Die 11 Eigenschaften der Standardvierecke
|
|
- Jonas Brahms
- vor 1 Jahren
- Abrufe
Transkript
1 Die 11 Eigenschaften der Standardvierecke
2 Die 11 Eigenschaften der 6 Familien der Standardvierecke
3 3 Aussagen 1. Die Diagonalen sind gleich lang. 2. Die Diagonalen halbieren sich. 3. Die Diagonalen sind orthogonal zueinander.
4 3 Folien
5 Impuls 1 Ordne jeder Aussage eine Folie zu. Begründe Deine Entscheidung.
6 Lösung Die Diagonalen halbieren sich. Die Diagonalen sind orthogonal zu einander. Die Diagonalen sind gleich lang.
7 Fazit Die zu einer Eigenschaft gehörende Folie enthält den Repräsentanten einer Familie, wenn alle Familienmitglieder die Eigenschaft haben sonst nicht.
8 Reichhaltigkeit 9 Familien 3 Eigenschaften 27 Denkprozesse in 90 Sekunden.
9 Impuls 2 Zeichne mit PAINT zu einer selbstgewählten Eigenschaft die zugehörige Folie. Probleme: Keine Folie soll doppelt auftreten. Keine Eigenschaft soll doppelt auftreten.
10 Lösung des Problems Eine Diagonale des Vierecks ist Symmetrieachse. Charakteristische Zahl: 42
11 Schlussfolgerungen Die charakteristischen Zahlen sind Elemente der Menge { 0; 1; ; 63 }. Es gibt höchstens 64 charakteristische Zahlen. Zwei Eigenschaften mit gleicher charakteristischer Zahl sind äquivalent.
12 Äquivalente Eigenschaften Die Diagonalen des Vierecks halbieren sich. Die Diagonalen zerlegen das Viereck in vier flächengleiche Dreiecke. Das Viereck ist punktsymmetrisch. Gegenüber liegende Seiten des Vierecks sind parallel zueinander. Gegenüber liegende Innenwinkel des Vierecks sind gleich groß.
13 Fazit Es gibt höchstens 64 verschiedene Eigenschaften der Vierecksfamilien.
14 Welche Eigenschaft gehört zu dieser Folie? Das Viereck ist achsensymmetrisch.
15 Welche Eigenschaft gehört zu dieser Folie? Antwort: keine
16 Folgerung Es gibt weniger als 64 Eigenschaften der Vierecksfamilien.
17 Hauptsatz Es gibt genau 11 Eigenschaften.
18 1. Das Viereck hat ein Paar paralleler Seiten.
19 2. Die Seiten des Vierecks sind gleich lang.
20 3. Die Diagonalen sind orthogonal zu einander.
21 4. Die Summe der Innenwinkelmaße des Vierecks ist 361.
22 5. Eine Diagonale des Vierecks halbiert die andere.
23 6. Die Seiten des Vierecks sind gleich lang und die Innenwinkelmaße sind gleich groß.
24 7. Das Viereck ist achsensymmetrisch.
25 8. Das Viereck hat vier Seiten.
26 9. Die Innenwinkel des Vierecks sind gleich groß.
27 10. Das Viereck hat 2 Symmetrieachsen.
28 11. Gegenüberliegende Innenwinkel sind gleich groß.
29 Unterrichtseinsatz
30 1. Quiz PP-Präsentation AB mit 11 Eigenschaften 30 Sekunden pro Folie - 5,5 Minuten 35 Familien 11 Eigenschaften 385 Denkvorgänge
31 2. Eigenschaften erfinden Impuls: Denke Dir 5 Eigenschaften aus und berechne jeweils die charakteristische Zahl. Systematische Sammlung der Eigenschaften. Vergleich von Eigenschaften gleicher charakteristischer Zahl.
32 3. Eigenschaften suchen Impuls: Finde möglichst viele Eigenschaften mit verschiedenen charakteristischen Zahlen. Notiere alle wichtigen Erkenntnisse, die Du bei der Suche gewonnen hast.
33 4. Verwandte Eigenschaften Die Diagonalen des Vierecks sind gleich lang. Die Diagonalen des Vierecks sind orthogonal zueinander. Die Diagonalen des Vierecks halbieren sich. Eine Diagonale des Vierecks halbiert die andere. u.s.w.
34 Diagnose von Fehlvorstellungen Zeichne die Folie zu folgender Eigenschaft: Das Viereck hat unterschiedlich lange Seiten.
35 Die Folie ist leer. Individualeigenschaften und Familieneigenschaften werden nicht getrennt.
36 Individualeigenschaft: E(V): Das Viereck hat unterschiedlich lange Seiten. Familieneigenschaft: V RE : E(V) Alle Rechtecke haben unterschiedlich lange Seiten.
37 Sprachliches Problem Umgangssprache Ein Rechteck hat unterschiedlich lange Seiten. Mathematische Sprache Alle Rechtecke haben unterschiedlich lange Seiten.
38 Leitmotivischer Denkansatz Einfacher Arbeitsauftrag Einfache aber reichhaltige Lernumgebung Wissenschaftliches Arbeiten Differenzierend Langfristiges Arbeiten an der gleichen Idee Entdecken von Phänomenen Selbstorganisiertes Lernen
39 Beispiel für einen weiteren leitmotivischen Denkansatz
40 Einfacher Arbeitsauftrag Zeichne ein allgemeines Viereck einer Familie und zerlege es so in Teile, dass diese sich zu einem allgemeinen Viereck einer anderen Familie zusammensetzen lassen. Der Flächeninhalt der Vierecke soll zwischen 80cm² und 100cm² betragen.
41 Einfache aber reichhaltige Lernumgebung Trapez Drachen Raute Parallelogra mm Rechteck Quadrat Quadrat Rechteck Parallelogramm Raute Drachen Trapez
42 Wissenschaftliches Arbeiten
43 Wissenschaftliches Arbeiten
44 Wissenschaftliches Arbeiten
45 Differenzierend Einfach Schwierig
46 Langfristiges Arbeiten an der gleichen Idee
47 Langfristiges Arbeiten an der gleichen Idee
48 Selbstorganisiertes Lernen
49 Selbstorganisiertes Lernen
50 Entdecken von Phänomenen
51 Rechteck - Drachen 1. Lösung 2. Lösung
52 Parallelogramm - Trapez 1. Lösung 2. Lösung
53 Schlussbemerkungen
54 Albrecht Beutelspacher Nur 5 Prozent der Schulmathematik ist Mathematik.
55 Forschendes Arbeiten macht Spaß.
56 Forschendes Arbeiten ist leicht.
57 Forschendes Arbeiten ist kreativ.
58 Forschendes Arbeiten stärkt das Gruppengefühl.
59 Vielen Dank für Ihre Aufmerksamkeit.
Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.
Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
Symmetrien und Winkel
1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen
Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.
1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.
M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A
1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
Kompetenzraster Geometrie
Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken
Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Fläche und Umfang Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Fläche und
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Symmetrien und Winkel
Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Graph der linearen Funktion
Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)
Parallelogramme Rechtecke Quadrate
Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7
Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse
Name: Arbeitsauftrag Tangram
Name: Arbeitsauftrag Tangram Tangram ein sehr altes Lege- und Geduldsspiel, das vermutlich zwischen dem achten und dem vierten Jahrhundert vor Christus in China entstand. Andere Bezeichnungen für dieses
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2.
Name: Klasse: Datum: 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:
Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf
Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?
Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen
prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5
Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:
Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax
Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte
Der Höhenschnittpunkt im Dreieck
Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen
Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.
Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.
DOWNLOAD. Flächeninhalt und Umfang von n-ecken. Differenzierte Aufgaben zum Üben und Festigen für das Gymnasium. Bernard Ksiazek
DOWNLOAD Bernard Ksiazek Flächeninhalt und Umfang von n-ecken Differenzierte Aufgaben zum Üben und Festigen für das Gymnasium Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen
Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6
Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits
Mein Indianerheft: Geometrie 4. Lösungen
Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel
9 Flächeninhalte von Vierecken
8 Besondere Vierecke sind Vierecke, die besondere Eigenschaften hinsichtlich Lage und Länge der Seiten und der Diagonalen haben, und damit auch hinsichtlich der Winkel. 83 Tempeldächer: Trapez, dazwischen
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...
I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Grundwissen 8I/11. Terme
Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen
5 Flächenberechnung. 5.1 Vierecke Quadrat
98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m 2. Wozu brauche ich
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und
Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8
Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen
MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE
ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:
Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:
Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken
Der Einsatz der Dynamischen Geometriesoftware GEONExT rund ums Viereck. Verlauf Material LEK Glossar Lösungen
S 1 Der Einsatz der Dynamischen Geometriesoftware GEONExT rund ums Viereck Doris Walkowiak, Görlitz Die Schwimmhalle in Görlitz Welche Vierecksarten weist das Gebäude auf? Das Dynamische Geometrieprogramm
7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)
Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5
Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln
Jahresplanung 2.Klasse 100% Mathematik
Jahresplanung 2.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der 5. Schulstufe 2 1 Eigenschaften 3 1 Eigenschaften 4
Städtische Sekundarschule Selm Curriculum für MATHEMATIK Schuljahr 2014/15 MATHEMATIK
MATHEMATIK An der Städtischen Sekundarschule Selm lernen die Schülerinnen und Schüler im Mathematikunterricht Mathematik als Anwendung kennen, die ein Schlüssel zur Wahrnehmung, Beschreibung und schließlich
Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?
So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer:
Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe Band 6 978-3-12-742421-8 Lehrer: - eine Sachsituation mit Blick auf eine konkrete Fragestellung
Lösungen Crashkurs 7. Jahrgangsstufe
Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der
Mitten-Dreiund Vier-Ecke
Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck
FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011
1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann
mentor Lernhilfe: Mathematik 7. Klasse Baumann
mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse
Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie
Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe
MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung
Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4
Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Ebene Figuren - geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz
Schulinterner Lehrplan
Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Schulinterner Lehrplan Mathematik G8 Klasse 5
Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen
Name: Klasse: Datum: 2 Überlege, bei welchen Längenberechnungen du den pythagoräischen Lehrsatz anwenden kannst.
Mach mit Mathematik 4: Wiederholung aus der 3. Klasse Name: Klasse: Datum: 1 Berechne den Flächeninhalt des rechtwinkligen Dreiecks. Der rechte Winkel ist bei Punkt C. Kreuze danach die richtige Lösung
Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS
Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Beginn mit einer Einführungsstunde im Frontalunterricht: Wiederholung von Flächeninhalt und Umfang beim Rechteck und Quadrat
Argumentieren und Kommunizieren Fragen stellen und Antworten finden
Argumentieren und Kommunizieren Fragen stellen und Antworten finden Kennst du solche Situationen? Du liest einen Text, siehst dir eine Grafik oder Tabelle an und sofort schießen dir Fragen durch den Kopf.
Werkzeuge/ Medien Lineal, Geodreieck. Problemlösen - finden Beispiele, überprüfen durch Probieren
Kernlehrplan Jahrgangsstufe 5 Kapitel Inhaltsbezogene Kompetenzen I Arithmetik/ Algebra (Stochastik) Natürliche Zahlen Prozessbezogene Kompetenzen Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten
1. Daten und Diagramme Beispiele / Veranschaulichung
1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb
Lernzielkontrolle natürliche Zahlen A
SEITE: Lernzielkontrolle natürliche Zahlen A Welche Zahlen sind am Zahlenstrahl markiert? a 00 = mm 0 00 b c d Zeichne einen Zahlenstrahl mit der Einheitsstrecke von mm und trage folgende Zahlen darauf
GW Mathematik 5. Klasse
Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.
KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten
Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene
Lehrwerk: Lambacher Schweizer, Klett Verlag
Thema 1: Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Zahlensysteme 4 Rechnen mit natürlichen Zahlen 5 Runden 6 Größen messen und schätzen (Zeit, Länge, Gewicht) 7 Mit Größen rechnen 1. Klassenarbeit
Aufgaben zum Basiswissen 7. Klasse
Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
ALLGEMEINE ANWEISUNGEN
Lernstandserhebung Mathematik 8. Jahrgangsstufe, 4. März 2008 Klasse: Name: Testheft B ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }
M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Umfang des Parallelogramms. Flächeninhalt des Parallelogramms
Parallelogramm Umfang des Parallelogramms Gegeben ist ein Parallelogramm mit den Seitenlängen a und b. Um den Umfang (u P ) zu berechnen, wird folgende Formel verwendet: u P = 2a + 2b a b a = 6 cm; b =
Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges
Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang
WAchhalten und DIagnostizieren
Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Tübingen WAchhalten und DIagnostizieren von Grundkenntnissen und Grundfertigkeiten im Fach Mathematik Klassenstufe 5/6 Teil 1 Rolf Dürr Hans
Stoffverteilungsplan Mathematik Klasse 5 RS,
Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme
Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:
Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen
Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:
Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht
Grundformen und -konstruktionen
1. Die gehfaulen Ameisen Grundformen und -konstruktionen Die gemütliche Anatevka and die dicke Berta stehen 50 mm voneinander entfernt. Sie wollen sich zwar treffen, aber keine will weiter als 28 mm laufen.
Geometrie-Dossier Vierecke
Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken
Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck
Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P