D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

Größe: px
Ab Seite anzeigen:

Download "D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12"

Transkript

1 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde im Umkehrschluss bedeuten, dass sich alle Rotationsachsen eines Körpers in einem Punkt schneiden müssten, was nicht immer der Fall ist. b Ja. Andernfalls würde der Schwerpunkt nach der Rotation nicht mehr derselbe sein er ist aber eindeutig.. Das uneigentliche Integral e lnx a konvergiert. b divergiert. Es gilt e lnx = > e lnx x, da x = e lnx > e lnx für alle x > e gilt. Da aber e Integral divergieren. x divergiert, muss folglich auch das obige Bitte wenden!

2 3. Betrachten Sie die folgenden Figuren, die beide aus den selben zwei homogenen Rechtecken zusammengesetzt sind und sich nur in der Platzierung des rechten liegenden Rechtecks unterscheiden dieses ist um d nach unten versetzt: Seien x, y, x, y >. Welche Aussagen über die Schwerpunkte S der linken Figur und S der rechten Figur sind wahr? a Die x-koordinaten von S und S stimmen überein. b Die Länge bedeutet Ausdehnung in x-richtung des rechten liegenden Rechtecks kann so gewählt werden, dass die y-koordinaten von S und S übereinstimmen. c Die Differenz der y-koordinaten von S und S beträgt d. Die erste Aussage ist wahr, da das Rechteck nur entlang der y-achse bewegt wird und die Formel zur Bestimmung der x-koordinate des Schwerpunkts, xgx x S =, Gx nur die jeweilige Ausdehnung in y-richtung, nicht aber deren Lage, verwendet. Intuitiv lassen sich die nächsten beiden Aussagen folgendermassen entkräften: Falls überdies auch die y- Koordinaten übereinstimmten, so wären die beiden Schwerpunkte ident, was absurd anmutet, also sollte die zweite Aussage falsch sein. Da der Schwerpunkt nicht nur vom rechten, sondern auch vom linken Rechteck abhängt, sollte die Masse des linken Rechtecks die Bewegung des Schwerpunkts entlang der y-richtung in Relation zur Bewegung des rechten Rechtecks verlangsamen dass der Schwerpunkt also im gleichen Ausmass wie das Rechteck bewegt wird scheint unlogisch, womit die dritte Aussagen widerlegt wäre. Nun validieren wir unsere mathematische Intuition. Nehmen wir dazu an, dass die linke untere Ecke des linken stehenden Rechtecks im Ursprung platziert ist und wie schon in der Abbildung beschriftet, dass das linke Rechteck eine Länge von x und eine Höhe von y, das rechte Rechteck eine Länge von x und eine Höhe von y hat. In der Folge berechnen wir die y-koordinate von S. Es gilt { x für y < y y, H y = x + x für y y y y und folglich y yh y dy y S = y H y dy = xy + x y y y. x y + x y Siehe nächstes Blatt!

3 Auf ähnliche Weise erhalten wir die y-koordinate von S. Diesmal gilt x für y < y y d, H y = x + x für y y d y y d, x für y d < y y und folglich y yh y dy y S = y H y dy = xy + x y dy y. x y + x y Daraus ist sofort ersichtlich, dass die y-koordinaten nur übereinstimmen, falls d = gilt. Dies ist aber ausgeschlossen. Ausserdem ist die Differenz der y-koordinaten gleich x y d x y y y = = d < d, x y + x y x y + x y wie gewünscht. Bitte wenden!

4 4. Es sei B α für < α < die von den beiden Parabelbögen x y = und x α y = berandete Fläche. Für welche α liegt der Schwerpunkt von B α ausserhalb der Fläche B α? a α < 3 b 3 < α < c α < 3 4 d 3 4 < α < e α < Wir benutzen die Formel aus dem Stammbach Skript, Kapitel III, und erhalten y s = wegen Symmetrie und x s = α x Gx, A α wobei A α der Flächeninhalt von B α ist. y G x x G x x x Α x x y x Αy Es gilt x für x Gx = x x für x α α und A α kann als Differenz den Flächen zwischen den Funktionen x = y und x = ay und der Siehe nächstes Blatt!

5 y-achse berechnet werden. Diese zwei Funktionen schneiden sie sich für y = ± Dann berechnen wir x s = A α = A α u=x = = A α A α = = α A α α α α + αy dy α + y α dy = 4. 3 α x x x x α α y dy α x x x α α 5 α α α 4 α 5 x x α α α α α = 3 5 α 3 5 α α α = 3 α. 5 α Der Schwerpunkt von B α liegt ausserhalb der Fläche B α Also 3 < α <. α u + u du 5 4 α 3 α α α 3 x s > 3 α > 5 5α 3α > α > 3. und so Bitte wenden!

6 5. a Berechnen Sie den Schwerpunkt des in der Figur dargestellten homogenen Halbrundniets. Es sind d = 6mm, D = 8mm, k =.5mm und l = 8mm. y k l D R d x b Betrachten Sie das Rotationsparaboloid, das durch Rotation der Kurve z = ax um die z-achse gegeben ist: R H L ösung: Auf welcher Höhe liegt der Körperschwerpunkt? a Dank dem Satz von Pythagoras haben wir R k + D = R und somit R = D 8k + k. Siehe nächstes Blatt!

7 Das Volumen ist [ k k+l V = π R R x + [ k ] k+l = π Rx x d + k 4 D k = π + k d l = π 4 4 k d ] = π Rk k3 3 + d l 4 3D k + 4k 3 + 6d l. Aus Symmetriegründen sind die y- und z-komponenten des Schwerpunktes y S = z S =. Für die x-komponente bekommen wir [ x s = k k+l d V π xrx x + x ] Rk 3 k = π k4 V d k + l k 8 = π D k V + k4 3 k4 4 + d kl + d l 4 8 = π D k + k 4 + 6d kl + 3d l = D k + k 4 + 3d lk + l 4V 3D k + 4k 3 + 6d l 4mm. Bemerkung: Bedenken Sie, dass die Angabe von mehr Nachkommastellen etwa 4.66 mm hier nicht sinnvoll ist, denn die Grössen d, D und l sind auch nicht genauer als mit zwei Dezimalstellen angegeben. b Die Kurve z = ax wird um die z-achse gedreht. Für den Radius gilt dann r = x + y und für die Höhe z = ar. Schnittfläche bei z: F z = πr = π z a Volumenelement bei z: dv = F zdz = π z a dz Der Schwerpunkt liegt auf der z-achse mit Höhe h. h = V V = = V ar ar ar zdv, wobei V = π a z dz = V dv = ar π 3a z3 ar ar = V π a zdz = π ar a z h = π a R 4 π 3 a R 6 = 3 ar = 3 H dv π 3a a3 R 6 = V = π ar4 π 3 a R 6 Bitte wenden!

8 6. a Eine dünne homogene Quadratplatte Länge der Quadratseite s, Masse pro Flächeneinheit σ rotiert mit der Winkelgeschwindigkeit ω um eine Diagonale. Wie gross ist die kinetische Energie der Platte? b Das Flächenstück zwischen der x-achse und dem durch die Parameterdarstellung xt = cos t yt = sint für t π gegebenen Kurvenbogen wird um die x-achse rotiert. Dadurch entsteht ein zwiebelförmiger, homogener Körper mit homogener Dichte ϱ =. Berechnen Sie das Trägheitsmoment bezüglich der x-achse. Lösung: a Für die in der Zeichnung siehe nächste Seite oben rechts liegende Kante der Platte gilt die Gleichung y = s x. In einem Streifen der Breite liegt also die kleine Masse dm = yσ = σ s x. Daraus erhält man als Anteil der kinetischen Energie dt = v dm = ω x dm = σω x s x Die gesamte kinetische Energie ist folglich s T =. s s σω x x = σω x 3 3 x4 s = 4 4 σω s 4. Siehe nächstes Blatt!

9 Den Faktor benötigen wir, um auch die linke Hälfte der Platte zu berücksichtigen. b Wir bestimmen zuerst eine explizite Darstellung der Kurve. Es ist y = sint = sin t cos t = x x ein Stück einer Lemniskate bzw. Lissajous-Figur. Das Trägheitsmoment berechnet sich dann gemäss Buch, Kapitel III., wie folgt: Θ = π = 8π x x 4 = π x 4 x 6 + x 8 = 8π [ x 5 = 8π = 64π 35. 6x 4 x 5 x7 7 + x9 9 Alternative: Das Trägheitsmoment einer dünnen Kreisscheibe mit Radius r ist πr4. Zerschneiden wir die Zwiebel in solche Scheiben vom Radius yt und Dicke = ẋtdt, so ergibt sich Θ = π/ π yt 4 ẋt dt = π/ π sin 4 t sin t dt }{{} = 6 cos 4 t sin 4 t = 6 cos 4 t cos t = 8π π/ u=cos t = du= sin tdt 8π cos 4 t cos t sin t dt u 4 u du = 8π = 9 64π 35. ] Bitte wenden!

10 7. Berechnen Sie die folgenden uneigentlichen Integrale, sofern sie existieren. a b c d e f 8 8 x 3 ; x + x 3 ; x + x 4 ; x ln x ; xln x ; λ, wobei λ >. + x Hinweis: Partialbruchzerlegung. g Finden Sie den Wert der Konstante K, für welchen das Integral x + 4 K x + Lösung: konvergiert und berechnen Sie in diesem Fall das Integral. Hinweis: Benützen Sie die Identität arsinhx = lnx + + x. 8 x 3 d = lim 8 a Wir können das Integral direkt berechnen und betrachten danach den durch die Schranken gegebenen Grenzwert: 8 [ 3 ] 8 x = 3 4 = 6. = lim 3 8 b Wir führen eine Partialbruchzerlegung durch. Der Nenner faktorisiert sich zu xx +, wobei der Faktor x + keine reellen Nullstellen besitzt. Der korrekte Ansatz für die Partialbruchzerlegung lautet daher xx + = A x + B + Cx x +. Multiplizieren wir diese Gleichung mit xx +, so ergibt sich = Ax + + B + Cxx, ein kurzer Koeffizientenvergleich ergibt also A =, B =, C = und damit xx + = x x x +. Siehe nächstes Blatt!

11 Es folgt x + x 3 = = lim = lim ln = lim ln x x + x [ ln x ln x + ] ln + ln + + ln = ln + ln = ln. c Wir substituieren u = x, so dass du = x und x = lim + x 4 = lim x = lim + x 4 [ arsinh u ] u= u= du + u = lim arsinh. Wegen lim arsinh = existiert das uneigentliche Integral nicht. d Das Integral x ln x = lim x [ln ln x = lim ln x ] x= x= = lim lnln lnln existiert nicht, denn lim lnln =. e Die Substitution u = ln x ergibt du = x, also xln x = lim = lim xln x = lim ] [ ln + ln ln ln = ln. [ du u = lim ] u=ln u u=ln f Es ist λ + x = λ + x = λ λ = λ arctan u + C = λ arctan x λ + u du + C, in haben wir dabei u = x λ substituiert, wobei = λ du. Bekannterweise gilt für die Arkustangens- Funktion lim arctan = π und arctan = arctan, Bitte wenden!

12 insgesamt ergibt sich also λ = lim + x = λ lim = λ lim arctan λ + x = λ lim arctan arctan λ = λ λ π = π λ. g Zunächst folgt mit der Substitution u = x mit du =, dass x + 4 = = + x = lnu + u + + C = ln = ln x + x C = ln + ln x + x + 4 = ln x + x D, [ x arctan λ] λ du = arsinhu u + x + + C x + + C wobei D = C + ln. Es folgt also x + 4 K = lim x + x + 4 K x + [ = lim ln x + ] x + 4 K ln x + = lim ln K ln + + K ln + = lim ln K + K ln. Zur Berechnung des Grenzwerts beachten wir und + K K asymptotisch für ; also K K = K. Wenn K < ist, dann gilt K + und damit auch lim +4 + K konvergiert das Integral in diesem Fall nicht. =. Daher Wenn K > ist, dann gilt K ist + und damit auch lim +4 + K lim ln Das Integral konvergiert ebenfalls nicht K =. = und somit Siehe nächstes Blatt!

13 Wenn K = ist, dann ist + lim = lim =. Deshalb konvergiert in diesem Fall das Integral und es gilt x + 4 K K= + = ln lim + 4 = ln. x + +

Serie 12.

Serie 12. D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Serie Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis Mittwoch,

Mehr

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger D-MAVT/D-MATL Analysis I HS 26 Dr. Andreas Steiger Serie 2 Die erste Aufgabe ist eine Multiple-Choice-Aufgabe (MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde.

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde. D-MAVT, D-MATL Analysis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Serie Abgabetermin der schriftlichen Aufgaben: Freitag, 9..4 in der Übungsstunde.. Das schattierte Gebiet wird um diez-achse rotiert.

Mehr

Musterlösung der Ferienserie 13

Musterlösung der Ferienserie 13 D-MAVT, D-MAT Analysis I HS Prof. Dr. Paul Biran Nicolas Herzog Musterlösung der Ferienserie 3. Durch partielle Integration erhält man die Rekursionsformel A n x n e x x n e x x x + n x n e x e + na n

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 2 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Serie Die erste Aufgabe ist eine Multiple-Choice-Aufgabe MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 2

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 2 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Serie Die ersten Aufgaben sind Multiple-Choice-Aufgaben MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis Mittwoch,

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals.

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 8..8 Übung 8 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 2. November 28 in den Übungsstunden Aufgabe Berechnen Sie die folgenden bestimmten

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y.

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y. D-MAVT/D-MATL Analysis II FS 018 Dr. Andreas Steiger Lösung - Serie 4 1. Welche der folgenden Differenzialgleichungen ist linear? (a) (y ) = y (b) y + y 1 x + y 1 + x = 1 x (c) y = xy x y (d) y + y + y

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden.

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden. D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe). Wenn man zwei beliebig oft differenzierbare Funktionen addiert, dann werden ihre Taylorreihen an einem Punkt

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Ferienserie 13. D-MAVT, D-MATL Analysis I HS 14. Die schriftlichen Aufgaben dieser Serie werden nicht abgegeben und korrigiert.

Ferienserie 13. D-MAVT, D-MATL Analysis I HS 14. Die schriftlichen Aufgaben dieser Serie werden nicht abgegeben und korrigiert. D-MAVT, D-MATL Analsis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Ferienserie 3 Die schriftlichen Aufgaben dieser Serie werden nicht abgegeben und korrigiert.. Man finde eine Rekursionsformel für die Grössen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (A) zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 8. - 1. Uhr (1.Termin) - Lösungen zum Theorieteil - Aufgabe 1: Die -periodische Funktion f : R R sei auf [, ) gegeben durch + 3,

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

Multiple-Choice Ferienserie 13

Multiple-Choice Ferienserie 13 D-MAVT D-MATL Analsis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Multiple-Choice Ferienserie 3 Abgabetermin: Samstag, 3..5, 3:59 Uhr. Bemerkung: Bei einigen MC-Aufgaben sind mehrere Antworten richtig.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Zwischenprüfung Winter 2016 Analysis I D-BAUG

Zwischenprüfung Winter 2016 Analysis I D-BAUG ETH Zürich Zwischenprüfung Winter 216 Analysis I D-BAUG Dr. Meike Akveld Wichtige Hinweise Prüfungsdauer: 9 Minuten. Zugelassene Hilfsmittel: Keine, ausser das verteilte Blatt mit Standardintegralen. Es

Mehr

Lösungen zur Serie 5

Lösungen zur Serie 5 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Serie 6 Die erste Aufgabe ist eine Multiple-Choice-Aufgabe (MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II 1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Analysis PVK - Lösungen. Nicolas Lanzetti

Analysis PVK - Lösungen. Nicolas Lanzetti Analysis PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Analysis PVK HS 4/FS 5 3 Differentialrechnung. (a) lim x + x x = lim x + e (x ln(x)) = e lim x + (x ln(x)) (da e x stetig

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1)

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) Aufgabe 1 a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) und hat somit bei x = eine doppelte und bei x = ±i zwei nicht-reelle Nullstellen. Damit

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II .3.27 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann.9. Bergische Universität Wuppertal Modul: Mathematik b für Ingenieure, Bachelor Sicherheitstechnik PO Aufgabe a Berechnen Sie das Integral I : e x + ln

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Hörsaalübung 5, Analysis II

Hörsaalübung 5, Analysis II Fachbereich Mathematik der Universität Hamburg Dr.H.P.Kiani Hörsaalübung 5, Analysis II SoSe 8, 4./ 5. Juni Rotationskörper und Kurvenintegrale Die ins Netz gestellten Kopien der Unterlagen sollen nur

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

9. Lineare Gleichungssysteme

9. Lineare Gleichungssysteme 9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger Serie 6 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 8

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 8 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Serie 8 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC, die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr