Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Größe: px
Ab Seite anzeigen:

Download "Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005"

Transkript

1 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis

2 Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein betrachtet man im Zweikörperproblem ein System von zwei Körpern hier: Erde und Mond, und stellt fest, dass sie sich auf ebenen elliptischen Bahnen bewegen. Im Dreikörperproblem erweitert man dieses Modell um einen weiteren Körper, und macht dabei folgende Vereinfachungen: Alle Körper bewegen sich in einer Ebene. Die zwei ursprünglichen Körper Erde und Mond bewegen sich auf Kreisbahnen um ihren gemeinsamen Schwerpunkt. Der dritte Körper unser kleiner Satellit hat eine vernachlässigbar geringe Masse. Das heißt, er beeinflusst die Kreisbahnen der beiden anderen Körper nur unwesentlich. Da wir nur die Satellitenbahn beobachten möchten, betrachten wir seine Position bezüglich eines rotierenden 2-dimensionalen Koordinatensystems. Als Ursprung dieses Systems wird der gemeinsame Schwerpunkt von Erde und Mond gewählt. Das Koordinatensystem dreht sich mit Erde und Mond mit. Als x - Achse bezeichnen wir die Achse, die durch Erde und Mond verläuft, die x 2 -Achse ist die entsprechend Senkrechte dazu. Die Erde habe dabei eine negative x - Koordinate, der Mond eine positive. Als Einheit des Koordinatensystems wird der Abstand zwischen Erde und Mond gewählt. Das heißt, bezüglich dieses Koordinatensystems bewegen sich weder Erde noch Mond, sondern nur noch der Satellit..2 Herleitung der DGL für nicht-rotierendes Koordinatensystem Gegeben seien die drei Körper K, K 2, K. Die Formel für den von K und K 2 erzeugten Teil des Gravitations-Potentials lautet: U 2 γ mm 2 r 2 Das gesamte Gravitations-Potential U ergibt sich aus der Überlagerung dieser Teilpotentiale: m m 2 U U 2 + U 2 + U γ + m 2m + m m r 2 r 2 r Hierbei bezeichnet γ die Gravitationskonstante, m i die Masse des beteiligten Körpers K i, sowie r ij der Abstand zwischen den Schwerpunkten der Körper K i und K j. Damit erhält man für K i die DGL der Bewegung: m i y i yi U Hierbei ist y i t die Bewegungskurve des Körpers K i. Nun kommen unsere oben aufgeführten Annahmen und Vereinfachungen ins Spiel: Sei K der Körper mit besonders kleiner Masse d.h. der Satellit. Wir betrachten nun ein nicht-rotierendes Koordinatensystem, dessen Ursprung der gemeinsame Schwerpunkt von K und K 2 ist. 2

3 Sei a i der Abstand von K i zum gemeinsamen Schwerpunkt von K und K 2. a + a 2 ist dann der Abstand von K und K 2 zueinander, da der Schwerpunkt auf der Geraden zwischen K und K 2 liegt. Wir normieren unser Koordinatensystem so, dass a + a 2 gilt. Mit der Schwerpunktgleichung a m a 2 m 2 folgt nun: a m a 2 m 2 a m a m 2 a m + m 2 m 2 a m 2 µ m + m 2 a 2 a µ ˆµ Da K und K 2 eine Kreisbewegung um den Schwerpunkt ausführen, und stets diagonal gegenüber stehen d.h. Phasenverschiebung 80 und gleiche Winkelgeschwindigkeit, lauten ihre Bewegungsgleichungen: cos t cos t y 2 t a 2 µ y t a sin t cost + π sint + π sin t µ cos t sin t Hierbei haben wir die Zeit so normiert, dass die gemeinsame Winkelgeschwindigkeit beträgt, d.h. die Umlaufzeit ist T 2π. In dem System K, K 2 berechnet sich die Umlaufzeit jedoch auch per: 4π T 2 r2 γ m + m 2 2π 4π 2 γ m + m 2 γ m + m 2 Bezüglich unserer gewählten Normierungen hat die Gravitationskonstante γ also eine sehr schöne Struktur. Normiert man noch m + m 2 auf, ergibt sich automatisch auch γ bezüglich unserer neuen Einheiten.

4 Die Bewegungsgleichung für K lautet damit: m y y U m m 2 y γ + m 2m + m m r 2 r 2 r m m 2 y γ y y 2 + m 2m y y 2 + m m y y m2 γ m y y y 2 + m y y y y 2 γ m m 2 y y 2 m y y y y y y y 2 y y γ m 2 m r 2 r y y y 2 y y m 2 m m + m 2 r 2 r y µ y y 2 µ y y r 2 r Somit haben wir nun eine DGL für y t.. Rotation des Koordinatensystems Nun betrachten wir das rotierende Koordinatensystem, welches genauso aufgebaut ist wie unser bisheriges, nur dass K und K 2 bezüglich des neuen Systems in Ruhe sind, genauer: K µ, 0 K 2 µ, 0 K x t, x 2 t Die neuen Koordinaten von K ergeben sich damit durch Rotation von y : x t Rt y x 2 t t mit cos t sin t Rt sin t cos t 4

5 Ableitungen der Funktionen: R sin t cos t cos t sin t 0 cos t sin t 0 sin t cos t 0 R 0 x x 2 x x 2 R y + Ry 0 Ry 0 + Ry 0 x + Ry 0 x 2 0 x 0 x + R y + Ry x 0 0 x 2 x Ry x Ry x 0 x Ry 0 x 2 x x x 2 x x 2 + Ry + Ry + 0 Ry 0 + Ry Durch Einsetzen der DGL für y ergibt sich fast die gewünschte DGL: x x x x x 2 x + R µ y y 2 µ y y r 2 r x x x 2 x µ r Ry Ry 2 µ 2 r Ry Ry x x x 2 x µ r x µ µ 2 x 2 0 r x x 2 r i ist der Abstand von K i und K, das heißt: r r 2 x x 2 x x 2 Somit ergibt sich insgesamt: x x x 2 x µ 0 µ 0 µ N x + µ 2 + x 2 2 N x x µ 2 + x 2 2 N 2 x x 2 µ µ 0 N 2 x x + 2x 2 µ N x + µ µ N 2 x µ x 2 x 2 2x µ N x 2 µ N 2 x 2 x x 2 x 2 µ 0 µ 0 5

6 .4 Anmerkungen zum Modell Die physikalische Betrachtung von bewegten Masse-Systemen ist auch für die Berechnung von Planetenbahnen und Gravitationsschleudern relevant. Auch in der Molekulardynamik ist dieses Modell relevant, jedoch werden hier nicht Gravitationskräfte, sondern Coulombkräfte betrachtet, die ein ähnliches Verhalten haben. Die möglichst genaue Berechnung von Satellitenbahnen ist in der Wirtschaft sehr wichtig. Für diese Ansprüche ist das Modell natürlich viel zu ungenau. Aber selbst bei diesen Vereinfachungen zeigt sich die Notwendigkeit guter nummerischer Approximationsverfahren für DGLs, weil schon diese DGL nicht mehr exakt lösbar ist. 6

7 2 Nummerische Auswertung 2. Erste Integration der DGL Wir betrachten den Spezialfall Erde-Mond-Satellit. Mit den in der Aufgabenstellung gegebene Werten ergibt sich bei nummerischer Integration expl. Runge- Kutta folgende Bahnkurve des Satelliten: x 0.994, x 0, x 2 0, x , a 0, b 7., Schrittanzahl 0000, µ , r Erde , r Mond [a, b] ist dabei das Zeitintervall, über das integriert wird. Schrittanzahl bezeichnet die Anzahl der Zwischenpunkte, die zur Interpolation der Bahnkurve berechnet werden. r Erde und r Mond haben keinen Einfluss auf die Bahnberechnung, sondern werden für die graphische Darstellung von Erde und Mond im Diagramm genutzt. Der kleeblattförmige Arenstorf-Orbit ist gut erkennbar. 7

8 2.2 Untersuchung der Periodizität Die Kurve ist eindeutig periodisch, was man sehr gut erkennt, wenn man das Bild für die doppelte Umlaufzeit b 4.2 betrachtet: x 0.994, x 0, x 2 0, x , a 0, b 4.2, Schrittanzahl 0000, µ , r Erde , r Mond Lässt man mehr Zeit verstreichen, scheint der Satellit plötzlich von seiner Bahn abzuweichen: x 0.994, x 0, x 2 0, x , a 0, b 40, Schrittanzahl 0000, µ , r Erde , r Mond

9 Erhöht man jedoch die Rechen-Genauigkeit Schrittanzahl verzehnfacht, stellt sich heraus, dass der Satellit doch auf seiner Bahn bleibt. Daraus schließen wir, dass wir im Folgenden nur Zeitintervalle bis 4 betrachten sollten, da wir bei größeren Zeiten den Ergebnissen unseres verwendeten nummerischen Verfahrens nicht mehr vertrauen können. x 0.994, x 0, x 2 0, x , a 0, b 40, Schrittanzahl 00000, µ , r Erde , r Mond

10 2. Andere periodische Lösungen Wir haben versucht, auch periodische Lösungen zu finden, die mehr bzw. weniger als 4 Schlaufen besitzen. Zunächst eine Lösung mit 2 Schlaufen: x 0.999, x 0, x 2 0, x 2.970, a 0, b 4.7, Schrittanzahl 0000, µ , r Erde , r Mond Nach ca. 80 Versuchen fanden wir einen Anfangswert für x 2, der uns eine - schlaufige Lösung liefert: x 0.994, x 0, x 2 0, x , a 0, b.5, Schrittanzahl 0000, µ , r Erde , r Mond

11 Eine periodische Lösung mit 5 Schlaufen konnten wir durch Manipulation von x und x 2 leider nicht finden. Diese hier kommt dem aber schon recht nahe: x , x 0, x 2 0, x 2.975, a 0, b 24, Schrittanzahl 0000, µ , r Erde , r Mond

12 2.4 Verschiedene Störungen Nun betrachten wir die Auswirkung kleiner Störungen an x, x, x 2, x 2. Änderung von x : x 0.994, x 0, x 2 0, x , a 0, b 9, Schrittanzahl 0000, µ , r Erde , r Mond Änderung von x : x 0.994, x 0.005, x 2 0, x , a 0, b 8, Schrittanzahl 0000, µ , r Erde , r Mond

13 Änderung von x 2 : x 0.994, x 0, x , x , a 0, b 20, Schrittanzahl 0000, µ , r Erde , r Mond Änderung von x 2: x 0.994, x 0, x 2 0, x , a 0, b 8, Schrittanzahl 0000, µ , r Erde , r Mond

14 Beim Experimentieren mit verschiedenen Störungen beobachteten wir, dass sehr kleine Manipulationen am Startpunkt x, x 2 schon fatale Folgen haben. Hingegen kann man den Start-Geschwindigkeitsvektor x, x 2 sehr viel stärker stören, ohne dass es allzu große Abweichungen in der Satelliten-Bahn gibt. Jede kleine Änderung zerstörte schon die Periodizität. 2.5 Verhalten über längere Zeiten Nun untersuchen wir, wie sich der Satellit einige Zeit nach der Störung bewegt. Die Genauigkeit wird zu diesem Zweck verzehnfacht, um sicherzustellen, dass die nummerischen Ergebnisse immer noch akkurat sind. Leichte Störung von x 2 über einen Zeitraum von b 50: x 0.994, x 0, x 2 0, x , a 0, b 50, Schrittanzahl 00000, µ , r Erde , r Mond , 4

15 Größere Störung von x 2 über einen Zeitraum von b 0: Weg issa! x 0.994, x 0, x 2 0, x 2 2, a 0, b 0, Schrittanzahl 00000, µ , r Erde , r Mond , Leichte Störung von x über einen Zeitraum von b 50: x 0.994, x 0, x 2 0, x , a 0, b 50, Schrittanzahl 00000, µ , r Erde , r Mond Dies verdeutlicht, warum das Dreikörperproblem manchmal in Verbindung mit der Chaostheorie erwähnt wird. 5

16 2.6 Weiterführende Betrachtungen Und so sieht es aus, wenn man einen Satelliten im Weltall festhält x x 2 0, und dann auf die Erde fallen lässt: x 0, x 0, x 2 0.5, x 2 0, a 0, b 5.75, Schrittanzahl 0000, µ , r Erde , r Mond Überraschenderweise trifft er nicht die Erdoberfläche, was an seinem Schwung d.h. seiner Anfangsgeschwindigkeit liegt. x x 2 0 in unserem Koordinatensystem bedeutet nämlich lediglich, dass er sich mit der Winkelgeschwindigkeit des Mondes startet. 6

17 Um den Satelliten tatsächlich zu zerschmettern, muss man ihm die Anfangsgeschwindigkeit des Koordinatensystems x geben. Dies liefert einen direkten Sturzflug auf die Erde: Satellit in Not! x 0, x, x 2, x 2 0, a 0, b.26, Schrittanzahl 0000, µ , r Erde , r Mond Literatur Deuflhard / Bornemann: Numerische Mathematik II. Walter de Gruyter, Berlin New York

Das Dreikörperproblem

Das Dreikörperproblem 1 Das Dreikörperproblem Proseminar Theoretische Physik Alexander Müller 02.07.2014 2 Gliederung Allgemeines Circular Restricted Problem Stabilität im allgemeinen Dreikörperproblem Periodische Lösungen

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Wie berechnet man eine Planetenbahn?

Wie berechnet man eine Planetenbahn? Wie berechnet man eine Planetenbahn? Das Programm Doppelstern.exe macht das iterativ, das heißt, die einzelnen Bahnpunkte werden Schritt für Schritt in einer Endlosschleife berechnet. Dazu denkt man sich

Mehr

Ballaufgabe. David Reichenbacher. 8. November 2015

Ballaufgabe. David Reichenbacher. 8. November 2015 Ballaufgabe David Reichenbacher 8. November 2015 Hausaufgabe aus der Vorlesung Höhere Mathematik für die Fachrichtung Physik Dozent: Dr. Ioannis Anapolitanos Dieses Dokument beinhaltet einen Lösungsvorschlag

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Theoretische Physik I bei Prof. A. Rosch

Theoretische Physik I bei Prof. A. Rosch Vorlesungsmitschrift Theoretische Physik I bei Prof. A. Rosch von M. & O. Filla 8. November 206 Zur Erinnerung: Das Zweikörperproblem wurde auf zwei Differenzialgleichungen heruntergebrochen. Diese können

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Von Newton über Hamilton zu Kepler

Von Newton über Hamilton zu Kepler Von Newton über Hamilton zu Kepler Eine Variante von Ein Newton ergibt 3 Kepler, basierend auf einer Arbeit von Erich Ch. Wittman und den bis jetzt publizierten Beiträgen von Kepler_0x.pdf. 1. Bahnen in

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

1. Newtons Erklärung der Bewegung der Planeten, dargestellt von Feynman

1. Newtons Erklärung der Bewegung der Planeten, dargestellt von Feynman Erdsatelliten 1 Erdsatelliten 1. Newtons Erklärung der Bewegung der Planeten, dargestellt von Feynman In seinem Hauptwerk Mathematische Prinzipien der Naturphilosophie, erklärt Newton im ersten Buch, Abschnitt

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Besonderheiten der Doppelsterne

Besonderheiten der Doppelsterne Besonderheiten der Doppelsterne In Bezug auf den Beitrag Brauner Zwerg umrundet Sternleiche in der Zeitschrift»Sterne und Weltraum«11/2017, Rubrik»Blick in die Forschung: Nachrichten«, S. 16, Zielgruppe:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

Einführendes Beispiel zum lösen einer DGL n-ter Ordnung Dokumentation zum Dreikörperproblem (Sonne, Erde, Mond)

Einführendes Beispiel zum lösen einer DGL n-ter Ordnung Dokumentation zum Dreikörperproblem (Sonne, Erde, Mond) Projektarbeit zur grafischen Beschreibung des Dreikörperproblems durch numerisches lösen der Bewegungsgleichungen Joachim N. WS 07/08 Einführendes Beispiel zum lösen einer DGL n-ter Ordnung Dokumentation

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

8. DIE ABLEITUNG EINER VEKTORFUNKTION

8. DIE ABLEITUNG EINER VEKTORFUNKTION 75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

1 Drift in gekreuzten elektrischen und magnetischen

1 Drift in gekreuzten elektrischen und magnetischen 1 Drift in gekreuzten elektrischen und magnetischen Feldern In einem Magnetfeld wirkt auf eine bewegte Ladung die Lorentzkraft. Aufgrund der Lorentzkraft unterscheidet sich die Bewegung parallel und senkrecht

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Ferienkurs Theoretische Mechanik Frühjahr 2009

Ferienkurs Theoretische Mechanik Frühjahr 2009 Physikdepartment Technische Universität München Sebastian Konopka Blatt 1 Ferienkurs Theoretische Mechanik Frühjahr 2009 Newtonsche Mechanik und das Keplerproblem 1 Koordinatensysteme 1.1 Kugelkoordinaten

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 WS 2009/2010 Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 Nachname, Vorname... Matrikel-Nr.:... Studiengang:... Aufgabe 1 2 3 4 5 6 7 8 9 Summe maximale 5

Mehr

3 Räumliche Punktbewegung

3 Räumliche Punktbewegung 19 3 Räuliche Punktbewegung Unsere 3-diensionalen Rau entsprechend benötigt an drei Koordinaten ur eindeutigen Beschreibung der Lage eines Massenpunkts i Rau. Wählt an ein raufestes Koordinatensste und

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

Das freie mathematische Pendel

Das freie mathematische Pendel Das freie mathematische Pendel Wasilij Barsukow, Januar 0 Einleitung Das mathematische ist das einfachste Modell eines Pendels, bei dem man sich eine punktförmige Masse m an einem masselosen Faden aufgehängt

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr