Allgemeine Mechanik Musterlösung 5.

Größe: px
Ab Seite anzeigen:

Download "Allgemeine Mechanik Musterlösung 5."

Transkript

1 Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge l, der durch ein Loch im Tisch geführt ist, mit einer zweiten Masse M verbunden. (a) Formulieren Sie die Zwangsbedingungen. Wie viele Freiheitsgrade besitzt das System? Wählen Sie die geeignetsten Koordinaten um das System zu beschreiben. (b) Finden Sie die Lagrange-Funktion des Systems und formulieren Sie die Bewegungsgleichungen (Lagrangegleichungen zweiter Art). Welche Koordinate ist zyklisch? Welchen Erhaltungssatz impliziert sie? (c) Unter welchen Bedingungen bewegt sich M (i) nach oben, (ii) nach unten oder (iii) gar nicht? (d) Lösen Sie die Bewegungsgleichungen für den Fall ω = 0. z y r ω m x M Abbildung 1: Rotierende Masse m und Gewicht M. (a) The constraint conditions for the system are x 1 + y 1 z l = 0 z 1 = 0 x = 0 y = 0 (L.1) (L.) (L.3) (L.4) Since we have mass points and 4 constraints, the number of degrees of freedoms is 6 4 =. Two coordinates are therefore required to describe this system. Let us choose the following system [ϕ, r]: x 1 = r cos ϕ y 1 = r sin ϕ z 1 = 0 x = 0 y = 0 z = r l (L.5) 1

2 (b) The Lagrangian: The Lagrange equations T = 1 m(ẋ 1 + ẏ 1) + 1 Mż = 1 m(ṙ + r ϕ ) + 1 Mṙ (L.6) V = Mgz = Mgr Mgl (L.7) L = T V = 1 m(ṙ + r ϕ ) + 1 Mṙ Mgr + Mgl (L.8) d dt ṙ r = d dt (mṙ + Mṙ) mr ϕ + Mg (L.9) = m r + M r mr ϕ + Mg = 0 (L.10) d dt ϕ ϕ = d dt (mr ϕ) = 0 (L.11) The only cyclic coordinate is ϕ (the Lagrangian does not depend on it). The second Lagrange equation gives us mr ϕ = const (L.1) which tells us that the angular momentum in this system is conserved. Therefore ϕ = ω. (L.13) (c) From the first motion equation we have r = mrω Mg m + M (L.14) If M moves up, the coordinate r increases r > 0. Therefore mrω > Mg. If M moves down, we have r < 0 and thus mrω < Mg In case M is not moving, r = 0 and mrω = Mg (d) if ω = 0, the angular momentum is equal to zero and ϕ = ϕ 0 = const. For the coordinate r we have r = Mg M + m The solution is only valid as long as r 0. r(t) = r 0 + v 0 t 1 Mg m + M gt (L.15) Übung. Umschlagendes Seil. Ein Seil der Länge l und Dichte ρ, wie in der Abb. dargestellt, wird senkrecht in die Luft geworden. Das Seil sei voll beweglich, so dass der Knick über das Seil laufen kann. (a) Verwenden Sie h 1 und h als generalisierte Koordinaten und stellen die Bewegungsgleichung auf. (b) Substituieren Sie h 1 h = x und stellen die Bewegungsgleichung für die Wanderung der Knickstelle auf, also für x (x = 0 bedeutet, dass das Seil in zwei gleiche Teile gefaltet ist, x = l bedeutet, dass es gerade ist). Zeigen Sie, dass ẋ gegen Unendlich geht, wenn der wandernde Knick das Seilende erreicht (Peitschenknall). (c) Berechnen Sie die Seilspannung Z = ρs(ḧ + g) in einem beliebigen Punkt P in Distanz s zum unteren Seilende. Erklären Sie die Auswirkungen der Ergebnisse.

3 h 1 s P h h Abbildung : Geometrie für das umschlagende Seil. (a) The Lagrangian of the system is L = T V, = 1 (h h 1)ρḣ (h h )ρḣ ρ(h h 1 )g h + h 1 Using (h h 1 ) + (h h ) = l, we replace h by (L.16) ρ(h h )g h + h. (L.17) h = l + h 1 + h (L.18) and arrive at L = ρ [ḣ 4 1 (l h 1 + h ) + ḣ (l + h 1 h )] ρg [ l(h1 + h ) + (h 1 h ) ]. (L.19) 4 The Lagrange s equations are: d dt ḣ1 d dt ḣ h 1 = 0 (l h 1 + h )ḧ1 1 (ḣ1 ḣ) = gl + g(h 1 h ), (L.0) h = 0 (l + h 1 h )ḧ 1 (ḣ1 ḣ) = gl g(h 1 h ). (L.1) Adding and subtracting them give us the equations of motion l(ḧ1 + ḧ) (h 1 h )(ḧ1 ḧ) (ḣ1 ḣ) = gl, l(ḧ1 ḧ) (h 1 h )(ḧ1 + ḧ) = +g(h 1 h ). (L.) (L.3) (b) Substitute h 1 h = x and eliminating h 1 + h into the previous two equations we get (l x )ẍ = xẋ. (L.4) The trivial solution ẋ = 0 represents the case of a rigid rope and is of no interest here. For ẋ > 0, d dt ln(ẋ) = ẍ ẋ = c ẋ = l x. xẋ l x = 1 d dt ln(l x ), (L.5) (L.6) 3

4 For x ±l, ẋ. This is what is responsible for the crack of the whipped rope. In reality, ẋ does not really go to infinity as the bend has a finite radius, which unfolds when it reaches the end of the rope. In this exercise, we have taken the bend to be infinitely sharp. (c) From (L.3) we get ( ) lẍ = x (g + ḧ) + ẍ g + ḧ = 1 ẍ(l x) x (L.7) and using (L.4) and (L.6) g + ḧ = Therefore the tension in the rope is ẋ (l + x) = c (l + x)(l x ). (L.8) Z = ρs(ḧ + g), = (L.9) ρsc (l + x)(l x ). (L.30) For x ±l, Z. This is the cause of the flip that happens when the bend reaches the end of the rope. Übung 3. Zwei mit einer Feder verbundene Körper. Zwei Teilchen der Massen m 1 und m sind über eine schwache Feder mit Federkonstante k und Ruhelänge l miteinander verbunden. Sie befinden sich in Ruhe auf einer reibungsfreien, horizontalen Oberfläche. Durch einen kurzen Stoss zum Zeitpunkt t = 0 wird der Impuls I auf die Masse m 1 in Richtung der zweiten Masse m übertragen. Beschreiben Sie das System durch den Lagrange-Formalismus. Wie weit wird sich die Masse m bewegen, bevor sie zum ersten Mal wieder zur Ruhe kommt? The Lagrangian of the system is L = T V, (L.31) where by convention x 1 (t = 0) = 0 and x (t = 0) = l. Lagrange s equations then give us = 1 m 1ẋ m ẋ 1 k(x x 1 l), (L.3) m 1 ẍ 1 = +k(x x 1 l), m ẍ = k(x x 1 l), (L.33) (L.34) which are combined to obtain the following equation of motion ẍ ẍ 1 = k(x x 1 l)(m 1 + m ) m 1 m. (L.35) 4

5 Let u = x x 1 l and ω = k(m 1+m ) m 1 m. ü + ω u = 0, (L.36) u = a cos(ωt + α), (L.37) where a and α are constants. The initial conditions x 1 = 0, x = l, ẋ 1 = I/m 1 and ẋ = 0 at time t = 0 then give α = π, a = I m 1 ω. (L.38) Hence x x 1 = l + I (ωt m 1 ω cos + π ) = l I sin (ωt). m 1 ω (L.39) Conservation of momentum gives us m 1 ẋ 1 + m ẋ = I, m 1 x 1 + m x = It + m l. (L.40) (L.41) Combining this with Eqn. L.39 gives It x = l + I sin(ωt) m 1 + m (m 1 + m )ω, (L.4) I ẋ = I cos(ωt). m 1 + m m 1 + m (L.43) m comes to rest for the first time when ẋ = 0, i.e. when cos(ωt) = 1. This happens at t = π ω. At that time m has moved a distance πi x l = ω(m 1 + m ), m1 m = πi k(m 1 + m ) 3. (L.44) (L.45) Übung 4. Lagrange-Relation zur Energieerhaltung. Zeigen Sie folgende Gleichung, wobei L eine allgemeine Lagrange-Funktion abhängig von den Koordinaten q k, Geschwindigkeiten q k und der Zeit t ist: ( ) d q k L = dt q k t. Expand the LHS. LHS = = d dt ( ) q k + q k q k q k + q k dl q k dt, q k dl q k dt. (L.46) (L.47) 5

6 Replacing in the previous equation dl dt = = dq k q k dt + d q k q k dt + t q k + q k q k + q k t, (L.48) (L.49) we arrive at the RHS. 6

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

Allgemeine Mechanik Musterlösung 7.

Allgemeine Mechanik Musterlösung 7. Allgemeine Mechanik Musterlösung 7. HS 204 Prof. Thomas Gehrmann Übung. Lagrange-Funktion eines geladenen Teilchens Die Lagrange-Funktion für ein Teilchen der Ladung q in elektrischen und magnetischen

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,

Mehr

Finite Difference Method (FDM)

Finite Difference Method (FDM) Finite Difference Method (FDM) home/lehre/vl-mhs-1-e/folien/vorlesung/2a_fdm/cover_sheet.tex page 1 of 15. p.1/15 Table of contents 1. Problem 2. Governing Equation 3. Finite Difference-Approximation 4.

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

3. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus I

3. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus I 3. Übungsblatt ur Theoretischen Physik I im SS16: Mechanik & Speielle Relativitätstheorie Lagrange-Formalismus I Aufgabe 7 Atwoodsche Fallmaschine Betrachten Sie das System aus wei Punktmassen und m 2

Mehr

Übungsblatt 6. Analysis 1, HS14

Übungsblatt 6. Analysis 1, HS14 Übungsblatt 6 Analysis, HS4 Ausgabe Donnerstag, 6. Oktober. Abgabe Donnerstag, 23. Oktober. Bitte Lösungen bis spätestens 7 Uhr in den Briefkasten des jeweiligen Übungsleiters am J- oder K-Geschoss von

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus II

4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus II 4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie Lagrange-Formalismus II Aufgabe 10 Fliehkraftregler Als Modell eines Fliehkraftreglers betrachten wir zwei Punktmassen

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22 Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.217 Arbeitszeit: 15 min Aufgabe

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Analysis III Serie 13 Musterlösung

Analysis III Serie 13 Musterlösung Ana-3 Hs 22 Analysis III Serie 3 Musterlösung Abgabe: Freitag, 2.2.22, Uhr, in der Vorlesung * Aufgabe Welche der folgenden Aussagen sind wahr und welche sind falsch? (Mit Begründung) (i) Sei A R 3 3 eine

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Übungsblatt 05. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 05. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 05 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 18. 11. 005 und 1. 11. 005 1 Aufgaben 1. Berechnen Sie für einen LKW von 40t Masse

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, 1D-Example home/lehre/vl-mhs-1-e/folien/vorlesung/3_fem_intro/cover_sheet.tex page 1 of 25. p.1/25 Table of contents 1D Example - Finite Element Method 1. 1D Setup Geometry 2. Governing

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik221. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html 9. Januar 006 Übungsblatt 8 Lösungsvorschlag 3 Aufgaben,

Mehr

1D-Example - Finite Difference Method (FDM)

1D-Example - Finite Difference Method (FDM) D-Example - Finite Difference Method (FDM) h left. Geometry A = m 2 = m ents 4m q right x 2. Permeability k f = 5 m/s 3. Boundary Conditions q right = 4 m/s y m 2 3 4 5 h left = 5 m x x x x home/baumann/d_beispiel/folie.tex.

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number. Magic Figures Introduction: This lesson builds on ideas from Magic Squares. Students are introduced to a wider collection of Magic Figures and consider constraints on the Magic Number associated with such

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 17.

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

D-MATH Algebra II FS 2016 Prof. Richard Pink. Musterlösung 16. einfache und algebraische Erweiterungen

D-MATH Algebra II FS 2016 Prof. Richard Pink. Musterlösung 16. einfache und algebraische Erweiterungen D-MATH Algebra II FS 206 Prof. Richard Pink Musterlösung 6 einfache und algebraische Erweiterungen. Bestimme das Minimalpolynom folgender komplexer Zahlen über Q: (a) 2 + 5. (b) 3 3 3. (c) 4 5 + 4 5i.

Mehr

Machine Learning and Data Mining Summer 2015 Exercise Sheet 11

Machine Learning and Data Mining Summer 2015 Exercise Sheet 11 Ludwig-Maximilians-Universitaet Muenchen 0.06.205 Institute for Informatics Prof. Dr. Volker Tresp Gregor Jossé Johannes Niedermayer Machine Learning and Data Mining Summer 205 Exercise Sheet Presentation

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Ferienkurs Mechanik: Probeklausur

Ferienkurs Mechanik: Probeklausur Ferienkurs Mechanik: Probeklausur Simon Filser 5.9.09 1 Kurze Fragen Geben Sie möglichst kurze Antworten auf folgende Fragen: a) Ein Zug fährt mit konstanter Geschwindigkeit genau von Norden nach Süden.

Mehr

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r = Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zweiteilchenproblem im Lagrange-Formalismus Betrachten Sie ein System aus zwei

Mehr

Worksheet 2. Problem 4. (a) 1 x x 2 2. dx 4 x2 + b ( x2. x 2 + 3c ] dx 4 + 3b ) (b) Since the points. f(x i, y i )

Worksheet 2. Problem 4. (a) 1 x x 2 2. dx 4 x2 + b ( x2. x 2 + 3c ] dx 4 + 3b ) (b) Since the points. f(x i, y i ) Worksheet Problem 4 a 4 + x dy ax + by x 4 4 4 4 4 axy + b y+ x y y x 4 a 4 x + b { + x a 4 x + b x + 6 x a 4 + b x + b 4 x x } 4 6a + 8b. b Since the points P, P and P are distributed within the triangle

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Ferienkurs Theoretische Mechanik Frühjahr 2009

Ferienkurs Theoretische Mechanik Frühjahr 2009 Physik Departent Technische Universität München Ahed Oran Blatt 5 Ferienkurs Theoretische Mechanik Frühjahr 009 Hailton Mechanik Lösungen) 1 Poisson-Klaern *) I Folgenden bezeichnen l i, i 1,, 3 die Koponenten

Mehr

Abbildung 1: Atwoodsche Fallmaschine mit Feder

Abbildung 1: Atwoodsche Fallmaschine mit Feder Philipp Landgraf Christina Schindler Ferienkurs Theoretische Mechanik SS 04 Abbildung : Atwoodsche Fallmaschine mit Feder A Probeklausur. Atwoodsche Fallmaschine Die Atwoodsche Fallmaschine besteht aus

Mehr

Theoretische Physik 1 (Mechanik) Aufgabenblatt 3 Lösung

Theoretische Physik 1 (Mechanik) Aufgabenblatt 3 Lösung Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 (Mechanik) SS 218 Aufgabenblatt 3 Lösung Daniel Sick Maximilian Ries 1 Drehimpuls und Energie im Kraftfeld Für welche

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ]. Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. Problem 1 (15 points) a) (1 point) A system description

Mehr

m 1 m 2 V 2 = m 2 gh.

m 1 m 2 V 2 = m 2 gh. 1. Zwei-Massen-System 15 P. x θ r m 1 y h g m 2 z i. (4 P.) Insgesamt könnten zwei Massenpunkte in drei Dimensionen 6 = 2 3 Translations- Freiheitsgrade haben. Hier darf sich die Masse m 1 bzw. m 2 nicht

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe D-MATH Algebra I HS 2015 Prof. Richard Pink Musterlösung 3 Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe 1. Sei K ein Körper. Zeige, dass K[X 2, X 3 ] K[X] ein Integritätsbereich,

Mehr

Josh Engwer (TTU) Line Integrals 11 November / 25

Josh Engwer (TTU) Line Integrals 11 November / 25 Line Integrals alculus III Josh Engwer TTU 11 November 2014 Josh Engwer (TTU) Line Integrals 11 November 2014 1 / 25 PART I PART I: LINE INTEGRALS OF SALAR FIELDS Josh Engwer (TTU) Line Integrals 11 November

Mehr

Hauptklausur: T1: Theoretische Mechanik

Hauptklausur: T1: Theoretische Mechanik Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Übungsaufgaben zur Hamilton-Mechanik

Übungsaufgaben zur Hamilton-Mechanik Übungsaufgaben zur Hamilton-Mechanik Simon Filser 24.9.09 1 Parabelförmiger Draht Auf einem parabelförmig gebogenen Draht (z = ar² = a(x² + y²), a = const), der mit konstanter Winkelgeschwindigkeit ω 0

Mehr

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesnt start automatically Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten Click here if your download doesn"t start automatically Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten Ein Stern in dunkler

Mehr

Ewald s Sphere/Problem 3.7

Ewald s Sphere/Problem 3.7 Ewald s Sphere/Problem 3.7 Studentproject/Molecular and Solid-State Physics Lisa Marx 831292 15.1.211, Graz Ewald s Sphere/Problem 3.7 Lisa Marx 831292 Inhaltsverzeichnis 1 General Information 3 1.1 Ewald

Mehr

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) home/lehre/vl-mhs-1-e/cover sheet.tex. p.1/29 Table of contents 1. Finite Difference Method (FDM) 1D-Example (a) Problem and Governing

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator Natur, Technik, Systeme Test, Dezember 00 Erstes Semester WI0 Erlaubte Hilfsmittel: Bücher und persönlich verfasste Zusammenfassung. Rechen- und Schreibzeugs. Antworten müssen begründet und nachvollziehbar

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik G. Mahler Spezialvorlesung SS 006 7. 4. 006 Einführung und Übersicht Warum und in welchem Sinn ist Kohärenz»untypisch«? 04.

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Klausursammlung Grundlagen der Mechanik und Elektrodynamik

Klausursammlung Grundlagen der Mechanik und Elektrodynamik Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik

Mehr

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis).

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis). 1 Wiederholungsblatt zur Gruppentheorie 18.12.2002 Wiederholen Sie für die Klausur: Algebra WS 2002/03 Dr. Elsholtz Alle Hausaufgaben. Aufgaben, die vor Wochen schwer waren, sind hoffentlich mit Abstand,

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Wie man heute die Liebe fürs Leben findet

Wie man heute die Liebe fürs Leben findet Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Click here if your download doesn"t start automatically Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Wie

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 8 1 d Alembertsches Prinzip und Lagrangegleichungen 1. Art Teil II 2 Das d Alembertsche Prinzip für N-Teilchensysteme

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Level 2 German, 2015

Level 2 German, 2015 91126 911260 2SUPERVISOR S Level 2 German, 2015 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 2.00 p.m. Friday 4 December 2015 Credits: Five

Mehr

Unterspezifikation in der Semantik Hole Semantics

Unterspezifikation in der Semantik Hole Semantics in der Semantik Hole Semantics Laura Heinrich-Heine-Universität Düsseldorf Wintersemester 2011/2012 Idee (1) Reyle s approach was developed for DRT. Hole Semantics extends this to any logic. Distinction

Mehr

Level 2 German, 2013

Level 2 German, 2013 91126 911260 2SUPERVISOR S Level 2 German, 2013 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 9.30 am Monday 11 November 2013 Credits: Five

Mehr

Klausur zur Physik I für Chemiker. February 23, 2016

Klausur zur Physik I für Chemiker. February 23, 2016 WS 2015/2016 zur Physik I für Chemiker February 23, 2016 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T TOT.../4.../4.../4.../4.../4.../4.../24 R1 R2 R3 R4 R5 R6 R7 R8 R TOT.../6.../6.../6.../6.../6.../6.../6.../6.../48

Mehr

Musterlösung zur Probeklausur Theorie 1

Musterlösung zur Probeklausur Theorie 1 Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr