Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005"

Transkript

1 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis

2 Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein betrachtet man im Zweikörperproblem ein System von zwei Körpern hier: Erde und Mond, und stellt fest, dass sie sich auf ebenen elliptischen Bahnen bewegen. Im Dreikörperproblem erweitert man dieses Modell um einen weiteren Körper, und macht dabei folgende Vereinfachungen: Alle Körper bewegen sich in einer Ebene. Die zwei ursprünglichen Körper Erde und Mond bewegen sich auf Kreisbahnen um ihren gemeinsamen Schwerpunkt. Der dritte Körper unser kleiner Satellit hat eine vernachlässigbar geringe Masse. Das heißt, er beeinflusst die Kreisbahnen der beiden anderen Körper nur unwesentlich. Da wir nur die Satellitenbahn beobachten möchten, betrachten wir seine Position bezüglich eines rotierenden 2-dimensionalen Koordinatensystems. Als Ursprung dieses Systems wird der gemeinsame Schwerpunkt von Erde und Mond gewählt. Das Koordinatensystem dreht sich mit Erde und Mond mit. Als x - Achse bezeichnen wir die Achse, die durch Erde und Mond verläuft, die x 2 -Achse ist die entsprechend Senkrechte dazu. Die Erde habe dabei eine negative x - Koordinate, der Mond eine positive. Als Einheit des Koordinatensystems wird der Abstand zwischen Erde und Mond gewählt. Das heißt, bezüglich dieses Koordinatensystems bewegen sich weder Erde noch Mond, sondern nur noch der Satellit..2 Herleitung der DGL für nicht-rotierendes Koordinatensystem Gegeben seien die drei Körper K, K 2, K. Die Formel für den von K und K 2 erzeugten Teil des Gravitations-Potentials lautet: U 2 γ mm 2 r 2 Das gesamte Gravitations-Potential U ergibt sich aus der Überlagerung dieser Teilpotentiale: m m 2 U U 2 + U 2 + U γ + m 2m + m m r 2 r 2 r Hierbei bezeichnet γ die Gravitationskonstante, m i die Masse des beteiligten Körpers K i, sowie r ij der Abstand zwischen den Schwerpunkten der Körper K i und K j. Damit erhält man für K i die DGL der Bewegung: m i y i yi U Hierbei ist y i t die Bewegungskurve des Körpers K i. Nun kommen unsere oben aufgeführten Annahmen und Vereinfachungen ins Spiel: Sei K der Körper mit besonders kleiner Masse d.h. der Satellit. Wir betrachten nun ein nicht-rotierendes Koordinatensystem, dessen Ursprung der gemeinsame Schwerpunkt von K und K 2 ist. 2

3 Sei a i der Abstand von K i zum gemeinsamen Schwerpunkt von K und K 2. a + a 2 ist dann der Abstand von K und K 2 zueinander, da der Schwerpunkt auf der Geraden zwischen K und K 2 liegt. Wir normieren unser Koordinatensystem so, dass a + a 2 gilt. Mit der Schwerpunktgleichung a m a 2 m 2 folgt nun: a m a 2 m 2 a m a m 2 a m + m 2 m 2 a m 2 µ m + m 2 a 2 a µ ˆµ Da K und K 2 eine Kreisbewegung um den Schwerpunkt ausführen, und stets diagonal gegenüber stehen d.h. Phasenverschiebung 80 und gleiche Winkelgeschwindigkeit, lauten ihre Bewegungsgleichungen: cos t cos t y 2 t a 2 µ y t a sin t cost + π sint + π sin t µ cos t sin t Hierbei haben wir die Zeit so normiert, dass die gemeinsame Winkelgeschwindigkeit beträgt, d.h. die Umlaufzeit ist T 2π. In dem System K, K 2 berechnet sich die Umlaufzeit jedoch auch per: 4π T 2 r2 γ m + m 2 2π 4π 2 γ m + m 2 γ m + m 2 Bezüglich unserer gewählten Normierungen hat die Gravitationskonstante γ also eine sehr schöne Struktur. Normiert man noch m + m 2 auf, ergibt sich automatisch auch γ bezüglich unserer neuen Einheiten.

4 Die Bewegungsgleichung für K lautet damit: m y y U m m 2 y γ + m 2m + m m r 2 r 2 r m m 2 y γ y y 2 + m 2m y y 2 + m m y y m2 γ m y y y 2 + m y y y y 2 γ m m 2 y y 2 m y y y y y y y 2 y y γ m 2 m r 2 r y y y 2 y y m 2 m m + m 2 r 2 r y µ y y 2 µ y y r 2 r Somit haben wir nun eine DGL für y t.. Rotation des Koordinatensystems Nun betrachten wir das rotierende Koordinatensystem, welches genauso aufgebaut ist wie unser bisheriges, nur dass K und K 2 bezüglich des neuen Systems in Ruhe sind, genauer: K µ, 0 K 2 µ, 0 K x t, x 2 t Die neuen Koordinaten von K ergeben sich damit durch Rotation von y : x t Rt y x 2 t t mit cos t sin t Rt sin t cos t 4

5 Ableitungen der Funktionen: R sin t cos t cos t sin t 0 cos t sin t 0 sin t cos t 0 R 0 x x 2 x x 2 R y + Ry 0 Ry 0 + Ry 0 x + Ry 0 x 2 0 x 0 x + R y + Ry x 0 0 x 2 x Ry x Ry x 0 x Ry 0 x 2 x x x 2 x x 2 + Ry + Ry + 0 Ry 0 + Ry Durch Einsetzen der DGL für y ergibt sich fast die gewünschte DGL: x x x x x 2 x + R µ y y 2 µ y y r 2 r x x x 2 x µ r Ry Ry 2 µ 2 r Ry Ry x x x 2 x µ r x µ µ 2 x 2 0 r x x 2 r i ist der Abstand von K i und K, das heißt: r r 2 x x 2 x x 2 Somit ergibt sich insgesamt: x x x 2 x µ 0 µ 0 µ N x + µ 2 + x 2 2 N x x µ 2 + x 2 2 N 2 x x 2 µ µ 0 N 2 x x + 2x 2 µ N x + µ µ N 2 x µ x 2 x 2 2x µ N x 2 µ N 2 x 2 x x 2 x 2 µ 0 µ 0 5

6 .4 Anmerkungen zum Modell Die physikalische Betrachtung von bewegten Masse-Systemen ist auch für die Berechnung von Planetenbahnen und Gravitationsschleudern relevant. Auch in der Molekulardynamik ist dieses Modell relevant, jedoch werden hier nicht Gravitationskräfte, sondern Coulombkräfte betrachtet, die ein ähnliches Verhalten haben. Die möglichst genaue Berechnung von Satellitenbahnen ist in der Wirtschaft sehr wichtig. Für diese Ansprüche ist das Modell natürlich viel zu ungenau. Aber selbst bei diesen Vereinfachungen zeigt sich die Notwendigkeit guter nummerischer Approximationsverfahren für DGLs, weil schon diese DGL nicht mehr exakt lösbar ist. 6

7 2 Nummerische Auswertung 2. Erste Integration der DGL Wir betrachten den Spezialfall Erde-Mond-Satellit. Mit den in der Aufgabenstellung gegebene Werten ergibt sich bei nummerischer Integration expl. Runge- Kutta folgende Bahnkurve des Satelliten: x 0.994, x 0, x 2 0, x , a 0, b 7., Schrittanzahl 0000, µ , r Erde , r Mond [a, b] ist dabei das Zeitintervall, über das integriert wird. Schrittanzahl bezeichnet die Anzahl der Zwischenpunkte, die zur Interpolation der Bahnkurve berechnet werden. r Erde und r Mond haben keinen Einfluss auf die Bahnberechnung, sondern werden für die graphische Darstellung von Erde und Mond im Diagramm genutzt. Der kleeblattförmige Arenstorf-Orbit ist gut erkennbar. 7

8 2.2 Untersuchung der Periodizität Die Kurve ist eindeutig periodisch, was man sehr gut erkennt, wenn man das Bild für die doppelte Umlaufzeit b 4.2 betrachtet: x 0.994, x 0, x 2 0, x , a 0, b 4.2, Schrittanzahl 0000, µ , r Erde , r Mond Lässt man mehr Zeit verstreichen, scheint der Satellit plötzlich von seiner Bahn abzuweichen: x 0.994, x 0, x 2 0, x , a 0, b 40, Schrittanzahl 0000, µ , r Erde , r Mond

9 Erhöht man jedoch die Rechen-Genauigkeit Schrittanzahl verzehnfacht, stellt sich heraus, dass der Satellit doch auf seiner Bahn bleibt. Daraus schließen wir, dass wir im Folgenden nur Zeitintervalle bis 4 betrachten sollten, da wir bei größeren Zeiten den Ergebnissen unseres verwendeten nummerischen Verfahrens nicht mehr vertrauen können. x 0.994, x 0, x 2 0, x , a 0, b 40, Schrittanzahl 00000, µ , r Erde , r Mond

10 2. Andere periodische Lösungen Wir haben versucht, auch periodische Lösungen zu finden, die mehr bzw. weniger als 4 Schlaufen besitzen. Zunächst eine Lösung mit 2 Schlaufen: x 0.999, x 0, x 2 0, x 2.970, a 0, b 4.7, Schrittanzahl 0000, µ , r Erde , r Mond Nach ca. 80 Versuchen fanden wir einen Anfangswert für x 2, der uns eine - schlaufige Lösung liefert: x 0.994, x 0, x 2 0, x , a 0, b.5, Schrittanzahl 0000, µ , r Erde , r Mond

11 Eine periodische Lösung mit 5 Schlaufen konnten wir durch Manipulation von x und x 2 leider nicht finden. Diese hier kommt dem aber schon recht nahe: x , x 0, x 2 0, x 2.975, a 0, b 24, Schrittanzahl 0000, µ , r Erde , r Mond

12 2.4 Verschiedene Störungen Nun betrachten wir die Auswirkung kleiner Störungen an x, x, x 2, x 2. Änderung von x : x 0.994, x 0, x 2 0, x , a 0, b 9, Schrittanzahl 0000, µ , r Erde , r Mond Änderung von x : x 0.994, x 0.005, x 2 0, x , a 0, b 8, Schrittanzahl 0000, µ , r Erde , r Mond

13 Änderung von x 2 : x 0.994, x 0, x , x , a 0, b 20, Schrittanzahl 0000, µ , r Erde , r Mond Änderung von x 2: x 0.994, x 0, x 2 0, x , a 0, b 8, Schrittanzahl 0000, µ , r Erde , r Mond

14 Beim Experimentieren mit verschiedenen Störungen beobachteten wir, dass sehr kleine Manipulationen am Startpunkt x, x 2 schon fatale Folgen haben. Hingegen kann man den Start-Geschwindigkeitsvektor x, x 2 sehr viel stärker stören, ohne dass es allzu große Abweichungen in der Satelliten-Bahn gibt. Jede kleine Änderung zerstörte schon die Periodizität. 2.5 Verhalten über längere Zeiten Nun untersuchen wir, wie sich der Satellit einige Zeit nach der Störung bewegt. Die Genauigkeit wird zu diesem Zweck verzehnfacht, um sicherzustellen, dass die nummerischen Ergebnisse immer noch akkurat sind. Leichte Störung von x 2 über einen Zeitraum von b 50: x 0.994, x 0, x 2 0, x , a 0, b 50, Schrittanzahl 00000, µ , r Erde , r Mond , 4

15 Größere Störung von x 2 über einen Zeitraum von b 0: Weg issa! x 0.994, x 0, x 2 0, x 2 2, a 0, b 0, Schrittanzahl 00000, µ , r Erde , r Mond , Leichte Störung von x über einen Zeitraum von b 50: x 0.994, x 0, x 2 0, x , a 0, b 50, Schrittanzahl 00000, µ , r Erde , r Mond Dies verdeutlicht, warum das Dreikörperproblem manchmal in Verbindung mit der Chaostheorie erwähnt wird. 5

16 2.6 Weiterführende Betrachtungen Und so sieht es aus, wenn man einen Satelliten im Weltall festhält x x 2 0, und dann auf die Erde fallen lässt: x 0, x 0, x 2 0.5, x 2 0, a 0, b 5.75, Schrittanzahl 0000, µ , r Erde , r Mond Überraschenderweise trifft er nicht die Erdoberfläche, was an seinem Schwung d.h. seiner Anfangsgeschwindigkeit liegt. x x 2 0 in unserem Koordinatensystem bedeutet nämlich lediglich, dass er sich mit der Winkelgeschwindigkeit des Mondes startet. 6

17 Um den Satelliten tatsächlich zu zerschmettern, muss man ihm die Anfangsgeschwindigkeit des Koordinatensystems x geben. Dies liefert einen direkten Sturzflug auf die Erde: Satellit in Not! x 0, x, x 2, x 2 0, a 0, b.26, Schrittanzahl 0000, µ , r Erde , r Mond Literatur Deuflhard / Bornemann: Numerische Mathematik II. Walter de Gruyter, Berlin New York

Wie berechnet man eine Planetenbahn?

Wie berechnet man eine Planetenbahn? Wie berechnet man eine Planetenbahn? Das Programm Doppelstern.exe macht das iterativ, das heißt, die einzelnen Bahnpunkte werden Schritt für Schritt in einer Endlosschleife berechnet. Dazu denkt man sich

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 Projekt Mathematische Modellierung Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 1. Einführung und Beschreibung der Vorgangs In unserem Projekt schicken wir einen en von

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR PHYSIK 3. Versuch M2 - Trägheitsmomente zum Physikalischen Praktikum Bearbeitet von: Andreas Prang 504337 Jens Pöthig Abgabe in der Übung am 10.05.2005 Anlagen:

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

zum Thema Lissajous-Figuren

zum Thema Lissajous-Figuren Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Inhalt: - Bahn und Bahngeschwindigkeit eines Satelliten - Die Energie eines Satelliten - Kosmische Geschwindigkeiten Es wird empfohlen diese Abschnitte der Reihe nach zu bearbeiten.

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

6 Vertiefende Themen aus des Mechanik

6 Vertiefende Themen aus des Mechanik 6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Franz Embacher Fakultät für Physik der Universität Wien Didaktik der Astronomie, Sommersemester 009 http://homepage.univie.ac.at/franz.embacher/lehre/didaktikastronomie/ss009/ 1

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Durchmesser und Tiefe eines Mondkraters

Durchmesser und Tiefe eines Mondkraters 1 Durchmesser und Tiefe eines Mondkraters Mit Hilfe eines Fotos sollen Durchmesser und Tiefe des Kraters Albategnius (φ = -11,6, = +3,8 ) bestimmt werden. Das Foto entstand am 6.12.2016 bei Halbmond gegen

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007 2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik 11 2006/2007 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

6. Kreisbewegungen Zentripetalkraft

6. Kreisbewegungen Zentripetalkraft Kreisbewegungen 1 6. Kreisbewegungen 6.1. Zentripetalkraft Newtons 1. Gesetz lautet: Jeder materielle Körper verharrt in Ruhe oder gleichförmig geradliniger Bewegung, solange er nicht durch eine einwirkende

Mehr

Geschichte der Astronomie

Geschichte der Astronomie Geschichte der Astronomie Klassische Astronomie - Himmelsmechanik Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Die Wägung der Weltsysteme Quelle: G.B. Riccioli, Almagestum Novum (Bologna

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Lösung 12 Klassische Theoretische Physik I WS 15/16

Lösung 12 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt

Mehr

Parabelfunktion in Mathematik und Physik im Fall des waagrechten

Parabelfunktion in Mathematik und Physik im Fall des waagrechten Parabelfunktion in Mathematik und Physik im Fall des waagrechten Wurfs Unterrichtsvorschlag, benötigtes Material und Arbeitsblätter Von der Physik aus betrachtet.. Einführendes Experiment Die Kinematik

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Computational Astrophysics 1. Kapitel: Sonnensystem

Computational Astrophysics 1. Kapitel: Sonnensystem Computational Astrophysics 1. Kapitel: Sonnensystem Wilhelm Kley Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2011 W. Kley: Computational Astrophysics

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download)

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download) Unterrichtsmaterial (Links: auf der ersten Seite der Internet-Version) Folien: Trigonometrische Funktion (power-point) Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr