D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

Größe: px
Ab Seite anzeigen:

Download "D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1"

Transkript

1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ dα dβ. (b) (c) (d) (e) ϱ cos α dϱ dα dβ. ϱ sin β dϱ dα dβ. ϱ dϱ dα dβ. ϱ sin β dϱ dα dβ. Die kartesischen Koordinaten werden wie folgt durch die Koordinaten (ϱ, β, α) ausgedrückt ϱ cos α cos β, y ϱ sin α cos β und z ϱ sin β, wobei ϱ <, α < π und π/ β π/. Das Volumenelement ergibt sich dann aus dv ddydz det(j) dϱdαdβ mit cos(α) cos(β) r sin(α) cos(β) r cos(α) sin(β) (, y, z) J (ϱ, α, β) sin(α) cos(β) r cos(α) cos(β) r sin(α) sin(β). sin(β) r cos(β) Also ist (a) die richtige Antwort. det(j) ϱ cos β Bitte wenden!

2 . Betrachten Sie die Funktion f : R R erklärt durch die Vorschrift ( ) (, y) y. y Es sei J(, y) die Jacobimatri der Funktion f an der Stelle (, y). Welche der folgenden Aussagen ist wahr? (a) det J(, y) für alle (, y) R. (b) det J(, y) für alle (, y) R. (c) det J(, y) genau dann, wenn (, y) (, ). (d) det J(, y) 6 auf der Menge M {(, y) R + y }. Die Aussage c) ist die richtige, denn det J(, y) y y ( + y ). 3. Sei T ein Tetraeder mit Eckpunkten (,, ), (,, ), (,, ), (,, 3). Berechnen Sie das Integral f(, y, z)dv, mit f(, y, z) + y. (a) 3 (b) 3 (c) Es gilt: y T ( + y)dzdyd ( + y)(3 3 3 y)dyd [( + y)z] z3 3 3 y z dyd (3 3 9 y + 3y 3 y )dyd [(3 3 )y + (3 9 )y 3 y3 3 ]y y d [(3 3 )( ) + (3 9 )( ) ( )3 ]d 3 ( ( ) 3 )d [ ( ) ] 3. Siehe nächstes Blatt!

3 . Gegeben ist ein Zylinder Z (Dichte ) mit Radius R und Höhe h der senkrecht auf der y-ebene steht. Welches der folgenden Integrale in Zylinderkoordinaten beschreibt das Trägheitsmoment Θ des Zylinders Z bezüglich der z-achse? (a) π h r dz dr dϕ (b) π h r dz dr dϕ π (c) h r3 dz dr dϕ (d) π h r dz dr dϕ Das Trägheitsmoment bei konstanter Massendichte ist das Integral ( + y ) d dy dz. In Zylinderkoordinaten transformiert es sich zu r r dz dr dϕ über ϕ [, π] und z [, h] sowie r [, R]. Bitte wenden!

4 5. Das Trägheitsmoment einer dünnen Kugelschale mit Radius R und konstanter Flächendichte bezüglich einer Achse durch den Mittelpunkt ist proportional zu (a) R. (b) R 3. (c) R. (d) R 9/. (e) R 5. Das Trägheitsmoment bei konstanter Flächendichte m R (mit m die Massendichte und R die Dicke der Kugelschale) ist das Integral m ( + y ) d dy dz. In Kugelkoordinaten transformiert es sich zu m r cos θ r cos θ dϕ dθ dr, wobei über ϕ [ π, π] und θ [ π/, π/] sowie r [R R, R] integriert wird. Die inneren beiden Integrale über ϕ und θ liefern lediglich einen konstanten Faktor. Das verbleibende Integral R R mr dr ist mr R, also ist (c) richtig. Aliter: Wir wissen bereits, dass das Trägheitsmoment einer Vollkugel mit Radius R proportional zu R 5 ist. Das Trägheitsmoment einer dünnen Kugelschale mit äusserem Radius R und Schalendicke R ist folglich proportional zu R 5 (R R) 5 R R + vernachlässigbare kleinere Terme. Also ist (c) die richtige Antwort. 6. Berechne den Betrag der Determinante der Jacobi-Matri für folgende Koordinatentransformationen. a) Von kartesischen Koordinaten in Zylinderkoordinaten. b) Von kartesischen Koordinaten in Kugelkoordinaten. c) Von Kugelkoordinaten in kartesische Koordinaten. Was fällt dir auf? Lösung: a) Die Zylinderkoordinaten sind gegeben durch ϱ cos(ϕ) y ϱ sin(ϕ) z z, wobei ϱ <, ϕ < π und z R. Die Jacobi-Matri J ist dann cos(ϕ) ϱ sin(ϕ) (, y, z) J (ϱ, ϕ, z) sin(ϕ) ϱ cos(ϕ). Siehe nächstes Blatt!

5 Der Betrag der Jacobi-Matri ist somit b) Die Kugelkoordianten sind gegeben durch det(j ) ϱ ( cos(ϕ) + sin(ϕ) ) ϱ. r cos(ϕ) sin(ϑ) y r sin(ϕ) sin(ϑ) z r cos(ϑ), wobei r <, ϕ < π und ϑ π. Die Jacobi-Matri J ist cos(ϕ) sin(ϑ) r sin(ϕ) sin(ϑ) r cos(ϕ) cos(ϑ) (, y, z) J (r, ϕ, ϑ) sin(ϕ) sin(ϑ) r cos(ϕ) sin(ϑ) r sin(ϕ) cos(ϑ), cos(ϑ) r sin(ϑ) und der Betrag deren Determinante ist det(j ) r cos(ϕ) sin(ϑ) 3 + r sin(ϕ) sin(ϑ) cos(ϑ) +r sin(ϕ) sin(ϑ) 3 + r cos(ϕ) sin(ϑ) cos(ϑ) r sin(ϑ) ( cos(ϕ) sin(ϑ) + sin(ϕ) cos(ϑ) + sin(ϕ) sin(ϑ) + cos(ϕ) cos(ϑ) ) r sin(ϑ) ( cos(ϕ) + sin(ϕ) ) ( cos(ϑ) + sin(ϑ) ) r sin(ϑ). c) Die Transformationsgleichungen von kartesischen Koordinaten in Kugelkoordinaten lauten r(, y, z) + y + z ( y k für >, y ϕ(, y, z) arctan + kπ wobei k für < ) k für >, y < ( ) θ(, y, z) π arctan z für + y. + y Daraus kann man die Jacobi-Matri J 3 (r, ϕ, θ) (, y, z) berechnen. r + y + z (analog für y und z) + y + z ϕ ϕ y + ( y + ( y ) y y + y ) ϕ z θ + z +y θ z + z + y z ( + y ) 3/ z ( + y + z ) + y (analog für y) + y + y + y + z +y Bitte wenden!

6 (r, ϕ, θ) J 3 (, y, z) Die Jacobi-Determinante ist dann +y +z y +y y z +y +z +y +z +y z yz +y ( +y +z ) +y ( +y +z ) +y +y +z ( det(j 3 ) + y ) y z y ( + y ) z ( + y + z ) 3/ ( + y ) 3/ ( + y ) ( + y ) + ( + y ) z ( + y + z ) 3/ ( + y ) 3/ + y + z + y. Daraus sieht man, dass det(j 3 ) + y + z + y + z + y r sin(θ) det(j ). 7. Berechnen Sie das oberhalb der Ellipse + y und unterhalb der Fläche z liegende Volumen. Hinweis: Finden Sie Koordinaten in der y-ebene in denen die Ellipse eine besonders einfache Form hat. Lösung: Das Volumen erhält man durch Integration von f (, y) über die Fläche A R, die durch die Ellipse + y begrenzt ist: V f (, y) ddy. A Siehe nächstes Blatt!

7 Mit folgendem Koordinatenwechsel (, y) (s, ϕ) s cos (ϕ) y s sin (ϕ) vereinfachen wir das Problem. Die Ellipse ist nun durch die Gleichung s gegeben. Die Funktion f ist gegeben durch f (s, ϕ) s cos (ϕ). Mit Hilfe der Jacobideterminante findet man: ddy s dsdϕ. So wird das Integral zu π f (, y) ddy f (s, ϕ) s dsdϕ A π π ( s s 3 cos (ϕ) ) dsdϕ ( πs πs 3 ) ds (s s ) 3π Ein gerader Kreiszylinder mit Radius R, ( +y R ), und Höhe H, ( z H), habe eine Dichte von ϱ(, y, z) + + y + z. Berechnen Sie die Masse und das Trägheitsmoment bei Rotation um die z-achse. Lösung: In Zylinderkoordinaten ist das Gebiet gegeben durch r cos(ϕ) y r sin(ϕ) z z r [, R], ϕ [, π], z [, H]. Die Jacobideterminante beträgt r, die Dichte ϱ + r + z. Die Masse ist gegeben durch also berechnen wir sie zu H π ( H π ( HR π V ϱdv. H ( + r + z)rdrdϕdz π H rdrdz + + HR Das Trägheitmoment ist gegeben durch + H R V r 3 drdz + H ( + r + z)rdrdz ) zrdrdz ) πhr ( + R + H). ϱ( + y )dv. Bitte wenden!

8 Mit + y r, dv rdrdϕdz lautet das Trägheitsmoment in Zylinderkoordinaten: H π ( H π ( HR π H ( + r + z)r rdrdϕdz π H r 3 drdz + + HR6 6 + H R 8 r 5 drdz + H ( + r + z)r rdrdz ) zr 3 drdz ) πhr (6 + R + 3H). 9. In der y-ebene werde der Bereich B durch die Strecke von (, ) nach (, ) und dem Kurvenbogen mit der Polardarstellung ϱ sin( φ ), φ π begrenzt. Man berechne das Volumen des über dem Bereich B liegenden Teils der Einheitskugel {(, y, z) : + y + z }. Lösung: Zur Berechnung eignen sich am besten Polarkoordinaten (ϱ, φ)... y B {(ϱ, φ) : ϱ sin( φ ), φ < π} V B ϱ df mit df ϱ dϱ dφ. V π sin(φ/) 3 3 π π [ ϱ ϱ dϱ dφ 3 ( ϱ ) 3/ cos 3 ( φ ) dφ 3 [ 3 sin(3φ ) + 3 sin(φ ) φ π ] π ] sin(φ/) cos(3φ ) + 3 cos(φ ) dφ dφ 3 ( π) π 3 8 9

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals Inhalt Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals f dλ n = f ψ det Dψ dλ n. U ψ(u) Dabei ist ψ : U ψ(u) ein C 1 -Dieomorphismus auf einer

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 8/9 Übung 8 Aufgabe : Integration a) Berechnen Sie die folgenden Integrale: i) 4x + ) dx ii) 8 3 x dx iii) 3 x3 ) dx

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ)

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ) D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas MC-Serie 3 Kurven in der Ebene Einsendeschluss: 18. März 216, 16 Uhr (MEZ) Bei allen Aufgaben ist genau eine Antwort richtig. Sie dürfen während

Mehr

Serie 12.

Serie 12. D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Serie Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis Mittwoch,

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

3.5.2 Mehrere Funktionen von einem Satz von Zufallszahlen

3.5.2 Mehrere Funktionen von einem Satz von Zufallszahlen 3.5. NICHT-LINEARE FUNKTIONEN VON ZUFALLSVARIABLEN 43 3.5. Mehrere Funktionen von einem Satz von Zufallszahlen Wir betrachten jetzt den allgemeineren Fall, dass m Funktionen g (g 1,...,g m ) von den gleichen

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

Mathematik II Lösung 9. Lösung zu Serie 9

Mathematik II Lösung 9. Lösung zu Serie 9 D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

11. Übungsblatt zur Mathematik II für MB

11. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 8.6.. Übungsblatt zur Mathematik für MB Aufgabe 5 ntervall im R egeben sei das ntervall { (x, y, z) R : π x π, y, z π}. Berechnen Sie x

Mehr

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger D-MAVT/D-MATL Analysis I HS 26 Dr. Andreas Steiger Serie 2 Die erste Aufgabe ist eine Multiple-Choice-Aufgabe (MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

8.2 Integralrechnung für mehrere Variable

8.2 Integralrechnung für mehrere Variable 8.2 Integralrechnung für mehrere Variable Der bisher behandelte Begriff des Integrals einer Funktion mit einer einzigen Variablen lässt sich auf mehrere Arten verallgemeinern. Zunächst führt die Erweiterung

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Mathematik II für MB und ME

Mathematik II für MB und ME Übungsaufgaben Serie : Integralrechnung. Berechnen Sie folgende Integrale 3 + 2 2 d, b) d) sin(3) cos(3) d, e) Mathematik II für MB und ME e a d, c) 6 d, f) + 2 2. Berechnen Sie durch geeignete Substitution

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Mehrdimensionale Integralrechnung 1

Mehrdimensionale Integralrechnung 1 Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit zu c). Ü erechnen Sie das Volumen und die Masse des Körpers aus Ü.; Der Körper aus Aufgabe Ü.; ist begrenzt durch die Flächen mit den Gleichungen z, + y und y z mit z >. Für die Dichte gelte (; y; z) +

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani.. Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, Potentiale

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Musterlösungen Serie 6

Musterlösungen Serie 6 D-MAVT D-MATL Analysis II FS 1 Prof. Dr. P. Biran Musterlösungen Serie 6 1. Frage 1 [Analysis Prüfung Winter1] Ein Vektorfeld v(x,y,z) mit Definitionsbereich erfüllediv( v) =. Was folgt? Es gibt eine Funktionf(x,y,z)

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Aufgabe 34: Steinerscher Satz für den Trägheitstensor Der Schwerpunkt liege im Ursprung des Koordinatensystems.

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017

INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017 INSTITUT FÜR THEORETISCHE PHYSIK Prof. Dr. U. Motschmann Dr. M. Feyerabend Theoretische Mechanik SS 2017 Klausurvorbereitung Bearbeitungszeit: 180 Minuten 1. Wissensfragen (20 Punkte) Benennen Sie alle

Mehr

Online Zwischentest - Serie 5

Online Zwischentest - Serie 5 D-MAVT, D-MATL Analysis II FS 213 Prof. Dr. P. Biran Online Zwischentest - Serie 5 Willkommen zum 1. Online-Test, welcher die Serie 5 ersetzt. Bitte schicken Sie Ihre Lösungen bis Dienstag, den 9.4.213

Mehr

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders

Mehr

Felder und Wellen WS 2017/2018

Felder und Wellen WS 2017/2018 Felder und Wellen WS 17/18 Musterlösung zum 1. Tutorium 1. Aufgabe (*) Zur Einleitung etwas Grundsätzliches über Flächen-, Volumen-, und Linienintegrale. Die Integration ist am einfachsten, wenn das gewählte

Mehr

Kapitel 25. Aufgaben. Verständnisfragen

Kapitel 25. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5. Mit W R 3 bezeichnen wir das Gebiet, das von den Ebenen x, x, x 3 und der Fläche x 3 x + x, x, x begrenzt wird. Schreiben Sie das Integral x 3 x dx W auf

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr