Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)"

Transkript

1 Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der skizzierte Balken (Biegesteifigkeit EI änge ) ist wie dargestellt gelagert. Am rechten Ende greift das Moment M an. Formulieren Sie die Randbedingungen für die transversalen Biegeschwingungen w (t) des Balkens. w M Matr.-Nummer Fachrichtung. Die Klausur umfasst 6 Aufgaben auf 5 Blättern.. Nur vorgelegte Fragen beantworten keine Zwischenrechnungen eintragen. 3. Alle Ergebnisse sind grundsätzlich in den gegebenen Größen auszudrücken. Aufgabe (6 Punkte) 4. Die Blätter der Klausur dürfen nicht getrennt werden. 5. Außer elektronischen Geräten sind alle Hilfsmittel zugelassen. 6. Bearbeitungszeit: 9 Minuten. 7. Unterschreiben Sie die Klausur erst beim Eintragen Ihres Namens in die Sitzliste. Welche der folgenden Aussagen treffen zu? Die zweite Eigenfrequenz einer Saite ist stets doppelt so hoch wie die erste Eigenfrequenz. Alle Eigenfunktionen zu einem Schwingungsproblem sind stets orthogonal zueinander. Ja Nein.. (Unterschrift) Mit dem. Satz von astigliano ist die Berechnung von statisch bestimmten Systemen möglich. Der. Satz von astigliano kann nur für schlanke Balken angewandt werden. Punkte Korrektur Die Methode der Finiten Elemente ist eine Näherungsmethode zur ösung von gewöhnlichen Differentialgleichungen. Bei einer instabilen Gleichgewichtslage eines konservativen elastischen Systems ist die zweiten Variation des Potentials negativ.

2 Aufgabe 3 ( Punkte) Die Verformung des skizzierten Fachwerks soll mit der Finite Elemente Methode untersucht werden. Die Stäbe haben die Querschnittsflächen A 5A A A 4 A A 3 A und die Elastizitätsmodule E E E E E 4 E. E 3 a) Welcher Vektor y beschreibt die Verschiebungen der freien Knoten des Fachwerks? [ u u u u ] [ u u u u ] y A B D D y [ u B u B u u y B D A y [ u B u B u D u D ] ] b) Geben Sie für die Stäbe und ihre ängen sowie die zugehörigen Richtungskosinusse an. A D B d) Ergänzen Sie die Verteilungsmatrizen γ der Stäbe und. e) Bestimmen Sie die Elementsteifigkeitsmatri von Stab im globalen Koordinatensystem. T K Stab : Stab : c c c c Die globale Steifigkeitsmatri K des Gesamtsystems lautet K AE c) Vervollständigen Sie die Submatrizen K sub γ der Stäbe und. K sub K sub f) Berechnen Sie den Kraftvektor der die Verschiebung y 3 4 zur Folge hat. [ ] F

3 Aufgabe 4 ( Punkte) Zwei Rollen (homogene Vollzylinder Masse 3m und m Radius r und r) sind über eine masselose Feder (Federsteifigkeit c) miteinander verbunden. Die Positionen der Rollenschwerpunkte werden durch die Winkel ϕ und ϕ beschrieben. Beide Zylinder rollen ohne zu gleiten auf einem Halbzylinder (Radius R) ab. Im Anfangszustand ( ϕ π und ϕ π 3 ) ist die Feder ungespannt. Das System ist Eben. a) Wieviele Freiheitsgrade hat das System? f Rolle m r b) Wie lautet der Vektor der verallgemeinerten Koordinaten? R c φ φ 3m r Rolle g y e) Geben Sie die kinetische Energie von Rolle an. T f) Bestimmen Sie die potentielle Energie von Rolle. Es gilt V für ϕ ϕ. V g) Wie lautet die agrange-funktion * des Systems? Verwenden Sie hierbei T T V V und V F wobei V F die potentielle Energie der Feder ist. * h) Geben Sie die zur Herleitung der Bewegungsgleichungen benötigten agrangeschen Gleichungen. Art in Abhängigkeit der agrange-funktion * an. q c) Bestimmen Sie die Trägheitsmomente der Rollen bezüglich ihrer Schwerpunkte. J J d) Welcher Zusammenhang besteht zwischen der Winkelgeschwindigkeit ω R von Rolle und der Koordinate ϕ&? ω R

4 Aufgabe 5 ( Punkte) Eine Balkenkonstruktion besteht aus drei gleichen schlanken fest miteinander verschweißten Rechteckeckbalken (änge Elastizitätsmodul E Schubmodul G Trägheitsmomente I y y 6 I I z z 3 I I p 3 4 I Querschnittsfläche A). An der Stelle ist die Konstruktion über eine feste Einspannung mit der Wand verbunden. Die Konstruktion wird an der Stelle B durch eine Kraft F B in y-richtung belastet. Es ist die Verschiebung des Trägers an Stelle B in y-richtung zu bestimmen. b) Die Schnittmomente in den drei Balkenstücken sind in nachfolgender Tabelle symbolisch gegeben. Kennzeichnen Sie die Schnittmomente welche ungleich Null sind. Bereich -Richtung y-richtung z-richtung Balken M M y M z Balken M M y M z Balken 3 M 3 M 3y M 3z y z Balken Balken B F B c) Ergänzen Sie die Formel zur Bestimmung der Formänderungsenergie der Balkenkonstruktion. Geben Sie nur Ausdrücke ungleich Null an. Π Mz E 3 d I E d Balken 3 3 Balken mit lokalem KOS y z d) Welcher Zusammenhang besteht zwischen der Verschiebung w By im Punkt B in y-richtung und der Formänderungsenergie der Balkenkonstruktion? a) Wie lautet der Arbeitssatz für elastische Körper? w By ( Π) W

5 Aufgabe 6 (7 Punkte) Die zweite Eigenkreisfrequenz der wie dargestellt eingespannten Saite liege bei ω 65 rad/s. π a) Bestimmen Sie die erste Eigenkreisfrequenz. rad ω s b) Welcher Zusammenhänge bestehen zwischen der Kreisfrequenz ω der Periodendauer T und der Frequenz f? Mit einem Oszilloskop sollen nun alle Eigenfrequenzen im menschlichen Hörbereich Hz f 6kHz gemessen werden. c) Welche Aufzeichnungsdauer T ist notwendig um eine komplette Periode der ersten Eigenschwingung aufzuzeichnen. T d) Welche der folgenden Eigenkreisfrequenzen sind für den Menschen hörbar? ω 335 rad/s ω 345 rad/s 9 π 3 π 5 495π ω 45 rad/s ω rad/s 37 π

A 2. c 11. Aufgabe 1 (12 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 1

A 2. c 11. Aufgabe 1 (12 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 1 Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS P Klausur/Prüfung in Technischer Mechanik IV Nachname Vorname Matr.-Nummer Fachrichtung 8. Juli

Mehr

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2 Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 014/15 K 1. Februar 015 Klausur in Technische Mechanik IV Nachname, Vorname E-Mail-Adresse (Angabe freiwillig)

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018 Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik II/III Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 2. Aufgabe 1 (13 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik II/III Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 2. Aufgabe 1 (13 Punkte) nstitut für Technische und Num. Mechanik Technische Mechanik / Prof. Dr.-ng. Prof. E.h. P. Eberhard SS P 3. ugust achelor-prüfung in Technischer Mechanik / ufgabe (3 Punkte Eine Pendelstange (homogen Masse

Mehr

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynaik TM III Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 3. März 08 Failiennae, Vornae Matrikel-Nuer Prüfungsklausur Technische Mechanik III Fachrichtung. Die Prüfung ufasst

Mehr

Aufgabe 1 (14 Punkte)

Aufgabe 1 (14 Punkte) Technische Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habil. D. Bestle 8. September 1 Familienname, Vorname Matrikel-Nummer Prüfungsklausur Technische Mechanik II Fachrichtung 1. Die Prüfung umfasst

Mehr

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte)

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 206 P II 2. August 206 Bachelorprüfung in Technische Mechanik II/III Nachname, Vorname E-Mail-Adresse

Mehr

28. August Korrektur

28. August Korrektur Institut für Technische und um. Mechanik Technische Mechanik II/III Profs. P. Eberhard, M. Hanss SS 2014 P 2 28. August 2014 Bachelor-Prüfung in Technischer Mechanik II/III Aufgabe 1 (6 Punkte) Im skiierten

Mehr

Aufgabe 1 (19 Punkte)

Aufgabe 1 (19 Punkte) Techn. Mechanik & Fahrzeugdynamik M&Fzg-Dynamik Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. März 2016 Familienname, Vorname Matrikel-Nummer Prüfung Maschinen- und Fahrzeugdynamik Fachrichtung

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1. Das abgebildete System aus zwei Körperpendeln soll untersucht werden.

Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1. Das abgebildete System aus zwei Körperpendeln soll untersucht werden. Prof. Dr.-Ing. P. Eberhard SoSe 2018 Ü1.1 Aufgabe 1**: Das abgebildete System aus zwei Körperpendeln soll untersucht werden. An Pendel 1 (Länge l 1, Schwerpunktsabstand d 1, Masse m 1 Trägheitsmoment bezüglich

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Das unten abgebildete System befindet sich im Schwerefeld (Erdbeschleunigung g). Es besteht aus einer Rolle (Masse m, Radius r), die über zwei Federn (Federsteifigkeit c) und

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 07/02/12 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 16 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 2016 Prof. Dr.-Ing.

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.:

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.: Maschinendynamik Klausur Frühjahr 2009 Name: Matrikel-Nr.: Punkte Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 erreichte Punkte mögliche Punkte 60 Maschinendynamik Klausur Frühjahr 2009

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Fakultät für Physik der LMU

Fakultät für Physik der LMU Fakultät für Physik der LMU 21.02.2013 Klausur zur Vorlesung E1: Mechanik für Studenten der Physik für das Lehramt an Gymnasien und im Nebenfach (6 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim O. Rädler

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechani & Fahrzeugdynami TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 7. März 017 Prüfungslausur Technische Mechani I Familienname, Vorname Matriel-Nummer Fachrichtung Aufgabe 1 (9 Punte)

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/07/11 Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind.

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind. Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende System besteht aus einer um den Punkt A drehbar gelagerten Stufenrolle (Radien r und R = 2r). Die Massenträgheitsmomente der beiden Stufen bezogen auf den

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Techn. Mechanik & Fahrzeugdynamik Optimierung Prof. Dr.-Ing. habil. D. Bestle 7. September 8 Familienname, Vorname Matrikel-Nummer Prüfung Optimierung dynamischer Systeme Fachrichtung. Die Prüfung umfasst

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

Fakultät für Physik der LMU Klausur zur Vorlesung E1: Mechanik für Studenten des B.Sc. Physik und B.Sc. Physik + Meteorologie (9 ECTS)

Fakultät für Physik der LMU Klausur zur Vorlesung E1: Mechanik für Studenten des B.Sc. Physik und B.Sc. Physik + Meteorologie (9 ECTS) Fakultät für Physik der LMU 19.02.2013 Klausur zur Vorlesung E1: Mechanik für Studenten des B.Sc. Physik und B.Sc. Physik + Meteorologie (9 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim O. Rädler Name:...........................

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

Klausur Maschinendynamik I

Klausur Maschinendynamik I Name: Matrikel: Studiengang: Klausur Maschinendynamik I 4/03/10 Aufgabe 1 Ein mathematisches Pendel der Länge a ist im Punkt A frei drehbar gelagert. Die Punktmasse m ist über eine stets horizontal wirkende

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende Syste besteht aus einer i Punkt A drehbar gelagerten Stufenrolle (Radien r und R) sowie einer in Punkt B drehbar gelagerten Ulenkrolle (Radius r). Die jeweiligen

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

5 Kontinuierliche Schwingungssysteme

5 Kontinuierliche Schwingungssysteme 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von

Mehr

Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS)

Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Fakultät für Physik der LMU 29.03.2012 Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Berechnung von Tragwerken

Berechnung von Tragwerken Technische Universität München Name :... Lehrstuhl für Statik Vorname :... Sommersemester 2005 Matr.---Nr. :... Fachsemester:... Berechnung von Tragwerken Prüfung am 09.09.2005 (Bearbeitungszeit 90 Minuten)

Mehr

1. Klausur T1, , SoSe 2009 P. Tavan, G. Mathias, S. Bauer

1. Klausur T1, , SoSe 2009 P. Tavan, G. Mathias, S. Bauer 1. Klausur T1, 29.07.2009, SoSe 2009 P. Tavan, G. athias, S. Bauer Bitte füllen Sie den folgenden Teil in Blockschrift aus: Nachname: Vorname: atrikelnummer: Bitte beachten Sie die folgenden Hinweise zur

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS)

Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS) Fakultät für Physik der LMU 29.03.2012 Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr.

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II Techn. Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 17 Prüfungsklausur Technische Mechanik II Aufgabe 1 (7 Punkte) Ein Fußballspieler macht or dem Spiel

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS)

Klausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Fakultät für Physik der LMU 13.02.2012 Klausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr.

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Klausur Mehrkörperdynamik 26/07/2012

Klausur Mehrkörperdynamik 26/07/2012 Klausur Mehrkörperdynamik 26/07/2012 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt zwei Stunden. Zulässige Hilfsmittel

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017

INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017 INSTITUT FÜR THEORETISCHE PHYSIK Prof. Dr. U. Motschmann Dr. M. Feyerabend Theoretische Mechanik SS 2017 Klausurvorbereitung Bearbeitungszeit: 180 Minuten 1. Wissensfragen (20 Punkte) Benennen Sie alle

Mehr

Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS)

Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS) Fakultät für Physik der LMU 23.02.2017 Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS) Wintersemester 2016/2017 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel Name:... Vorname:...

Mehr

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Rechenübungen zur Physik I im WS 2009/2010

Rechenübungen zur Physik I im WS 2009/2010 Rechenübungen zur Physik I im WS 2009/2010 2. Klausur (Abgabe Fr 12.3.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID 2) ist: 122 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

15. März Korrektur

15. März Korrektur nstitut für Technische und Num. Mechani Maschinendynami Prof. P. Eberhard / Dr.-ng.. leißner WS 2015/16 P 1 15. März 2016 Prüfung in Maschinendynami Nachname, Vorname Aufgabe 1 (8 Punte) Bestimmen Sie

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 05.0.016 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Probeklausur zur Vorlesung Physik I (WS 09/10)

Probeklausur zur Vorlesung Physik I (WS 09/10) Modalitäten zur Klausur: Bitte legen Sie Ihren Personalausweis und Studentenausweis sichtbar auf den Tisch. Beschriften Sie jedes Blatt mit Name und Vorname. Benutzen Sie für jede Aufgabe das vorgesehene

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr