Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften"

Transkript

1 Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, ie ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen zusätzlichen Erläuterungen sind diese Unterlagen unvollständig (z. Bsp. fehlen oft wesentliche Voraussetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Eine Veröffentlichung dieser Unterlagen an anderer Stelle ist untersagt!

2 Volumen, Masse, Schwerpunkt, Trägheitsmoment R bzw R 3 kompakt, meßbar, ρ(x) Massendichte Volumen (Flächeninhalt): V = dx Masse: M = Schwerpunkt: X s = ρ(x)dx Trägheitsmoment: Θ A = ρ(x)r (x)dx ρ(x)xdx ρ(x)dx Beispiele für Abstände: Abstand zur z Achse im R 3 : x +y. Abstand zur x Achse im R : y = y. (komponentenweise) r(x) = Abstand zur Achse A

3 Beispiel : Flächenstück gegeben durch: x, y (4 x ), y x 3 y= 3 3 (4 x ) Schreiben Sie als Vereinigung von Normalbereichen. Berechnen Sie den Flächeninhalt und den Schwerpunkt von bei homogener ichte ρ = 3. 3

4 = 3 : x, x 4 y 4 x : x, 3 y 4 x 3 : x, x 4 y 4 x Fläche: F = 4 x x 4 dy dx 3 x 4 dy dx = = 4 [ (4 x )dx 4x x3 3 ] [ x x3 3 ] 3 (x 4)dx = 4 ( ) 6 3 ( ) 3 = 6 3 =. 4

5 Masse : M = ρd(x,y) = 3 d(x,y) = 3 Fläche = 3F x 3 y= 3 (4 x ) x s = M x ρ(x,y)d(x,y) = (Symmetrie) y s = M y ρ(x,y)d(x,y), wobei = + Es gilt y ρ(x,y) = y ρ(x,y) = (Symmetrie) Also erhält man 5

6 y s = M 4 x ρ ydydx = M 4 x ρ ydydx 3 3 = ρ F 4 x 3 ρ ydydx = F 4 x 3 ydy dx = = 4 ( (6 8x +x 4 9 ) dx = 4 = 4 ( [ x 5 5 8x3 3 +7x ] ( ( )) = 68 3 ) 6

7 Beispiel : Berechnen Sie das Intagral von f(x,y) = halben Kreisring R : x +y 4, x. x über den +y Berechnung in kartesischen Koordinaten umständlich! In Polarkoordinaten x = rcos(φ), y = rsin(φ) gilt: R : as Gebiet ist viel einfacher. ABER: Koordinatenwechsel / Substitution nötig!

8 Transformationssatz: Zur Erinnerung: im R gilt φ(b) φ(a) f(x)dx = b a f(φ(u)) φ (u)du (φ (u), x ]a,b[) Unter den in der Vorlesung angegebenen Voraussetzungen an Φ und und f gilt hier: Φ() f(x)d(x) = f(φ(u)) detjφ(u) du ( detjφ(u), x ) Polarkoordinaten ( ( x r = Φ(u) = Φ y) ϕ) det(jφ(r, ϕ)) = r = ( ) rcos(ϕ) rsin(ϕ) 8

9 Kugelkoordinaten x y = Φ(u) = Φ r ϕ = z θ det(jφ(r,ϕ)) = r cos(θ). rcos(ϕ)cos(θ) r sin(ϕ) cos(θ) rsin(θ) r = z = R = x = y = 9

10 Zylinderkoordinaten x r rcos(ϕ) y = Φ(u) = Φ ϕ = rsin(ϕ) z z z cos(ϕ) rsin(ϕ) det(jφ(r, ϕ)) = sin(ϕ) r cos(ϕ) = r Im Beispiel 3: x +y 6, z 9 (4 x +y )

11 Elliptische Kugelkoordinaten ( x ) ( y ) ( z ) Zum Beispiel bei Φ() = + + a b c x y = Φ(u) = Φ r ϕ = arcos(ϕ)cos(θ) br sin(ϕ) cos(θ) z θ cr sin(θ) det(jφ(r,ϕ)) = abcr cos(θ) Im Beispiel 6: Rotationsellipsoid E = {(x,y,z) T : x +y +z /4 }. Elliptische Kugelkoordinaten: x y = Φ(u) = Φ r ϕ = z θ det(j(φ) =

12 Elliptische Zylinderkoordinaten: analog x r ar cos(ϕ) y = Φ(u) = Φ Φ = br sin(ϕ) z z z acos(ϕ) rasin(ϕ) det(jφ(r, ϕ)) = b sin(ϕ) rb cos(ϕ) = abr Beispiel 5: Gegeben ist ein Turms mit elliptischem Grundriss: T := x ( y x ) ( y ) R 3 :, + 5, z z 4 3.

13 Im Beispiel war f(x,y) = R : x +y 4, x x zu integrieren über den halben Kreisring +y r φ R f(x,y)d(x,y) = R x +y d(x,y) = r dφdr = r [ ] dr = π r dr = πlog(). 3

14 Beispiel 3: Es sei f(x,y) = z (x+y) zu integrieren über : x +y 6, z 9 (4 x +y ) z (x+y) d(x,y,z) = z(rcos(φ))+rsin(φ))...dφdzdr = z(r cos (φ))+r cos(φ)sin(φ)+r sin (φ))... dφdzdr = π 4 r 3 [ z ] 9 (4 r) dr = π 4 r 3 (9 (4 r) ) dr 4

15 Beispiel 4: Gegeben sei der wie folgt beschriebene Teil einer Kugelschale: := x y R 3 : x +y +z, y, z x +y. z

16 Berechnen Sie das Trägheitsmoment von bzgl, der z Achse bei homogener Massendichte ρ =. Hinweis: cos 3 (x) = 4 (3 cos(x)+cos(3x)) Lösung:) Übergang zu Kugelkoordinaten: r,φ,θ r rcosφcosθ Φ : φ rsinφcosθ θ rsinθ 6

17 ie eterminante der Transformation ist aus der Vorlesung bekannt: JΦ = cosφcosθ rsinφcosθ r cos φsinθ sinφcosθ rcosφcosθ r sin φsinθ, detjφ = r cosθ sinθ rcosθ a z (x,y,z) := Abstand zur z Achse = x +y. x +y = r cos (ϕ) cos (θ)+r sin (ϕ) cos (θ) = Θ z = ρ (a z (x,y,z)) d(x,y,z) = π/4 π r cos (θ) r cos(θ) dϕdθdr π/4 7

18 =π π/4 π/4 r 4 cos 3 (θ)dθdr = π π/4 π/4 r 4 ( 3 4 cos(θ)+ ) 4 cos(3θ) dθdr =π r 4 [ 3 4 sin(θ)+ ] π/4 sin(3θ) π/4 dr = π [ r 5 5 ] 5 6 = π 3 (8 ). 8

19 Beispiel 5: Gegeben ist ein Behälter im Form eines Turms mit elliptischem Grundriss: T := x ( y x ) ( y ) R 3 :, + 5, z 4 3. z ie ichte eines Stoffes im Turm wird modelliert durch ρ(x,y,z) = Zu berechnen: Masse des Stoffes im Turm. +z. Lösung: Koordinatentransformation Elliptische Zylinderkoordinaten: x = 4rcos(ϕ), y = 3rsin(ϕ), z = z. Für die Jacobi-Matrix J der Koordinatenransformation gilt 4cos(ϕ) 4rsin(ϕ) det J = det 3 sin(ϕ) 3r cos(ϕ) = 9

20 Für die Parameter gilt: r [,5], ϕ [,π], z [,]. Für die Masse erhält man daher V = 5 π ρ(r,ϕ,z)rdϕdzdr = = 4π 5 +zr drdz = = 3π +zdz = 3πarctan().

21 Bei Bedarf vor Ort: Beispiel 6 Gegeben sei das Rotationsellipsoid E = {(x,y,z) T : x +y +z /4 }. Berechnen Sie das Volumenintegral E (3z x y )d(x,y,z). einmal unter Verwendung von Zylinderkoordinaten und zum Andern unter Verwendung elliptischer Kugelkoordinaten.

22 x +y +z /4, f(x,y,z) = 3z (x +y ) Elliptische Kugelkoordinaten: x y = Φ(u) = Φ r ϕ = z θ rcos(ϕ)cos(θ) r sin(ϕ) cos(θ) r sin(θ) det(j(φ) = Zu integrieren =4π π π (r sin (θ) r cos (θ))(r cos(θ))dθdϕdr π π r π 4 ( 3sin (θ)cos(θ) cos(θ) ) dθdr

23 Zylinder Koordinaten x = rcos(φ), y = rsin(φ), z = z. r [,], φ [,π], z [ r, r ]. det J(Φ) = Zu integrieren =4π π r (3z r r r )rdzdϕdr (3rz r 3 )dzdr Ergebnis: 6π/3 3

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani.. Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, Potentiale

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WIiSe 18/19 Dr. Hanna Peywand Kiani 28.01.2019 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Das ins Netz gestellte Material zur

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani 4.. Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Extrema unter Nebenbedingungen, Lagrange Multiplikatoren

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

11. Übungsblatt zur Mathematik II für MB

11. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 8.6.. Übungsblatt zur Mathematik für MB Aufgabe 5 ntervall im R egeben sei das ntervall { (x, y, z) R : π x π, y, z π}. Berechnen Sie x

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals Inhalt Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals f dλ n = f ψ det Dψ dλ n. U ψ(u) Dabei ist ψ : U ψ(u) ein C 1 -Dieomorphismus auf einer

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT!

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Fachbereich Mathematik der Universität Hamburg SoSe 17 Dr. Hanna Peywand Kiani 13.07.2017 Klausurberatung Komplexe Funktionen für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Dateien

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2016/2017 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Elementare Lösungsmethoden für

Mehr

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe Dr. Hanna Peywand Kiani Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Elementare Funktionen.Teil stereographische Projektion

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg SoSe 009 Dr. Hanna Peywand Kiani Anleitung 1 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Zahlenebene, Elementare Funktionen Die

Mehr

Hörsaalübung 5, Analysis II

Hörsaalübung 5, Analysis II Fachbereich Mathematik der Universität Hamburg Dr.H.P.Kiani Hörsaalübung 5, Analysis II SoSe 8, 4./ 5. Juni Rotationskörper und Kurvenintegrale Die ins Netz gestellten Kopien der Unterlagen sollen nur

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 80 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 15.10.2008 2 / 80 Technisches Vorlesungswebsite: http://www.am.uni-erlangen.de/am3/de/lehre/ws08/ingmatha3/

Mehr

Aufgaben zu Kapitel 25

Aufgaben zu Kapitel 25 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Mit W R 3 bezeichnen wir das Gebiet, das von den Ebenen x, x, x 3 und der Fläche x 3 x + x, x, x begrenzt wird. Schreiben Sie das

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Mathematik III - Blatt 9

Mathematik III - Blatt 9 Mathematik III - Blatt 9 Christopher Bronner, Frank Essenberger 1. Dezember 6 Aufgabe 1) Nach 4.3.7. wissen wir: f integrierbar auf R (ɛ > ) (φ, ψ) sodass (φ f ψ auf R) (I R (ψ) I R (φ) < ɛ). Wir müssen

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

Felder und Wellen WS 2017/2018

Felder und Wellen WS 2017/2018 Felder und Wellen WS 17/18 Musterlösung zum 1. Tutorium 1. Aufgabe (*) Zur Einleitung etwas Grundsätzliches über Flächen-, Volumen-, und Linienintegrale. Die Integration ist am einfachsten, wenn das gewählte

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

Kapitel 25. Aufgaben. Verständnisfragen

Kapitel 25. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5. Mit W R 3 bezeichnen wir das Gebiet, das von den Ebenen x, x, x 3 und der Fläche x 3 x + x, x, x begrenzt wird. Schreiben Sie das Integral x 3 x dx W auf

Mehr

Anleitung zu Blatt 1 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 1 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe /3 Dr. Hanna Peywand Kiani Anleitung zu Blatt Analysis III für Studierende der Ingenieurwissenschaften Funktionen f : R n R Höhenlinien, Gradienten,

Mehr

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale,

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale, Department Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Anleitung u Blatt 7 Komplexe Funktionen Isolierte Singularitäten, Residuensat, reelle Integrale, Die ins Net gestellten Kopien

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Anleitung zu Blatt 2, Analysis II

Anleitung zu Blatt 2, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt 2, Analysis II SoSe 202 Funktionenfolgen, Potenzreihen I Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/1 Montag 3.11 $Id: transform.tex,v 1.5 9/11/3 16:9: hk Exp $ Koordinatentransformationen. ie Transformationsformel In der letzten Sitzung hatten wir die Transformationsformel

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 2009/200 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 5.2.2009 Die ins Netz

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Höhere Mathematik Vorlesung 4

Höhere Mathematik Vorlesung 4 Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert

Mehr

Schwerpunkt homogener ebener Flächen: Teil 2

Schwerpunkt homogener ebener Flächen: Teil 2 Celle, Stadtkirche St. Marien, Fragment Schwerpunkt homogener ebener Flächen: Teil 3 E Ma Lubov Vassilevskaya Flächeninhalt 3 E Ma Lubov Vassilevskaya Schwerpunkt einer homogenen ebenen Fläche: Aufgaben

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 20/202 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 6.2.20 Die ins Netz gestellten

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

3 Volumenintegrale und Transformationsformel

3 Volumenintegrale und Transformationsformel 3 Volumenintegrale und Transformationsformel Nachdem wir uns in den ersten beiden Kapiteln mit recht abstrakten Konstruktionen beschäftigt haben, wenden wir uns nun der Berechnung konkreter Lebesgue Integrale

Mehr

8.2 Integralrechnung für mehrere Variable

8.2 Integralrechnung für mehrere Variable 8.2 Integralrechnung für mehrere Variable Der bisher behandelte Begriff des Integrals einer Funktion mit einer einzigen Variablen lässt sich auf mehrere Arten verallgemeinern. Zunächst führt die Erweiterung

Mehr

Kimmerle Musterlösung , 120min. Tabelle der Standardnormalverteilung Φ(x) = 1. e t

Kimmerle Musterlösung , 120min. Tabelle der Standardnormalverteilung Φ(x) = 1. e t Kimmerle usterlösung 6.0.04, 0min Tabelle der Standardnormalverteilung Φx = π x e t x 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9 Φx 0.5000 0.598 0.579 0.679 0.6554 0.695 0.757 0.7580 0.788 0.859 x.0....4.5.6.7.8.9

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Elektro- und Magnetostatik

Elektro- und Magnetostatik Übung 1 Abgabe: 1.3. bzw. 5.3.219 Elektromagnetische Felder und Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik In dieser Übung befassen wir

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Helmuts Kochrezept Nummer 5:

Helmuts Kochrezept Nummer 5: Helmuts Kochrezept Nummer : Lokale Koordinatentransformation von Vektorfedern Version 2, 19.03.2018) Dieses Kochrezept erklärt Dir, wie du ein Vektorfeld von einem orthonormalen Koordinatensystem z.b.

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

Musterlösungen Serie 6

Musterlösungen Serie 6 D-MAVT D-MATL Analysis II FS 1 Prof. Dr. P. Biran Musterlösungen Serie 6 1. Frage 1 [Analysis Prüfung Winter1] Ein Vektorfeld v(x,y,z) mit Definitionsbereich erfüllediv( v) =. Was folgt? Es gibt eine Funktionf(x,y,z)

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Anleitung 4 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 4 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 4 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Differenzierbarkeit, konforme Abbildungen, Potentialgleichung

Mehr