dreimal verdoppeln kannst. Zeichne die Anfangs- und Endfigur auf. Quadrat Dreieck Trapez 4 4-Geobrett 13

10 4 4-Geobrett Station 8 Zerlege das Geobrett durch Spannen eines Gummis auf verschiedene Weisen in zwei gleich große Teile. Spanne die abgebildeten Figuren nach. Zerlege sie durch Spannen eines Gummis in zwei gleich große Figuren. Aufgabe 3 Spanne die Figuren nach und zerlege sie durch Spannen mehrerer Gummis in gleich große Flächen. Aufgabe 4 Zerlegungen (1) Finde selbst vier Figuren und zerlege diese in gleich große Flächen. Zeichne sie ab, indem du zwei verschiedene Farben verwendest. 14

11 Station 9 Spanne die Figuren nach und zerlege sie in Quadrate. Welche Figur hat den größten Flächeninhalt? Kreuze diese an. Wie oft passt das kleine Dreieck Aufgabe 3 Spanne Figuren, die genau sechs Dreiecke Aufgabe 4 Zerlegungen (2) in die Figur? Kreise die größte Figur rot ein. Spanne Figuren, die immer um zwei Dreiecke groß sind. Zeichne diese. größer werden. Zeiche diese. 4 4-Geobrett 15

12 4 4-Geobrett Station 10 Du weißt: Gegeben ist diesmal ein 3 3-Geobrett. Zeichne alle möglichen nicht kongruenten Quadrate ein. Finde alle möglichen Rechtecke, die nicht kongruent sind und die keine Quadrate sind. Zeichne sie ein. Aufgabe 3 Kongruenz (1) Finde alle nicht kongruenten Dreiecke. Wie viele Möglichkeiten findest du? Sind zwei Figuren kongruent, so sind sie deckungsgleich, d. h. sie besitzen die gleiche Fläche. 16

13 Station 11 Kongruenz (2) Spanne auf dem Geobrett vier nicht kongruente Quadrate. Zeichne sie ein. 4 4-Geobrett Wie viele Möglichkeiten gibt es insgesamt? Finde heraus, wie viele nicht kongruente rechtwinklige Dreiecke sich auf dem Geobrett spannen lassen. Wie viele Möglichkeiten gibt es insgesamt? Aufgabe 3 Schätze, wie viele nicht kongruente Dreiecke sich insgesamt auf dem Geobrett spannen lassen. verschiedene Dreiecke Versuche sie herauszufinden und schreibe sie auf. Beispiel: E H N A B C D E F G H I J K L M N O P 17

14 4 4-Geobrett a) Spanne die Figuren mit blauen Gummis auf dem Geobrett. b) Spanne mit grünen Gummis Einheitsquadrate in der jeweiligen Figur. c) Aus wie vielen Einheitsquadraten besteht die Fläche der Figur? Notiere in der Tabelle. Nr a) Figur Flächeninhalt (Anzahl Einheitsquadrate) Um welche mathematische Figur handelt es sich bei den in dargestellten Vierecken? b) Wie kann die Anzahl der Einheitsquadrate eines jeden Rechtecks ohne Abzählen schneller bestimmt werden? c) Station 12 Flächeninhalt Rechteck Wie funktioniert dies bei einem Quadrat? 18

15 Station 13 a) Spanne die Parallelogramme mit blauen Gummis auf dem Geobrett. b) Versuche, aus den jeweiligen Parallelogrammen flächengleiche Rechtecke mit einem grünen Gummi zu spannen. a) c) e) Flächeninhalt Parallelogramm Figur a) Beschrifte das dargestellte Parallelogramm mit den unten abgebildeten Begriffen. Seite a Seite b Höhe h a b) Betrachte die Ergebnisse von a. Wie lautet die Formel für den Flächeninhalt eines Parallelogramms, wenn die Flächeninhaltsformel eines Rechtecks wie folgt heißt: A Rechteck = a b? b) d) f) 4 4-Geobrett 19

16 Station Geobrett Aufgabe a) Spanne die Figuren mit einem roten Gummiband nach. b) Spanne die Einheitsquadrate in den Figuren mit einem blauen Gummiband. c) Ermittle die Anzahl der Einheitsquadrate und notiere das Ergebnis. d) Markiere die Figur mit der jeweils größeren Fläche. Nr. Figur A Figur B a) b) c) Gemischte Übungen (1) Fläche Figur A Fläche Figur B 20

17 Station 15 Aufgabe a) Spanne die Figuren mit einem roten Gummiband nach. b) Spanne die Einheitsquadrate in den Figuren mit einem blauen Gummiband. c) Ermittle die Anzahl der Einheitsquadrate und notiere das Ergebnis. d) Markiere die Figur mit der jeweils größeren Fläche. Nr. Figur A Figur B a) b) c) Gemischte Übungen (2) Fläche Figur A Fläche Figur B 4 4-Geobrett 21

18 4 4-Geobrett Station 16 Aufgabe Gemischte Übungen (3) Spanne unterschiedliche Figuren, in die genau fünf Einheitsquadrate passen. Zeichne die Figuren mit Bleistift und Lineal ein. 22

19 Station 17 Spanne die Figuren mit einem farbigen Gummi. Spanne mit einer anderen Farbe die Lage der Spiegelachse auf dem Geobrett. Zeichne ein. Spiegle die Figuren an der vorgegebenen Symmetrieachse. Aufgabe 3 Drehe die Figur immer weiter und spanne die Figur drehsymmetrisch zum Mittelpunkt des Geobretts. Umspanne die Figur dann mit einem andersfarbigen Gummi. Aufgabe 4 Symmetrien Erfinde selbst achsen- oder drehsymmetrische Figuren. Zeichne sie mit der Spiegelachse auf das Arbeitsblatt. 4 4-Geobrett 23

20 4 4-Geobrett Station 18 Aufgabe Suche dir einen Partner. Spanne zunächst die abgebildete Figur nach. Legt dann eure beiden Geobretter neben einander und stellt euch vor, die Brettkante sei die Spiegelachse. Dein Partner soll nun die Figur gespiegelt auf seinem Geobrett spannen. Zeichnet sie dann beide ab. Wiederholt dies mit den anderen Figuren und wechselt euch dabei ab. Beispiel: Achsensymmetrie a) b) c) d) e) f) 24

21 Lösungen: 4 4-Geobrett Station 1: Quadrat und Rechteck (1) Seite 7 2) Die gegenüberliegenden Seiten sind gleich lang und parallel. Alle 4 Winkel sind 90 groß (rechte Winkel). 4) Die gegenüberliegenden Seiten sind parallel. Alle 4 Seiten sind gleich lang. Alle 4 Winkel sind 90 groß (rechte Winkel). 5) Jedes Quadrat ist auch ein Rechteck. Station 2: Quadrat und Rechteck (2) Seite 8 1) Beispiele: 3) Beispiele: 2) Beispiele: 4) 2 Handgriffe / 3 Handgriffe Station 3: Parallelogramm und Trapez Seite 9 2) Gegenüberliegende Seiten sind parallel und gleich lang. Nachbarwinkel ergänzen sich zu 180. Gegenüberliegende Winkel sind gleich groß. 4) Ein Paar gegenüberliegende Seiten ist parallel. 5) Jedes Rechteck ist auch ein Trapez. Station 4: Vierecke Seite 10 1) Parallelogramm Drachenviereck Quadrat Trapez 2) Beispiele: Rechteck Parallelogramm Trapez Dreieck Station 5: Konstruieren Seite 11 1) a) FINK b) HAI c) KALB d) IGEL Quadrat Dreieck Parallelogramm Trapez 2) a) CEOL b) BELHIC c) IOJCLGN d) IOLGBCFN 3) Individuelle Lösungen 56

22 Station 6: Umfang Seite 12 1) a) NA NA NA NA b) Bei Abstand zweier Nägel = 5 cm Figur 1: 50 cm; Figur 2: 50 cm; Figur 3: 70 cm; Figur 4: 60 cm 2) Beispiele: 3) Beispiele: Station 7: Verdoppeln 1) a) Rechteck Quadrat 2) 3) Quadrat Dreieck Trapez Station 8: Zerlegungen (1) Seite 14 1) Beispiele: 2) 3) 1) 2) 3) Beispiele: b) Dreieck Quadrat Station 9: Zerlegungen (2) Seite 15 c) Quadrat Rechteck 10-mal 12-mal 12-mal 12-mal d) Trapez Seite 13 Sechseck Lösungen: 4 4-Geobrett 57

23 Lösungen: 4 4-Geobrett Station 9: Zerlegungen (2) Fortsetzung Seite 15 4) Beispiele: Station 10: Kongruenz (1) Seite 16 1) 2) 3) 8 Möglichkeiten Station 11: Kongruenz (2) Seite 17 1) 5 Möglichkeiten 2) 9 Möglichkeiten 3) 29 verschiedene Dreiecke 1) Nr. 1: 6 Einheitsquadrate; Nr. 2: 3 Einheitsquadrate; Nr. 3: 2 Einheitsquadrate 2) a) Rechteck Station 12: Flächeninhalt Rechteck Seite 18 b) Durch Multiplikation. Man zählt die Einheitsquadrate in einer Reihe und multipliziert diese Zahl mit der Gesamtanzahl der Reihen. c) Man zählt die Anzahl der Einheitsquadrate in einer Reihe und multipliziert diese Zahl mit sich selbst (man quadriert). 58

24 Station 13: Flächeninhalt Parallelogramm Seite 19 1) 2) a) Figur a) b) c) d) e) f) b) A Parallelogramm = a h a Station 14 / 15: Gemischte Übungen (1 + 2) Seite 20 / 21 Pro Teilaufgabe ist die Figur mit der jeweils größeren Fläche angekreuzt (EQ = Einheitsquadrate): Seite 20: Seite 21: Fläche Figur A Fläche Figur B a) 4 EQ 3 EQ a) b) 6 EQ 5 EQ b) c) 5 EQ 6 EQ c) Fläche Figur A Fläche Figur B 6 EQ 7 EQ 6 EQ 7 EQ 5 EQ 4 EQ Station 17: Symmetrien Seite 23 1) Beispiele: 2) 3) Station 18: Achsensymmetrie Seite 24 a) b) c) d) e) f) h Seite a Seite b Lösungen: 4 4-Geobrett 59

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name:

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name: Name: Klasse: Datum: Achsensymmetrie entdecken Öffne die Datei 2_4_Spielkarte.ggb. 1 Bewege den blauen Punkt nach Lust und Laune. Beschreibe deine Beobachtungen. Beschreibe, wie sich der grüne Punkt bewegt,

Mehr

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik Kopiervorlagen zur ufgabensammlung GEOMETRIE 1 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik utoren: ownload: Michael Graf, Heinz Klemenz www.geosoft.ch/buecher Inhaltsverzeichnis

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Liebe Schülerin, lieber Schüler, bitte trage zuerst deinen Namen und deine Klasse ein. Für die Aufgaben, die du gleich

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Flächeninhalt und Umfang von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Dreiecke. Worum geht es? Das Material

Dreiecke. Worum geht es? Das Material Dreiecke Worum geht es? Das Es handelt sich um gleichseitige Dreiecke aus Holz mit einer Kantenlänge von 5 cm in drei verschiedenen Farben: orange, rot und grün. Die Dreiecke regen zum Legen von flächigen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

Diagnostisches Interview zur Bruchrechnung

Diagnostisches Interview zur Bruchrechnung Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Mathematik Heft 1 2015 Mittlerer Schulabschluss

Mathematik Heft 1 2015 Mittlerer Schulabschluss Mathematik Heft 1 2015 Mittlerer Schulabschluss 1 Name Klasse Datum Erstkorrektur Unterschrift Zweitkorrektur Unterschrift Note/Datum Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein

Mehr

Mathe an Stationen. Mathe an Stationen 9 Inklusion. Flächeninhalt und Umfang des Kreises. Bernard Ksiazek. Klasse

Mathe an Stationen. Mathe an Stationen 9 Inklusion. Flächeninhalt und Umfang des Kreises. Bernard Ksiazek. Klasse Bernard Ksiazek Mathe an Stationen 9 Inklusion Sekundarstufe ufe I Bernard Ksiazek Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse Materialien zur Einbindung und Förderung lernschwacher

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Symmetrien; die Welt wird einfacher und schöner

Symmetrien; die Welt wird einfacher und schöner Symmetrien; die Welt wird einfacher und schöner Philosophieren: Was ist Symmetrie? verschieben, drehen, spiegeln, umklappen, falten, wiederholen - schön Aufgabe 1: Falte ein Papier einmal durch, kleckse

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Hauptschule G-Kurs. Testform B

Hauptschule G-Kurs. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr

Die Winkelsumme in Vierecken beträgt immer 360.

Die Winkelsumme in Vierecken beträgt immer 360. 98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m2. Wozu brauche ich das

Mehr

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011 Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Bilderrahmen und Bilderhalter Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Haltevorrichtung für Bilder Zeitaufwand:

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 Der Autor: Matthias Nowak - geboren 1978 - arbeitet seit 2002 als Nachhilfelehrer beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 arbeitet er zusätzlich freiberuflich als Autor

Mehr

Computer-AG Klasse 4. Modellversuch zum Geometrieunterricht mit integriertem Computereinsatz an Grundschulen in Duisburg und Essen

Computer-AG Klasse 4. Modellversuch zum Geometrieunterricht mit integriertem Computereinsatz an Grundschulen in Duisburg und Essen Themen aus der Computer-AG Klasse 4 Schuljahre 1999 bis 2007 Modellversuch zum Geometrieunterricht mit integriertem Computereinsatz an Grundschulen in Duisburg und Essen Computersoftware: IGEL-PROGRAMM

Mehr

Mathematik für die 1. Klasse der Volksschule Übungsteil

Mathematik für die 1. Klasse der Volksschule Übungsteil David Wohlhart - Michael Scharnreitner Mathematik für die. Klasse der Volksschule Übungsteil Inhaltsverzeichnis. Du gehörst dazu Merkmale beschreiben, Gruppen bilden, ordnen. Ich kann zählen 6 Aufbau der

Mehr

Umfang und Fläche von Rechtecken

Umfang und Fläche von Rechtecken Umfang und Fläche von Rechtecken Herbert Paukert 1 Umfang und Fläche von Rechtecken Version 2.0 Herbert Paukert (1) Der Umfang von Rechtecken [02] Elemente der Geometrie [02] Fünf Übungsaufgaben [08] Das

Mehr

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann.

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann. X. Flächenmessung ================================================================= 10.1 Einführung Welches Rechteck ist am größten? I II III Den Inhalt einer Fläche messen, heißt feststellen, mit wie

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ Vertiefen Spiegelsymmetrische Bilder erkennen und zeichnen zu Aufgabe Schulbuch, Seite 0 Spiegelsymmetrie Übertrage die Figuren in dein Heft und trage alle Spiegelachsen ein. 2 4 5 7 8 zu Aufgabe 2 Schulbuch,

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Beginn mit einer Einführungsstunde im Frontalunterricht: Wiederholung von Flächeninhalt und Umfang beim Rechteck und Quadrat

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Sekundarstufe I. Mathe an Stationen. Konstruktion in der Geometrie SPEZIAL. Christian Wolf. Mit Kopiervorlagen

Sekundarstufe I. Mathe an Stationen. Konstruktion in der Geometrie SPEZIAL. Christian Wolf. Mit Kopiervorlagen Sekundarstufe I Christian Wolf Mathe an Stationen SPEZIAL Konstruktion in der Geometrie Mit Kopiervorlagen 2014 Auer Verlag, Donauwörth AAP Lehrerfachverlage GmbH Alle Rechte vorbehalten. Das Werk als

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

partie 1 52 défis mathématiques pour les classes bilingues (cycle 3) traduit à partir du site de J-L SIGRIST www.jlsigrist.com

partie 1 52 défis mathématiques pour les classes bilingues (cycle 3) traduit à partir du site de J-L SIGRIST www.jlsigrist.com 52 défis mathématiques pour les classes bilingues (cycle 3) partie 1 traduit à partir du site de J-L SIGRIST www.jlsigrist.com par ILTIS Stéphane STUDER Yann-Noël HEINTZ Yannick Wie viele Vierecke siehst

Mehr

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen.

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. 4. Symmetrien 25 4. Symmetrien 4.1 Gruppen Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. Eine Verknüpfung auf einer Menge M ist eine Abbildung, die zwei Elementen

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Vom Rechteck, das ein Quadrat werden wollte

Vom Rechteck, das ein Quadrat werden wollte Vom Rechteck, das ein Quadrat werden wollte Schule: Hohenstaufen-Gymnasium Kaiserslautern Idee und Erprobung der Unterrichtseinheit: Klaus Merkert Die folgende Unterrichtseinheit ist ein Beispiel für Problemstellungen

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.

Mehr

Zeichnen mit Word. 1. Symbolleiste Zeichnen sichtbar machen...2. 2. Vorbereiten der Seite...2. 3. Zeichnen von Linien und Flächen...

Zeichnen mit Word. 1. Symbolleiste Zeichnen sichtbar machen...2. 2. Vorbereiten der Seite...2. 3. Zeichnen von Linien und Flächen... Zeichnen mit Word Inhaltsverzeichnis 1. Symbolleiste Zeichnen sichtbar machen...2 2. Vorbereiten der Seite...2 3. Zeichnen von Linien und Flächen...3 4. Zeichnen von Flächen mit AutoFormen...3 5. Zeichnen

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele Geometrische Grundformen Fach Gestaltung und Musik Klasse 1 2 3 4 5 6 7 8 9 Ziele Soziale Ziele Gemeinsam ein Bild aus einfachen geometrischen Formen entstehen lassen. Inhaltliche Ziele Geometrische Formen

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 3 Grundschulen und Förderschulen Schuljahr 03/04 Fach Mathematik Name: ANWEISUNGEN Es gibt verschiedene Arten von Aufgaben in diesem Mathematiktest. Bei einigen Aufgaben

Mehr

Einfache Parkettierungen

Einfache Parkettierungen Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

DOWNLOAD. Den sicheren Umgang mit Geld üben. Arbeitsblätter für Schüler mit geistiger Behinderung. Ulrike Löffler Isabel Schick

DOWNLOAD. Den sicheren Umgang mit Geld üben. Arbeitsblätter für Schüler mit geistiger Behinderung. Ulrike Löffler Isabel Schick DOWNLOAD Ulrike Löffler Isabel Schick Den sicheren Umgang mit Geld üben Arbeitsblätter für Schüler mit geistiger Behinderung Downloadauszug aus dem Originaltitel: Thema: Dezimale Schreibweise von Geldbeträgen

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Geometrie-Dossier Würfel und Quader

Geometrie-Dossier Würfel und Quader Geometrie-Dossier Würfel und Quader Name: Inhalt: Der Würfel (Definition, Eigenschaften, Netz, Raumbild) Der Quader (Definition, Eigenschaften, Netz, Raumbild) Berechnungen in Würfel und Quader (Oberfläche,

Mehr

Teil A Arbeitsblatt. Teil B Pflichtaufgaben

Teil A Arbeitsblatt. Teil B Pflichtaufgaben Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender

Mehr

DENKENUND RECHNEN GEOMETRIEHEFT. Erarbeitet von: Gudrun Buschmeier Maria Wichmann. Illustrationen von: Friederike Großekettler Martina Theisen

DENKENUND RECHNEN GEOMETRIEHEFT. Erarbeitet von: Gudrun Buschmeier Maria Wichmann. Illustrationen von: Friederike Großekettler Martina Theisen DENKENUND RECHNEN GEOMETRIEHEFT Erarbeitet von: Gudrun uschmeier Maria Wichmann Illustrationen von: Friederike Großekettler Martina Theisen Inhaltsverzeichnis Liebe Kollegin, lieber Kollege, liebe Eltern,

Mehr

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode Station Tatort Tankstelle Teil 3 Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! In den ersten beiden Teilen der Station Tatort Tankstelle

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 204 Bandornamente und Flächenornamente Hans Walser: Modul 204, Bandornamente und Flächenornamente ii Inhalt 1 Bandornamente... 1 1.1 Symmetrieklassen...

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Mit Dezimalzahlen multiplizieren

Mit Dezimalzahlen multiplizieren Vertiefen 1 Mit Dezimalzahlen multiplizieren zu Aufgabe 1 Schulbuch, Seite 134 1 Multiplizieren im Bild darstellen Zeichne zur Aufgaben 1,63 2,4 ein Bild und bestimme mit Hilfe des Bildes das Ergebnis

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr