Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Größe: px
Ab Seite anzeigen:

Download "Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser"

Transkript

1 Hamilton-Mechanik Simon Filser Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und als Erhaltungsgröÿe 3 5 Kanonische Transformationen und zyklische Koordinaten 5 6 Phasenraum 6 7 Poissonklammern 8 8 Standardvorgehen für Aufgaben 9 1 Einleitung Für die Praxis der theoretischen Mechanik bietet der Hamilton-Formalismus zwar keine Vorteile gegenüber dem Lagrange-Formalismus, allerdings ist er in vielen Fällen etwas eleganter und bildet eine wichtige Grundlage für die Quantenmechanik. Verallgemeinerter oder kanonischer Impuls In der Hamilton-Mechanik wird zu jeder Ortsvariable q i ein kanonisch konjugierter Impuls p i deniert, der statt der Geschwindigkeit q i des Lagrange- Formalismus erwendet wird. Der kanonische Impuls wird deniert als p i = L q i (1) Weil somit alle q i durch die Impulse p i ausgedrückt werden, wird das System aus 1

2 f DGL. Ordnung (also die Bewegungsgleichungen im Lagrange-Formalismus) in ein äquivalentes System aus f DGL 1. Ordnung transformiert, die kanonischen Gleichungen (s. u.). Bsp: Ebenes Pendel Wir verwenden hier ohne Herleitung die Lagrangefunktion eines ebenen Pendels: L = m r² φ² + mgrcos(φ) () Hier ist der zu φ konjugierte Impuls p φ = L φ = mr² φ kein Translationsimpuls, sondern ein Drehimpuls. 3 Hamiltonfunktion und kanonische Gleichungen Die Hamiltonfunktion entsteht durch eine Legendre-Transformation der Lagrangefunktion: f H( q, p, t) = q i ( q, p, t)p i L( q, q( q, p, t), t) (3) i=1 Wichtig ist dabei, dass alle q i vollständig durch die Impulse p i ausgedrückt werden und in der Hamiltonfunktion nicht mehr vorkommen. Wenn man diese Funktion jetzt partiell nach ihren Variablen ableitet, erhält man die kanonischen Gleichungen, sie sind die wichtigsten dieses Kapitels. q k = H (4) q k p k = H (5) q k Die neuen Variablen p und q sind völlig gleichberechtigt und haben in erweiterten Transformationen der Koordinaten nicht mehr zwangsläug viel mit den ursprünglichen Koordinaten zu tun, können insbesondere der Energie oder anderen physikalischen Gröÿen entsprechen. Oft wird auch die Beziehung zwischen den Zeitableitungen von Lagrange- und Hamiltonfunktion zu den kanonischen Gleichungen gerechnet: H t = L t (6) Bsp: Massenpunkt im Potenzial Die Lagrangefunktion für die Bewegung eines Massenpunkts in einem Potenzial lautet: L = m (ẋ² + ẏ² + ż²) U(x, y, z, t) (7)

3 Daraus ergeben sich die Impulse p x = L ẋ = mẋ, p y = mẏ und p z = mż, was zur Hamiltonfunktion ( m ) H = ẋp x + ẏp y + żp z (ẋ² + ẏ² + ż²) U(x, y, z, t) = = p x m p x + p y m p y + p z m p z m (ẋ² + ẏ² + ż²) + U(x, y, z, t) = (8) = p x² m + p y² m + p z² + U(x, y, z, t) m führt. Die kanonischen Gleichungen sind für die x-komponente: p x = H x = U x ẋ = H = p x (10) p x m und analog für die anderen Komponenten. In Vektorschreibweise erhält man (9) r = p m (11) p = U (1) was die Äquivalenz der verschiedenen Formalismen belegt. 4 Die Hamiltonfunktion als Energie und als Erhaltungsgröÿe Die Hamiltonfunktion entspricht in vielen typischen Fällen der Energie des Systems, allerdings nur dann, wenn die kinetische Energie T nur von der Geschwindigkeiten abhängt und das Potential geschwindigkeitsunabhängig ist, also wenn sich die Lagrangefunktion als L = T ( q) + U(q, t) schreiben lässt. Daraus folgt dann: H = T + U = E (13) Um die Zeitabhängigkeit der Hamiltonfunktion zu überprüfen, bilden wir die totale Zeitableitung: dh dt = ( H q i + H p i ) + H q i p i t = = ( H H H H ) + H q i p i p i q i t = H t = L t Wirken nur skleronome, also zeitunabhängige, Zwangsbedingungen, ist die Hamiltonfunktion erhalten. Es gilt dann (14) dh dt = L t = 0 (15) 3

4 Wenn also die Hamiltonfunktion der Energie entspricht, ist diese (die Energie) genau dann enthalten, wenn Lagrange- bzw. Hamilton-Funktion nicht explizit von der Zeit abhängen. Umgekehrt sind die Energieerhaltung und die Identität von Hamiltonfunktion und Energie allerdings nicht äquivalent! H t = 0 H = E Bsp: Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig rotierenden Draht mit Radius R angebracht und auf diesem frei beweglich. Der Draht rotiere mit konstanter Winkelgeschwindigkeit ω um eine fest vorgegebene Achse im kräftefreien Raum. Abbildung 1: Perle auf rotierendem Draht Die Lagrangefunktion lautet in Kugelkoordinaten (entspricht den kin. Energie, da keine Kräfte wirken): L = m R²( ϑ² + ω²sin²ϑ) (16) ϑ ist die einzige freie Variable, ihr konjugierter Impuls ist die Geschwindigkeit ist also ϑ = Wir können jetzt die Hamiltonfunktion aufstellen: H = ϑp ϑ L = p ϑ² p ϑ = L ϑ = mr² ϑ (17) p ϑ mr² mr² m R²( ϑ² + ω²sin²ϑ) = = p ϑ² mr² m R²(( p ϑ mr² )² + ω²sin²ϑ) = p ϑ² mr² mr² ω²sin²ϑ(18) Weil in diesem Beispiel kein Potenzial besteht, gilt: E = T = L Um die Energieerhaltung zu überprüfen, leiten wir L nach der Zeit ab: 4

5 de dt = dl dt = mr² ( ϑ ϑ + ω²sinϑcosϑ ϑ) = mr² ϑ( ϑ + ω²sinϑcosϑ) 0 (19) Die Energie ist hier nicht erhalten, weil durch die konstante Bewegung des Rings Energie zugeführt oder abgegeben werden kann. Wir prüfen auch, ob die Hamiltonfunktion erhalten ist: dh dt = p ϑṗ ϑ mr² mr²ω²sinϑcosϑ ϑ = = p ϑṗ ϑ mr² p ϑω²sinϑcosϑ = p ϑṗ ϑ mr² p ϑṗ ϑ mr² = 0 (0) p ϑ. mr² wobei p ϑ = H ϑ = mr²ω²sinϑcosϑ, also ω²sinϑcosϑ = (Alternativ: dh dt = H t = 0) Die Hamiltonfunktion ist erhalten, sie kann also hier nicht der Energie entsprechen. 5 Kanonische Transformationen und zyklische Koordinaten Im Hamiltonformalismus sind viel mehr verschiedene Koordinatentransformationen möglich als im Lagrangeformalismus. Als Bedingung wird jetzt nur noch gestellt, dass die Transformationen kanonisch sind, also auch in den neuen Koordinaten die kanonischen Gleichungen erfüllt sind (und die Rechenregeln für Poissonklammern gelten, s. u.). Dadurch kann sich die Gestalt der Bewegungsgleichungen in Einzelfällen vereinfachen, wenn beispielsweise eine zyklische Koordinate (Zur Erinnerung: Eine zyklische Koordinate ist eine Variable, von der die Hamiltonfunktion nicht abhängt) auftaucht. Zyklischen Koordinaten sind immer entsprechende Erhaltungsgröÿen zugeordnet, die Impulse, aber auch abstraktere Gröÿen sein können. Es gibt allerdings kein Standardverfahren für solche Transformationen. Bsp: Kanonische Transformation beim harmonischen Oszillator Die Hamiltonfunktion des harm. Oszillators lautet (ohne Herleitung): H = mω²q² + p² m (1) Wählt man folgende Transformation auf die Variablen Q und P (Die Transformation ist kanonisch, was hier nicht bewiesen wird. Man könnte das beispielsweise durch Bilden der Poissonklammern beweisen (s. Kap. 7)): P q = mω sinq, p = mωp cosq vereinfacht sich die Hamiltonfunktion auf H = ωp sin²q + ωp cos²q = ωp () 5

6 Die Koordinate Q ist zyklisch und die Bewegungsgleichung hängt nur noch von einer Variablen ab. 6 Phasenraum In einem System mit f Freiheitsgraden benötigt man f Werte - also f Orts- und f Impulskoordinaten - um das System eindeutig festzulegen. Man kann einen fdimensionalen Raum denieren, in dem dann die Bewegung stattndet. Schon bei Freiheitsgraden erhält man aber einen 4-dimensionalen Phasenraum, der nicht mehr zu zeichnen ist und die Beispiele beschränken sich eigentlich fast immer auf Systeme mit nur einem Freiheitsgrad. Satz von Liouville Für Systeme, in denen der Hamilton-Formalismus gilt, gilt auch der Satz von Liouville, der besagt: Das Volumen, das eine Menge von Phasenraumpunkten einnimmt, ist zeitlich konstant. Bsp: Massenpunkte im Graviationspotenzial (Klausuraufgabe) Ein Teilchen der Masse m bewegt sich auf einer vertikalen Linie unter dem Einuss des Gravitationpotentials U(x) = mgx. Für ein einzelnes Teilchen der Energie E kann man eine eindimensionale Kurve p(x) berechnen. Weil hier der typische Fall vorliegt, lässt sich der kanonische Impuls als p = mẋ und die kinetische Energie als T = m Aus E = p² m + mgx folgt für diese Kurve die Formel ẋ² = p² m schreiben. p(x) = ± m(e=mgx) (3) Aus der Bewegungsgleichung mẍ = =mg folgen für gegebene Anfangswerte p(0) und x(0) die zeitlichen Entwicklungen p(t) = p(0)=mgt (4) x(t) = x(0) + p(0)t m =1 gt² (5) 6

7 Abbildung : Trajektorien im Phasenraum für positive und negative Energie Betrachten wir nun ein Ensemble von Teilchen, das sich zum Zeitpunkt t = 0 am Ort x = 0 bendet und gleichmäÿig verteilte Impulsen zwischen =p 0 (nach unten) und +p 0 (nach oben) besitzt. Wir suchen den Bereich des Phasenraums, den die Phasenraumpunkte (x(t), p(t)) dieser Teilchen zu einem späteren Zeitpunkt t = t 0 > 0 belegen. Aus (5) folgt mit x(0) = 0 p(0) = (x(t 0 ) + 1 gt 0²) m t 0 (6) Setzt man das in (4) ein, sieht man, dass alle Punkte zu Zeit t 0 auf der Geraden p(t 0 ) = m t 0 x(t 0 ) 1 mgt 0 (7) liegen. Diese Gerade schneidet die parabolische Phasenraumkurve zur (maximalen) Energie E 0 = p0² m in den Punkten: x 1 = p 0t 0 m gt 0², p 1 = p 0 mgt 0 ; x = p 0t 0 m gt 0², p = p 0 mgt 0 (8) Die Phasenraumpunkte des Ensembles belegen zum Zeitpunkt t = t 0 den Abschnitt der oben angegeben Geraden zwischen diesen Schnittpunkten. Schlieÿlich betrachten wir den Fall, dass die Teilchen zum Zeitpunkt t = 0 ein kleines endliches Gebiet des Phasenraums mit Ortskoordinaten zwischen x = 0 und x = h (h klein) belegen; die Anfangsimpulse sollen nach wir vor zwischen =p 0 und p 0 liegen, die Fläche des Gebiets ist also p 0 h. Zum späteren Zeitpunkt t 0 liegt das Gebiet zwischen der Geraden aus (7) und einer um den Wert h zu positiven x-werten verschobenen Geraden: p(t 0 ) = m t 0 (x(t 0 ) h) 1 mgt 0 (9) 7

8 Es entsteht ein Parallelogramm, das ebenfalls die Höhe p 0 und somit auch die Fläche p 0 h besitzt Abbildung 3: zeitliche Verschiebung einer Fläche im Phasenraum 7 Poissonklammern Die Poissonklammern sind ein Beispiel für einen Teil des Formalismus, der noch wenig sinnvoll erscheint, aber in der Quantenmechanik sehr wichtig wird. Allerdings ist es möglich, aus den Poissonklammern Bewegungsgleichungen herzuleiten und zu überprüfen, ob eine bestimmte Transformation kanonisch ist. Die Rechenregeln für Poissonklammern müssen nämlich auch in den neuen Koordinaten gelten. Die Poissonklammern sind deniert als {f, g} q,p = i ( f q i g p i f p i g q i ) (30) wobei oft die Indizes an den Klammern weggelassen werden, weil klar ist, nach was abgeleitet wird. Die Poissonklammern lassen sich für alle Observablen (Funktionen f(q, p, t) auf dem Phasenraum, z. B. H) bilden. Sie vereinfachen beispielsweise die totale Zeitableitung einer Observablen: df dt = i ( f q i + f p i ) + f q i p i t = i ( f H f H ) + f q i p i p i q i t = {f, H} + f t (31) Also ist f genau dann eine Erhaltungsgröÿe, wenn gilt: {f, H} + f t = 0 Wichtige Eigenschaften der Poissonklammern kann man aus der Denition gewinnen: 8

9 ˆ Antisymmetrie: {f, g{= = {g, f} ˆ Linearität: {λf + g, h} = λ {f, h} + {g, h} ˆ Produktregel: {f, gh} = {f, g} h + g {f, h} ˆ fundamentale Poissonklammern: {q i, q j } = {p i, p j } = {f, f} = 0 {q i p j } = δ ij ˆ kanonische Gleichungen: q i = {q i, H} ṗ i = {p i, H} In Aufgaben genügt es meist, verschiedene der oberen Eigenschaften anzuwenden ohne die Klammer explizit ausrechnen zu müssen. 8 Standardvorgehen für Aufgaben Zum Aufstellen der Hamiltonfunktion kann man prinzipiell folgendes Schema anwenden: ˆ Aufstellen der Lagrange-Funktion ˆ Berechnung der konjugierten Impulse p i ˆ Diese Impulsgleichungen nach den Geschwindigkeiten q i auösen ˆ Überprüfen, ob der typische Fall vorliegt, also T ( q) und U(q, t), dann ist die Hamiltonfunktion gleich der Energie (Achtung: die kinetische Energie durch p i ausdrücken, nicht durch q i!) ˆ Die Hamiltonfunktion aufstellen und die q i aus der Funktion mit der Impulsgleichung eliminieren: f H( q, p, t) = q i ( q, p, t)p i L( q, q( q, p, t), t) (3) i=1 9

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Übungen R. Kirschner, ITP, Univ. Leipzig 1-1 1. Betrachten Sie ein System aus 4 Massenpunkten, ( r i,m i ),i = 1,2,3,4, das sich in trivialer geradlinig-gleichförmiger Bewegung befindet.

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik

Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik Matthias Bartelmann Institut für Theoretische Astrophysik Universität Heidelberg Herzlichen Dank an viele Studentinnen und

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010 Einführung in die Numerik strukturerhaltender Zeitintegratoren Leonard Schlag 6. Dezember 2010 1 Inhaltsverzeichnis 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren 3 1.1 Häuge Problemstellung:

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg Inhalt Zur Einführung 1 /. Was theoretische Physik nicht

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Theoretische Physik I

Theoretische Physik I Theoretische Physik I Klassische Mechanik Univ. Prof. Dr. Heiko Rieger Sommersemester 2014 1 Inhaltsverzeichnis 1 Mechanik eines freien Massepunkts 8 1.1 Newton sche Axiome.............................

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/ Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/10 2.3.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1 und Eperimentelle Mechanik FS 1 Kinetik Bisher wurde nur die Kinematik von Bewegungen untersucht (d.h. Weg, Geschwindigkeit und Beschleunigung). Es sollen nun Kräfte (später auch Momente) mit diesen kinematischen

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

1 Kreuzprodukte und ɛ-tensor

1 Kreuzprodukte und ɛ-tensor Institut für Theoretische Physik WS 2002/2003 Übungen zur Theoretischen Physik I (Mechanik) Blatt 0 Dr. Heribert Weigert (Raum 4.1.15, Tel. 943-2014) 1 Kreuzprodukte und ɛ-tensor Der total antisymmetrische

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Anwendungen des Lagrange-Formalismus an Beispielen der Oberstufenphysik

Anwendungen des Lagrange-Formalismus an Beispielen der Oberstufenphysik Anwendungen des Lagrange-Formalismus an Beispielen der Oberstufenphysik Florian Unglaub 18. August 003 Facharbeit am Otto-Hahn-Gymnasium Marktredwitz Inhaltsverzeichnis Vorwort iii Einleitung 1 1 Theoretische

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Theoretische Mechanik

Theoretische Mechanik Hans Stephani / Gerhard Kluge Theoretische Mechanik Punkt- und Kontinuumsmechanik Mit 139 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Punktmechanik 1 1. Mechanik eines freien Massenpunktes

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3

WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3 PDDr.S.Mertens Theoretische Phsik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3 WS 2008/2009 28.10.2008 1. Bewegung im rotierenden Sstem. Ein Massenpunkt ist unächst starr mit einer gegen (4Pkt.)

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Formelsammlung Theoretische Physik Examensvorbereitung

Formelsammlung Theoretische Physik Examensvorbereitung Formelsammlung Theoretische Physik Examensvorbereitung Frank Reinhold 6. März 2012 Inhaltsverzeichnis 1 Mechanik 2 Drehimpulskomponente L z in R 3.................... 2 Langrange-Bewegungsgleichung......................

Mehr

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2009 Grundlagen der Astronomie und Astrophysik Andre Knecht [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2-Körperproblem-Gravitationsgesetz 3 Newton schen Axiome Trägheitsgesetz:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wellenlängenschieber R R In einem Speicherring gilt für die kritische Energie E c 1/R R:

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

ffl Kräfte ~K: der Betrag gibt die Stärke der Kraft die Richtung gibt die Richtung in welcher die Kraft ausgeübt wird. ffl Geschwindigkeiten ~v: der B

ffl Kräfte ~K: der Betrag gibt die Stärke der Kraft die Richtung gibt die Richtung in welcher die Kraft ausgeübt wird. ffl Geschwindigkeiten ~v: der B Kapitel I (Vektorrechnung) x1. Vektoren Unser Raum ist 3-dimensional. Wir kennen drei Hauptrichtungen: rechts-links, vornehinten, oben-unten. Als Modell wählen wir: ffl Ein Punkt O als Ursprung ffl Drei

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr