Worksheet 2. Problem 4. (a) 1 x x 2 2. dx 4 x2 + b ( x2. x 2 + 3c ] dx 4 + 3b ) (b) Since the points. f(x i, y i )

Größe: px
Ab Seite anzeigen:

Download "Worksheet 2. Problem 4. (a) 1 x x 2 2. dx 4 x2 + b ( x2. x 2 + 3c ] dx 4 + 3b ) (b) Since the points. f(x i, y i )"

Transkript

1 Worksheet Problem 4 a 4 + x dy ax + by x axy + b y+ x y y x 4 a 4 x + b { + x a 4 x + b x + 6 x a 4 + b x + b 4 x x } 4 6a + 8b. b Since the points P, P and P are distributed within the triangle rather uniformly, we have i fx i, y i fr r, and thus d r fx, y A fr A r fx i, y i i 6 7.5a +.5b 5a + 7b. c Generally, since f is linear, we have exactly d r fx, y A fx M, y M, d Part a: f 8, 4 6 8a + 4 b 6a + 8b. + x dy ax + bxy + cy x 4 a 4 x + b x { + x x } 4 4 ax y + b xy + c y+ x y + c y x 4 { + x x }. 4 Using the trinomic formula, we obtain 4 a... 4 x + b { x + x + x x } 4 + x 6 + c { + x + 4 x + x 8 4 x + } 6 x x 64 4 a 4 + b + c b x c x + c 6 4 x 48a + 6b + c + 6b + 4c + 6c 48a + b + c. Part b and c, respectively: 6 fx i, y i 44.5a + 7.5b +.5c, i 6 fx M, y M 8 a + 64 b + c.

2 Problem 5 a The area of is A 4 x 6 6. b d r fr 4 x dy x + y y x + y y4 x y 4 x x + 4 x 4 x x 4 5x + 6 x y + y x 6 + 9x 4 6x y4 x y c The wanted average value is fr r A d r fr Estimate: f f f f f f d Bonus: Maximum: f, 4 6, Minimum: f,.

3 Problem 6 a d r xz 6 a x a x a x a x y dy dz z z z a x y dy z dy a x y a x y y y a x y a x / a x / a x / xa 6 5 a x 5/ x a5 5. b d r xyz 6 a x a x a x y dy y dz z dy ya x y a x y y4 y a x 4 y a x a x 4 a x a x 6 as in part a xa x a6 48.

4 Worksheet Problem a i Since arcsin π and arcsin π, we obtain R R R x dy R x R R R x R arcsin x R R R πr. ii In planar polar coordinates, we have notice the Jacobian Jr, φ r! R π dφ r R πr π r R πr. b Now, the r-integral has a φ-dependent upper limit rφ + cos 4φ >, π dφ rφ r Since cos 4φ d dφ 4... { 8π + 6 π dφ rφ π sin 4φ cos 4φ + φ, this becomes sin 4φ π sin 4φ cos 4φ } π + + φ 4 4 dφ cos 4φ + cos 4φ. { } 8π + + π π. Problem 4 a The distance of a point r x, y, z from the z-axis is ar x + y. b For a sphere of radius R, centered at the origin, we obtain I d r ρr ar ρ d r x + y ρ R R ρ R ρ R ρ π π π π π π π dφ Jr, θ, φ r sin θ cos φ + r sin θ sin φ dφ r sin θ r sin θ cos φ + sin φ dφ r 4 sin θ π r 4 sin θ. Writing sin θ sin θ cos θ sin θ sin θ cos θ, we find R I πρ r 4 cos θ + cos θ π R πρ r 4 R 5 4 πρ 5 4π 5 R ρ R 5 MR. 4

5 Problem 5 a b d r xyz d r xz 8... π/ π/ π/ π/ π/ π/ π/ π/ r 5 sin 4 θ 4 r 5 π/ π/ dφ Jr, θ, φ r sin θ cos φr cos θ dφ r 4 sin θ cos θ cos φ dφ Jr, θ, φ r sin θ cos φr sin θ sin φr cos θ dφ r 5 sin θ cos θ cos φ sin φ sin r 5 sin φ θ cos θ r 5 sin θ cos θ a6 48. π/ π/ 5

6 Worksheet 4 Problem a b I x ρ ρ +H/ H/ +H/ H/ mit sin φ cos φ also I x ρ ρ ρ +H/ H/ +H/ H/ +H/ H/ dz dz dz ρπr +H/ H/ ρπr R dz dz R R R R π ds ds π dφ s s sin φ + z dφ s sin φ + sz, ds s φ sin φ ds πs + πz s π s4 sr 4 + πz s s R dz 4 + z 4 z + z z+h/ z H/ φπ + sz φ φ R ρπr H }{{} 4 + H. M Problem a Es ist vr fr mit fr xyz. b Es ist pr gr mit gr xy + z. c Dagegen ist qr kein Gradient, denn für x gilt x q y q x. Problem a Br y z x z y x x x y y. 6

7 b Wegen y B z B z B x B gilt jetzt Br x B y B. Mit x B x x x + y y B y y x + y x + y x x x + y y x x + y, x + y y y x + y y x x + y folgt Br zumindest für x + y >. Problem 4 a Die Vektoren sind F,, F,,.5.5. F,, F,, F,, F,, F,, F,...5 Sie sind als rote Pfeile folgendes Diagramm eingetragen. b Um die Kurve in das Diagramm einzuzeichnen, berechnet man den Ortsvektor rφ für einige Werte des Kurvenparameters φ. Im vorliegenden Fall handelt es sich um einen Viertelkreis um den Ursprung mit Radius R. Er ist eine der ei blauen Kurven im Diagramm. Da die Tangential-Projektion der roten Pfeile in jedem Kurvenpunkt in Richtung wachsenden Kurvenparameters φ zu zeigen scheinen man müßte noch mehr solche Pfeile einzeichnen, sollte Γ Fr > sein. 7

8 c Fr Γ π/4 π/4 π/4 π/4 dφ ṙφ F rφ R sin φ dφ +R cos φ dφ sin φ + cos φ dφ cos φ R sin φ/r R cos φ/r sin φ π/4. d Γ Fr /u /u u ln. e Γ Fr / /u u/ + u 4 u / + u 4 /. Problem 5 a fr x y x + xy x + y xy. b ii iii i 6u 6u 9u 4 + 4u 6 u 5 8u 6u 6 + 5u 5 6u 4 6u 9u + 64u 4 48u 54u 4 + 4u 7 + 7u u 8 45u 4 u u + 9u u c In allen ei Fällen ist r A und also fr A. i: r B und also fr B. ii: r B 6 5 und also fr B. iii: r B 8 und also fr B. 8

9 Worksheet 5 Problem a h s α rα s cos φ sin φ, h φ α s sin φ +s cos φ, h z α. b Zeichnung: Achtelkreis mit Radius. c Nach der in der Vorlesung angegebenen Formel gilt evtl. bis auf ein Vorzeichen Σ da Fr π/ π/4 π/ π/4 π/ π/4 π/ π/4 π/ π/4 π/ π/4 dφ dz h φ α h z α F rs, φ, z dφ dz s cos φ s sin φ 5s cos φ 7z s cos φ + 5s sin φ 6s sin φ + z dφ dz 5s cos φ 7s z cos φ + s sin φ cos φ + +5s sin φ + + dφ dz 5s 7s z cos φ + s sin φ cos φ dφ dφ 5s z 7 s z cos φ + s z sin φ cos φ s a + + 6s a sin φ cos φ s aφ + s a sin φ φπ/ φπ/4 5π + za z s a. Problem a Es gilt a b a c b c, sowie a + + b c. b Aus der Darstellung ru, v, w rα xu, v, w yu, v, w zu, v, w u + v + w u + v w u + v + w erhalten wir h u rα u a, h v b, h w c. 9

10 c Σ ist das Quaat, dessen Ecken folgende Ortsvektoren haben, r, r a, r b, r 4 a + b. d Nach der in der Vorlesung angegebenen Formel gilt evtl. bis auf ein Vorzeichen I dv h u h v F ru, v, 5u + v 7 u + v dv u + v + 5u + v 6u + v + u + v 6 4u 9v dv 6 u + v u + 6v dv 84u 84v v 84uv 4v 84u 4 v 4 4. Problem a Jr J x, y x + J x, y y c a x + y a + x + y +. b Wertetabelle für J r x : +x +y y\x c Eine D Stromdichte hat strenggenommen die Dimension J mg folglich haben wir: a m, c mg. s Interpretiert man J als D Stromdichte, mit J mg, m s so folgt dagegen: a m, c mg. s m d Punkte der xy-ebene mit Jx, y genügen der Gleichung a x + y y ± x a. Sie liegen also auf zwei getrennten Hyperbelästen mit x a bzw. x. Im Gebiet zwischen diesen, etwa auf der y-achse, ist Jx, y > Quellen. In den beiden Gebieten außerhalb der Hyperbeläste gilt dagegen Jx, y < Senken. m s ;

11 Problem 4 a Da der Vektor h θ α h φ α aus der Kugeloberfläche heraus zeigt, so gilt Σ da Fr π π φ φ π R R π R π dφ h θ α h φ α F rα dφ R φ dφ φ dφ sin θ cos φ sin θ sin φ cos θ sin φ R sin θ cos φ + sin φ R sin θ5 cos φ 4 sin φ 7R cos θ sin θ cos φ sin θ cos φ sin φ + 4 sin θ sin φ + 7 cos θ sin θ sin θ + 8 cos φ sin φ 6 sin φ cos θ sin θ sin θ φ + 4 sin φ 6 φ sin φ + + 7φ cos φφ θ sin θ φ π { R sin θ φ + 4 sin φ + } sin φ + 7φ cos θ sin θ R cos θ + {... 4 cos θ } 7 θπ φ cos θ θ R + {... } 4 + φ } { φ + 4 sin φ + sin φ 4 R R φ + 6 sin φ + sin φ. Speziell im Fall φ π ergibt sich also da Fr π R. Σ + 4 φ b Mit dem Bereichsvolumen V 4π R und Fr folgt d r Fr V 5 π R.

12 Worksheet 6 Problem : Stokes theorem a Σ is the paralellogram with the corners Consequently, we have A Σ n Σ r A r ap bq, r C r + ap + bq, r B r + ap bq, r D r ap + bq. r B r A r C r B ap bq 4ab p q 4ab and, since n Σ is a unit vector, A Σ 4 ab, n Σ b Σ consists of the four sides of Σ, given by { } Γ AB r AB ξ r + ξp bq a ξ a, r AB ξ Γ BC Γ CD Γ DA. { } r BC ξ r + ap + ξq b ξ b, r BC ξ { } r CD ξ r ξp + bq a ξ a, r CD ξ { } r DA ξ r ap ξq b ξ b, r DA ξ Now we have Fr Σ Γ AB + Γ BC + Γ CD + Γ DA Fr. We begin with Fr dξ ṙ AB ξ F r AB ξ. Γ AB Since ṙ AB ξ p,,, this is Fr dξ F rab ξ Γ AB dξ 4 + ξ b 85 b + 74 b dξ 4 + 4ξ b 4 + b., + ξ b 5 b 4 b + a + ξ 5 + ξ 4 + ξ ξ + b 5 + b 4 + b a ξ 5 ξ 4 ξ,,,.

13 Since ṙ BC ξ q,,, we similarly get b Fr dξ F rbc ξ + F rbc ξ + F rbc ξ Γ BC b b dξ 5 + a + ξ 55 + ξ ξ b b b dξ + 5a + 4ξ b + 5a. The two remaining integrals are treated in a very similar way. Since ṙ CD ξ p,,, we have Fr dξ F rcd ξ Γ CD dξ 4 ξ + b 85 + b b dξ 4 4ξ + b a4 b. Since ṙ DA ξ q,,, we similarly get b Fr dξ F rda ξ + F rda ξ + F rda ξ Γ DA b b dξ 5 a ξ 55 ξ + 44 ξ b b b dξ 5a 4ξ Eventually, the sum of these four integrals is Fr 48ab. Σ b 5a. c lim A Σ This must be equal to A Σ Σ Fr lim a,b n Σ Fr rr 48ab 4 ab 6. 7, which is true. d Since Fr 7,, is a constant vector, we have da Fr A Σ n Σ Fr 4ab Σ 7 confirming Stokes theorem, since Fr 48ab, e to part b. Σ 48ab,

14 Problem 5 The circulation around Σ is π Fr dφ Σ π R sin φ +R cos φ 4R cos φ 8R sin φ R cos φ + 5R sin φ... dφ 4R sin φ cos φ + 8R sin φ + R cos φ + 5R cos φ sin φ + 8R π + R π + R π. The flux of Fr 7,, through Σ is da F π/ π R cos θ cos φ R sin θ sin φ 7 dφ R cos θ sin φ +R sin θ cos φ Σ R sin θ π/ π R sin θ cos φ 7 dφ π/ π R sin θ sin φ R cos θ sin θ dφ 7R sin θ cos φ R sin θ sin φ + R cos θ sin θ + + π R sin θ π/ R π. 4

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

Analysis III Serie 13 Musterlösung

Analysis III Serie 13 Musterlösung Ana-3 Hs 22 Analysis III Serie 3 Musterlösung Abgabe: Freitag, 2.2.22, Uhr, in der Vorlesung * Aufgabe Welche der folgenden Aussagen sind wahr und welche sind falsch? (Mit Begründung) (i) Sei A R 3 3 eine

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016 ANWEISUNG: Diese Prüfung besteht aus 30 Seiten einschließlich dieser Titelseite und 9 Fragen die jeweils 10 Punkte wert sind. Stellen Sie sicher, dass Sie keine Frage übersehen. Bitte schreiben Sie Ihren

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät für Physik R: Rechenmethoden für Physiker, Wie 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Josh Engwer (TTU) Line Integrals 11 November / 25

Josh Engwer (TTU) Line Integrals 11 November / 25 Line Integrals alculus III Josh Engwer TTU 11 November 2014 Josh Engwer (TTU) Line Integrals 11 November 2014 1 / 25 PART I PART I: LINE INTEGRALS OF SALAR FIELDS Josh Engwer (TTU) Line Integrals 11 November

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Höhere Mathematik III. Musterlösung

Höhere Mathematik III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 3 Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14.

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14. Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T: Rechenmethoden für Physiker, WiSe / http://homepages.physik.uni-muenchen.de/~vondelft/lehre/t/ Nachklausur: T Lösung Hausaufgabe

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik G. Mahler Spezialvorlesung SS 006 7. 4. 006 Einführung und Übersicht Warum und in welchem Sinn ist Kohärenz»untypisch«? 04.

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Kapitel 25. Aufgaben. Verständnisfragen

Kapitel 25. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5. Mit W R 3 bezeichnen wir das Gebiet, das von den Ebenen x, x, x 3 und der Fläche x 3 x + x, x, x begrenzt wird. Schreiben Sie das Integral x 3 x dx W auf

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II v SoSe 28 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. H. Frellesvig, Dr. R. Rietkerk Übungsblatt 3 Ausgabe: 3.7.8 Abgabe: 2.7.8 bis 9:3 Aufgabe : Teller 8 Punkte Wir entwenden

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Allgemeine Mechanik Musterlösung 6.

Allgemeine Mechanik Musterlösung 6. llgemeine Mechanik Musterlösung 6. HS 2017 Prof. Thomas Gehrmann Übung 1. Brachistochrone Ein Teilchen rutscht reibungslos auf einer Kurve im Gravitationsfeld. Start- und Endpunkte der Kurve sind gegeben

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (B) zum Modul Höhere Mathematik für Ingenieure 2 25. Juli 29, 3. - 7. Uhr (2.Termin) Aufgabe : - Lösungen zum Theorieteil - Geben Sie eine Funktion f : R 2 R an, für die die Niveaumenge

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (. Juli 6) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe 1: In der x-y-ebene seien die Mengen A {(x, y) : x } und

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten Inhaltsverzeichnis 6 Integralrechnung 6. Einführung.............................................. 6. Unbestimmte Integrale........................................ 6.. Unbestimmte Integrale der rundfunktionen.......................

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Musterlösungen zu Serie 10

Musterlösungen zu Serie 10 D-ERDW, D-HEST, D-USYS athematik II FS 3 Dr. Ana Cannas da Silva usterlösungen zu Serie. a) Die Ellipse E wird z.b. durch y 4 γ(t) 3 sin t, t 2 π, t (4, 3 sin t) parametrisiert. E Daher ist F d s E 48

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019 Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung nalysis III im Wintersemester 28/9 28. Januar 29 Institut für nalysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich ufgabe 45: (i Der Weg umlaufe den

Mehr

Elektro- und Magnetostatik

Elektro- und Magnetostatik Übung 1 Abgabe: 1.3. bzw. 5.3.219 Elektromagnetische Felder und Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik In dieser Übung befassen wir

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, 1D-Example home/lehre/vl-mhs-1-e/folien/vorlesung/3_fem_intro/cover_sheet.tex page 1 of 25. p.1/25 Table of contents 1D Example - Finite Element Method 1. 1D Setup Geometry 2. Governing

Mehr

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen

Mehr

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also 5. Juli Lösungshinweise Theorieteil Aufgabe : Der Vektor x = ist ein Eigenvektor der Matrix A = Bestimmen Sie den zum Eigenvektor x zugehörigen Eigenwert. 3 3 3 3 (Hinweis: Es ist nicht erforderlich, das

Mehr

Ewald s Sphere/Problem 3.7

Ewald s Sphere/Problem 3.7 Ewald s Sphere/Problem 3.7 Studentproject/Molecular and Solid-State Physics Lisa Marx 831292 15.1.211, Graz Ewald s Sphere/Problem 3.7 Lisa Marx 831292 Inhaltsverzeichnis 1 General Information 3 1.1 Ewald

Mehr

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen)

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen) Abschnitt 5.1 Reduktion auf skalare Differenzialgleichungen 33 Kapitel 5 Ebene autonome Systeme Abschnitt 5.1 Reduktion auf skalare Di.gleichungen Aufgabe 1, Seite 190 Das gegebene System besitzt oensichtlich

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

Analysis PVK - Lösungen. Nicolas Lanzetti

Analysis PVK - Lösungen. Nicolas Lanzetti Analysis PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Analysis PVK HS 4/FS 5 3 Differentialrechnung. (a) lim x + x x = lim x + e (x ln(x)) = e lim x + (x ln(x)) (da e x stetig

Mehr

Zariski-Van Kampen Method

Zariski-Van Kampen Method Zariski-Van Kampen Method Purpose: Obtain a presentation for the fundamental group of the complement of a plane projective curve in P 2. We will put together several ingredients, among which, the Van Kampen

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr