Untersuchung von Ausgleichsvorgängen am Personalcomputer

Größe: px
Ab Seite anzeigen:

Download "Untersuchung von Ausgleichsvorgängen am Personalcomputer"

Transkript

1 Untersuchung von Ausgleichsvorgängen am Personalcomputer Ein Beitrag von Ingmar Rubin Zusammenfassung Ausgleichsvorgänge finden in den verschiedensten Gebieten von Natur und Technik statt. Das gesamte Wettergeschehen, die Entstehung von Luftbewegungen oder der Antrieb zahlreicher Meeresströmungen hat seine Ursachen im Temperaturausgleich zwischen kalten und warmen Luftschichten - bzw. Wassermassen. Der Abkühlungsvorgang von einem Glas mit heißen Wasser ist Gegenstand im Physikunterricht. Zu Beginn ist die Temperaturdifferenz zwischen dem Wasserglas und der Raumtemperatur groß - entsprechend schnell findet der Temperaturausgleich (Abkühlungsvorgang) statt. Mit zunehmender Zeit sinkt die Abkühlungsgeschwindigkeit. Am Ende ist die Temperaturdifferenz sehr klein. Der Ausgleichsvorgang schreitet äußerst langsam voran - es handelt sich um eine abklingende Exponentialfunktion. Für die Berechnung von Ausgleichsvorgängen, ist die Kenntnis von Differentialgleichungen notwendig. In einigen Leistungskursen an Gymnasien werden sie behandelt. Das von W. Hupfeld entwickelte Programm DYNASIS gestattet es beliebige Ausgleichsvorgänge am PC zu simulieren. Es wurde für mathematisch interessierte Schüler geschaffen und setzt die Kenntnis über Differentialgleichungen noch nicht voraus. Das Programm dürfte inzwischen an vielen Schulen mit Internetzugang im Einsatz sein. DYNASIS kann von der Homepage des Programmauthors als zunächst kostenfreies Sharewareprogramm geladen werden: An Hoschschulen und Universitäten hat sich das Programm MATLAB mit der Toolbox SIMULINK durchgesetzt. Aufder Homepage von Scientific Computers sind Beispiele aufgezeigt: Als kostenfreie Alternative zur Simulation von Differentialgleichungssystemen eignet sich auch das Programm SCILAB: Zur Lösung des folgenden Problems sollte man unbedingt eines der aufgeführten PC- Programme benutzen - insbesondere die graphische Ausgabe der Lösungskurven dürfte anders kaum möglich sein.

2 AUFGABENSTELLUNG Aufgabenstellung M eerwasser c =.5 kg/l v = l/min Behälter B l Wasser + kg Salz v = l/m in Behälter B v = l/min Behälter B v = l/min Abbildung.: Kaskade aus den drei Flüssigkeitsbehältern Gegeben ist eine Kaskade aus drei Flüssigkeitsbehältern mit je Liter Fassungsvermögen (Bild.). Zum Zeitpunkt t = befinden sich im Behälter B = l Wasser in dem kg Kochsalz gelöst sind. In den Behältern B und B befinden sich je Liter reines Leitungswasser. In den Behälter B fließt pro Minute Liter Meerwasser der Salzkonzentration c =.5 kg/l ein. Ebenso viel Wasser fließt je Minute vom Behälter B in den Behälter B und von dort in den Behälter B. Der Abfluß vom Behälter B wird in ein Sammelbecken geleitet. Durch den überlaufvom Behälter B gelangt salzhaltiges Wasser in die nachfolgenden Behälter. Ein Rührwerk sorgt in jedem Behälter für eine gleichmäßige Konzentrationsverteilung.. Gesucht ist für alle drei Behälter die gelöste Salzmenge als Funktion über der Zeit!. Bestimme den Zeitpunkt t max an dem die Salzkonzentration im Behälter B maximal wird! Wie groß ist die Salzmenge in diesem Moment im Behälter B?. Bestimme den Zeitpunkt t max an dem die Salzkonzentration im Behälter B maximal wird! Wie groß ist die Salzmenge zu diesem Zeitpunkt im Behälter B? 4. Untersuchen Sie den Ausgleichsvorgang für den Fall, das in den Behälter B kein Meerwasser sondernd Leitungswasser mit der Salzkonzentration c =kg/l einfließt! Punktezahl:

3 Lösung mit DYNASIS. Simulation für Behälter B Wir führen folgende Abkürzungen ein: Vol,Vol,Vol : konstantes Volumen der Behälter B,B,B, m,m,m : Salzmenge in den Behältern B,B,B Startbedingung: m () =, m () =, m () =, c : Salzkonzentration vom zufließenden Meerwasser c =.5kg/l c,c,c : Salzkonzentrationen in den Behältern B,B,B, v,v,v : konstante Abflußgeschwindigkeit aus den Behälten v =l/min delta_m m delta_m c Vol_ v v Abbildung.: DYNASIS Modell für die Salzmenge m im Behälter B Für die Ableitung der Modellgleichungen denkt man sich die Salzmengen in den Behältern für einen kurzen Zeitmoment t als konstant. Wir beginnen mit dem Behälter B. über das Zulaufventil links vom Behälter gelangt im Zeitintervall [t, t + t] ein bestimmtes Volumen V vom Meerwasser in den Behälter. Mit Hilfe der Konzentration c des Meerwassers kann aus dem Volumenelement V die zufließende Salzmenge m berechnet werden: V = v t m = V c = v t c (.) Mit einem Doppelklick aufdas Ventil delta m öffnet sich das Formeleingabefenster. In DYNASIS wird der Faktor t vom Programm intern automatisch eingefügt, weshalb wir die Gleichung ohne t eingeben: delta m = v c (.)

4 4 LÖSUNG MIT DYNASIS m in kg Abbildung.: Salzmenge m (t) imbehälter B Aufder rechte Seite fließt Salzwasser über das Ablaufventil der Menge V aus dem Behälter ab. Damit geht dem Behälter fortlaufend Salz der Menge m verloren. V = v t m = V c (.) Die aktuelle Salzkonzentration c im Behälter B ergibt sich aus: c = m Vol (.4) Für das Abflußventil gilt die Gleichung: m = v c = v m Vol (.5) Nach soviel Theorie wollen wir jetzt DYNASIS starten, um den Verlaufder Salzmenge m (t) zu berechnen. Zunächst geben wir das Modell so wie im Bild. dargestellt ein. Durch ein Doppelklick aufdas entsprechende Symbol können wir den richtigen Bezeichner eintragen. Allen Variablen und Konstanten muß ein numerischer Wert zugewiesen werden. In den Ventilen delta m und delta m müssen die oben abgeleiteten Formeln eingetragen werden. Im Menüpunkt Ausgabe wählen wir das Zeitdiagramm (F5). Nun müssen die Plotvariablen bestimmt werden - wir wählen m aus. Mit F starten wir die Simulation. Wenige Sekunden später erhalten wir die folgende Graphik. Die Salzmenge m (t) nimmt nach einer Exponentialfunktion ab. Für t beträgt m = c Vol =.5 kg, d.h. die Konzentration im Behälter B hat sich dem des Meerwassers angeglichen.

5 . Behälter B und B 5. Behälter B und B delta_m m delta_m m delta_m c Vol_ Vol_ v v v Abbildung.: DYNASIS Modell für die Simulation mit zwei Behältern Jetzt können wir das Modell erweitern aufbehälter B und Behälter B.Für das Ventil delta m und delta m gelten die Gleichungen () und (5). Die Betrachtung für das Ventil delta m sind analog wie bei delta m. Je Zeiteinheit t fließt das Volumenelement V ab. In dem Volumenelement ist die Salzmenge m enthalten. V = v t m = V c = v t m Vol (.6) m delta m = v Vol (.7) Als Startwert für m muß Null eingegeben werden, da der Behälter zu Beginn mit Leitungswasser gefüllt ist. Bei der Simulation lassen wir uns die Kurven für m und m ausgeben. Die Salzmenge m nimmt zunächst zu, da konzentriertes Salzwasser aus dem Behälter B einfließt. Nach t max =5min ist das Maximum erreicht. In dem Behälter befinden sich dann.8 kg Salz. Danach gleicht sich die Konzentration im Behälter B dem des Meerwassers an - ähnlich wie bei dem Behälter B. Um das Maximum der Funktion m (t) besser ablesen zu können, wählen wir über F4 das Menü Numerik. Wir reduzieren die Endzeit der Simulation auf5min. Anschließend lassen wir nur m als Plotvariable zu (Taste F5) und starten die Simulation mit F erneut.

6 6 LÖSUNG MIT DYNASIS m, m in kg Abbildung.4: Salzmenge m (t) und m (t) m in kg Abbildung.5: Das Maximum im Behälter B ist nach 5 min erreicht

7 . Simulation für alle drei Behälter 7. Simulation für alle drei Behälter Zum Abschluß erweitern wir das Modell aufalle drei Behälter. delta_m m m m delta_m delta_m delta_m c Vol_ Vol_ Vol_ v v v v Abbildung.6: DYNASIS Modell für die Kaskade aus den drei Behältern m, m, m in kg Abbildung.7: Verlaufder Salzmenge im Behälter B...B über der Zeit Für das Ventil delta m gilt: V = v t m = V c = v t m Vol (.8) m delta m = v Vol (.9) Das Maximum im Behälter B stellt sich nach t max =7min ein. Die maximale Menge beträgt zu diesem Zeitpunkt m max =.88 kg.

8 8 LÖSUNG MIT DYNASIS.5 m in kg Abbildung.8: Im Behälter B wird nach t =7min die maximale Salzmenge erreicht.4 Lösung bei Zufluß von Leitungswasser m, m, m in kg Abbildung.9: Salzkonzentration bei Zufluß von Leitungswasser Um einen weiteren Einblick in den Ausgleichsvorgang zu gewinnen, könnenandemmodell nacheinander verschiedene Werte geändert werden. Wird z.b. c = gesetzt, erhalten wir die Antwort aufdie 4. Frage der Eingangs gestellten Aufgabe. Bei Zufluß von Leitungswasser gleicht sich die Salzkonzentration nach 6 Stunden in allen drei Behältern dem Wert Null an.

9 9 Matlab und Simulink Um den Ausgleichsvorgang der drei Salzbehälter in MatLab zu simulieren ruft man Simulink von der Kommandozeile auf. Anschließend erstellt man das Blockschaltbild nach Abbildung. über den Menüpunkt Simulation / Parameter gibt man Startzeit t = und Endzeit t = 5 ein. Im Menüpunkt Simulation /Start wird die Berechnung aktiviert. Nach Ende der Simulation kann man sich die Vektoren m (t)...m (t) wie folgt anzeigen lassen. Eingabe im MatLab Kommandofenster: plot(t,m,t,m,t,m) Innerhalb des Graphikfensters können mit Hilfe der Maus beliebige Abschnitte vergrößert werden.. m*v / V s Behälter_m m m(t) co v delta_m. m*v/ V. m*v/v delta_m s Behälter_m m m(t). m * v/v. m * v/v delta_m s Behälter_m m m(t) t Clock time Abbildung.: Blockschaltnild in Matlab/Simulink

10 4 ANALYTISCHE LÖSUNG 4 Analytische Lösung 4. Differentialgleichungssystem Aus den vorangegangen überlegungen können jetzt die Differentialgleichungen für die änderungsgeschwindigkeiten der Salzmengen dm /dt, dm /dt und dm /dt aufgestellt werden. Die Massenänderung in den Behältern B...B ergibt sich aus der Differenz der zufließenden und abfließenden Salzmenge im Zeitmoment t. Durch Grenzübergang werden aus dem endlich großen Delta-Werten unendlich kleine Differentiale. Da die Geschwindigkeiten v...v gleich groß sind, schreiben wir einheitlich v in den Differentialgleichungen. Ebenso notieren wir für die Volumina Vol...Vol einheitlich V. Damit vereinfachen sich die Lösungen für m (t)...m (t) erheblich. Das System aus drei linearen Differentialgleichungen. Ordnung muß mit den folgenden Anfangsbedingungen gelöst werden: dm dt dm dt dm dt = v c v m V, m () = (4.) = v m V = v m V v m V m () = (4.) v m V, m () = (4.) Das Computer-Algebra-System Mathematica liefert folgende Lösung: m [t] =e t v V (m c V + c e t v V V ) m [t] = t v e V ( c V + c e tv V V + t v (m c V )) V m [t] = t v e V ( c t v V c V + c e tv V V + t v (m c V )) V Die Funktionen m (t),m (t) und m (t)können mit einem Funktionsplotter wie GNUplot oder einem Mathematikprogramm wie DERIVE, MathCAD oder MAPLE V dargestellt werden.

11 4. Extremwertbestimmung 4. Extremwertbestimmung Wir bilden die. Ableitungen der Funktionen m (t) und m (t) nach der Zeit t und bestimmen deren Nullstellen. dm dt = e t v V v (c t v V + m ( t v + V )) V dm dt = e t v V t v ( m t v + m V + c t v V ) V Die Nullstelle der Funktion m [t] lautet: t = m V v (m c V ) =5.877 s Die Nullstelle der Funktion m [t] lautet: t = m V v (m c V ) =7.754 Interessant ist, daß das Maximum der Funktion m (t) genau nach der doppelten Zeit des Maximums von m (t) erreicht wird. Für die numerischen Werte der Maxima erhalten wir: m m [t ]=c V + e m +c V (m c V )=.8567 kg m m [t ]=c V + e m +c V ( m c V )=.8757 kg

Konstante Zu- und Abflüsse (Veränderungen)

Konstante Zu- und Abflüsse (Veränderungen) Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute

Mehr

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel Winterrätsel aus Übungsheft Gewöhnliche Differentialgleichungen Teil II TU-Berlin An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel gleichmäßig den ganzen, weiteren Tag über. Um Uhr

Mehr

Ingenieurinformatik II Numerik für Ingenieure Teil 2

Ingenieurinformatik II Numerik für Ingenieure Teil 2 Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel

Mehr

Dynamische Geometrie mit dem Programm EUKLID

Dynamische Geometrie mit dem Programm EUKLID 1 Dnamische Geometrie mit dem Programm EUKLID Ein Beitrag von Ingmar Rubin 4. April 001 Zusammenfassung Im Zeitalter von PC und INTERNET entstehen völlig neue Methoden,um mathematische Aufgabenstellungen

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung "Main" 7. Das Interaktivmenü 10. Variablen und Funktionen 15

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung Main 7. Das Interaktivmenü 10. Variablen und Funktionen 15 3 Inhalt Übersicht über das Gerät 6 Die Hauptanwendung "Main" 7 Das Edit-Menü 8 Die Software-Tastatur 8 Kopieren und Einfügen 10 Das Interaktivmenü 10 Der Gleichlösungs-Befehl "solve" 11 Umformungen 12

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation

Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation Praktikum Stichworte: Modellbildung Analoge Simulation Digitale Simulation Aufgabenstellung und Lösungsidee - Kennenlernen verschiedener Methoden zur Modellbildung eines mechanisches Schwingers - Abbildung

Mehr

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s 1 Das Rätsel vom Käfer auf dem Gummiband Die alten Ägypter glaubten angeblich, Osiris habe am Tempel in Luor ein unsichtbares Gummiband der Länge L = 1m befestigt, auf dessen Anfang er einen Scarabaeus

Mehr

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen.

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Wir wollen uns heute dem Thema Variablen widmen und uns damit beschäftigen, wie sich

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau)

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Vorbemerkung Die nachfolgenden Darstellungen dienen

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

HAK, HUM, HLSF, BAKIP (HTL1) Geogebra

HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Finale Vorbereitung auf die srdp 2016 HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Lösung der Bewegungsaufgabe a) Ansicht: Algebra und Grafik Eingabefenster : s(t)= Funktion[- x^3/180+x^2/2,0,100] ENTER 0der

Mehr

Computer und Software 1

Computer und Software 1 omputer und oftware 1. Köhler 6. aple Differentialgleichungen Folien: alint Aradi Differentialgleichungen Gewöhnliche Differentialgleichungen: f t, x t, x 1 t, x 2 t,..., x n t =0 x i t = d i x t dt i

Mehr

SciCa - Scientific Calculator

SciCa - Scientific Calculator SciCa - Scientific Calculator Version 3.0 Einleitung What's new...? Übersicht Berechnung Grafik Einleitung SciCa 3.0 ist bereits die vierte Auflage dieses wissenschaftlichen Taschenrechners. Das Programm

Mehr

1 Ein mathematisches Modell und die Änderungsrate

1 Ein mathematisches Modell und die Änderungsrate 1 Ein mathematisches Modell und die Änderungsrate Die Differenzial- und Integralrechnung 1 ist eine Sprache zur Beschreibung des quantitativen Zusammenhangs verschiedener Grössen in einem bestimmten Kontext

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Abstandsberechnungen

Abstandsberechnungen Abstandsberechnungen von Günter Schmidt Themenbereich Analytische Geometrie im R 3, Verbindungen zu reellen Funktionen/Analysis Inhalte Parameter- und Normalengleichungen von Geraden und Ebenen im Raum

Mehr

Rechner. Verlauf ansehen. Ausdruck teilen. Graph Gleichungen. OXY Seite öffnen. SCI/ENG Schreibweise. Eigene Gleichung zuweisen

Rechner. Verlauf ansehen. Ausdruck teilen. Graph Gleichungen. OXY Seite öffnen. SCI/ENG Schreibweise. Eigene Gleichung zuweisen Rechner Funktion Verlauf ansehen Ausdruck teilen Zurück (bis zu 30 Schritte) Vorwärts (bis zu 30 Schritte) Graph Gleichungen Eigene Gleichung zuweisen OXY Seite öffnen Bruch/Grad Konvertierung SCI/ENG

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Die Suche nach dem passenden Zahnrad

Die Suche nach dem passenden Zahnrad A H, Die Suche nach dem passenden Zahnrad Aufgabenstellung I, Exentergetriebe nach einer Idee von Helmut Neunzert Die Problemstellung zur Aufgabe kommt aus der Uhrenindustrie. Zur Fortschaltung der Datumsanzeige

Mehr

Mathematik Q1 - Analysis INTEGRALRECHNUNG

Mathematik Q1 - Analysis INTEGRALRECHNUNG Mathematik Q1 - Analysis INTEGRALRECHNUNG ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate 1. Phase: Methode der kleinsten Quadrate Einführung Im Vortrag über das CT-Verfahren hat Herr Köckler schon auf die Methode der kleinsten Quadrate hingewiesen. Diese Lösungsmethode, welche bei überbestimmten

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Iterationsverfahren und Stabilitätsuntersuchung

Iterationsverfahren und Stabilitätsuntersuchung 1 FÜR INTERESSIERTE! NICHT TESTRELEVANT 1! Iterationsverfahren und Stabilitätsuntersuchung Unter Iterationsverfahren versteht man rekursive numerische Methoden mit welchen auch analytisch nicht lösbare

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen. Übungsbuch für den Grundkurs mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen Mathematik-Abiturs

Mehr

Einführung in MATLAB + MATLAB Simulink. Dipl.-Inf. Markus Appel

Einführung in MATLAB + MATLAB Simulink. Dipl.-Inf. Markus Appel Einführung in MATLAB + MATLAB Simulink Dipl.-Inf. Markus Appel mappel@informatik.hu-berlin.de 28.10.2016 Was ist MATLAB? ein universelles Algebra-Programm zur Lösung mathematischer Probleme grafische Darstellung

Mehr

Kinetik auf dem Rechner

Kinetik auf dem Rechner Physikalisch-Chemische Praktika Kinetik auf dem Rechner 1 Einleitung Die chemische Reaktionskinetik wird bekanntlich durch Systeme von Differentialgleichungen (Dgl.) beherrscht, deren Lösungen (Integrale)

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Mathematik am Computer 1. Vorlesung

Mathematik am Computer 1. Vorlesung Mathematik am Computer 1. Vorlesung Jan Mayer Universität Stuttgart 23. Okt. 2008 Jan Mayer (Universität Stuttgart) Mathematik am Computer 23. Okt. 2008 1 / 28 Übersicht 1 Einleitung 2 Linux 3 Wissenschaftliches

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400.

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400. wwwmathe-aufgabencom Lösungen zu den Übungsaufgaben zu exponentiellem und beschränem Wachstum mit Differenzialgleichungen Aufgabe 1 a) Ansatz für die Wachstumsfunion: f(t) = a e mit a = f(0) = 400 2k 1

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3 Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mathe-LK-Klausur

Mehr

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 MAPLE_Mini_09_V1-0.doc 9-1 9 Gleichungen 9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 Beispiel 2: Lösen Sie die Gleichung

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. 3

Inhaltsverzeichnis. Inhaltsverzeichnis.  3 Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 4 1 Der Taschenrechner 5 1.1 Erste Rechnungen.................................. 5 1.2 Bearbeiten und Löschen der Eingaben....................... 7 1.3 Mehrere

Mehr

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen H. Gruber, G. Kowalski, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Nordrhein-Westfalen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für CAS Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Anhang zum Kapitel 12: Intelligente Regelung Fuzzy-Regler

Anhang zum Kapitel 12: Intelligente Regelung Fuzzy-Regler 376 Anhang zum Kapitel 12: Intelligente Regelung 12.2 Fuzzy-Regler 12.2 Fuzzy-Regler 377a 12.2.5a Fuzzy Logic Toolbox von MATLAB Mit der Fuzzy Logic Toolbox kann man einen Fuzzy-Regler direkt über die

Mehr

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare

Mehr

Die Turbo-Badewanne. Ein Beitrag von Ingmar Rubin. 4. September 2000

Die Turbo-Badewanne. Ein Beitrag von Ingmar Rubin. 4. September 2000 1 Die Turbo-Badewanne Ein Beitrag von Ingmar Rubin 4. September 2000 Vor Kurzem entdeckte ich im Internet unter www.mathe-treff.de die folgende Aufgabenstellung, welche ich um einige Angaben ergänzt habe.

Mehr

eine Aufgabe von Stefan Bartels Gymnasium Winsen/Luhe

eine Aufgabe von Stefan Bartels Gymnasium Winsen/Luhe 1 Münzwurf eine Aufgabe von Stefan Bartels Gymnasium Winsen/Luhe Im Mathematikleistungskurs hat Lehrer Karl heute die neuen EURO-Münzen in den Mittelpunkt des Geschehens gerückt. Wirft man eine Münze so

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

3.6. Zweidimensionale Wellenleiter

3.6. Zweidimensionale Wellenleiter 3.6. Zweidimensionale Wellenleiter Zweidimensionale Wellenleiter sind nur in speziellen Fällen z.b. bei Zlindersmmetrie analtisch eakt lösbar. Für die in Halbleiterlasern verwendeten Wellenleiter eistieren

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

SystemS eine Modellierumgebung am TI92

SystemS eine Modellierumgebung am TI92 System Simulation, Josef Lechner Seite 1 SystemS eine Modellierumgebung am TI92 Themenbereich Wachstumsprozesse, vernetzte Systeme Inhalte Rekursiv definierte Folgen Änderungsraten Numerisches Integrieren

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

Rechner. Verlauf ansehen. Ausdruck teilen. Graph Gleichungen. OXY Seite öffnen. SCI/ENG Schreibweise. Eigene Gleichung zuweisen

Rechner. Verlauf ansehen. Ausdruck teilen. Graph Gleichungen. OXY Seite öffnen. SCI/ENG Schreibweise. Eigene Gleichung zuweisen Rechner Taste Funktion Verlauf ansehen Ausdruck teilen Zurück (bis zu 30 Schritte) Vorwärts (bis zu 30 Schritte) Graph Gleichungen Eigene Gleichung zuweisen OXY Seite öffnen Bruch/Grad Konvertierung SCI/ENG

Mehr

Abstand zweier zueinander windschiefen Geraden

Abstand zweier zueinander windschiefen Geraden Fachreferat aus dem Fach Mathematik Abstand zweier zueinander windschiefen Geraden Jakob Schöttl 2009-02-17 Inhaltsverzeichnis 1 Deklaration 1 2 Denition von windschief 2 3 Meine eigenen Versuche 2 3.1

Mehr

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen 1 Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1 Der Laderaum eines Lastkahns ist

Mehr

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3 Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 3. Juni 2004 Einleitung

Mehr

Versuchsanleitung MV_5_1

Versuchsanleitung MV_5_1 Modellbildung und Simulation Versuchsanleitung MV_5_1 FB 2 Stand August 2011 Prof. Dr.-Ing. Hartenstein Seite 1 von 11 1. Versuchsgegenstand Versuchsziel Ziel des Versuches ist es, die im Lehrfach Mechatronische

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

Informatik 1 Programmieren in MATLAB Georg Richter

Informatik 1 Programmieren in MATLAB Georg Richter Informatik Programmieren in MATLAB Georg Richter Aufgabe 8: Bierschaumzerfall (zum Auf- und Erwärmen) Für manch einen (selbstverständlich nicht für jeden) gilt an heißen Tagen eine maßvoll gefüllte Hopfenkaltschale

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

2 Die Schritte zum Ziel

2 Die Schritte zum Ziel 2 Die Schritte zum Ziel 2.1 Ein einfaches Modell aufstellen Um zu verstehen, wie ein Segway die Balance hält, betrachten wir ein etwas einfacheres Problem: Wir wollen herausfinden, wie sich ein inverses

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in MATHEMATICA

Inhaltsverzeichnis. TEIL I: Einführung in MATHEMATICA Inhaltsverzeichnis TEIL I: Einführung in MATHEMATICA 1 Einleitung... 1 1.1 Mathematische Berechnungen mit dem Computer... 1 1.1.1 Anwendung der Computeralgebra... 2 1.1.2 Anwendung der Numerischen Mathematik

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Mathematik Lösung KA Nr Seite 1

Mathematik Lösung KA Nr Seite 1 9.11.17 Seite 1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der TR und die Formalsammlung verwendet werden dürfen.) Es ist

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

Algebraische Gleichungen. Martin Brehm February 2, 2007

Algebraische Gleichungen. Martin Brehm February 2, 2007 Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Dieter Brandt: Unterricht mit dem V200 in der Kurstufe Workshop Unterrichtsbeispiele Tagung Karlsruhe 7. März 2006

Dieter Brandt: Unterricht mit dem V200 in der Kurstufe Workshop Unterrichtsbeispiele Tagung Karlsruhe 7. März 2006 Inhalt: 1 Geschwindigkeit eines anfahrenden ICE 2 Volumenberechnung eines Bierglases 3 Der Weg zum Hauptsatz Brandt - Unterrichtsbeispiele V200 Seite : 1 1 Geschwindigkeit eines anfahrenden ICE Die Messkurve

Mehr

Ingenieurinformatik Teil 2 (Numerik für Ingenieure)

Ingenieurinformatik Teil 2 (Numerik für Ingenieure) Hochschule München, FK 03 WS 2014/15 Ingenieurinformatik Teil 2 (Numerik für Ingenieure) Zulassung geprüft: Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung erworben

Mehr