Einführung in die theoretische Physik 1

Größe: px
Ab Seite anzeigen:

Download "Einführung in die theoretische Physik 1"

Transkript

1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: Jungius 9, Hörs 2 1

2 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise von Prof. Potthoff gehalten. Meine Übungsgruppe am 1.11.: wird von Robert Höppner gehalten 2

3 3 Mathey Einführung in die theor. Physik 1 Spatprodukt Spatprodukt ( triple product ) der Vektoren ~a, ~ b und ~c: ~a ( ~ b ~c) Es beschreibt das gerichtete Volumen des Parallelepipeds das durch die Vektoren aufgespannt wird. Eigenschaften: ~a ( ~ b ~c) =~c (~a ~ b)= ~ b (~c ~a) ~a ( ~ b ~c) =det(~a, ~ b,~c) Eine rechtsändige Orthonormalbasis ~e 1, ~e 2 und ~e 3 hat die Eigenschaft ~e 1 (~e 2 ~e 3 )=1

4 4 Motivation für Kronecker-Delta und Levi-Civita Tensor Skalarprodukt: ~a ~b = P i,j a ib j (~e i ~e j )= P i,j a ib j ij = P i a ib i Vektorprodukt: ~a ~ b = P i,j a ib j (~e i ~e j )= P i,j,k ijka i b j ~e k Wie muss ijk gewählt werden, damit das Vektorprodukt korrekt dargestellt ist? ~a ~ b =(a 1 b 2 a 2 b 1 )~e 3 +(a 3 b 1 a 1 b 3 )~e 2 +(a 2 b 3 a 3 b 2 )~e 1 Daher: 123 = 1, 312 = 1, 231 = 1 und 213 = 1, 132 = 1, 321 = 1. Alle anderen Komponenten sind null.

5 5 Levi-Civita Tensor Total antisymmetrischer Tenor dritter Stufe: ijk = ~e i (~e j ~e k ) Wenn (i, j, k) eine zyklische Permutation von (1, 2, 3) sind ist ijk = 1. Wenn es eine antizyklische Permutation ist ijk = 1. Sonst ijk = 0. ~a ~ b = P i,j,k ijka i b j ~e k ~a ~ b ~c = P i,j,k ijka i b j c k Wichtige Eigenschaft: P l jkl mil = jm ki ji km

6 6 Beweis des Entwicklungssatzes Wir zeigen ~a ( ~ b ~c) = ~ b(~a ~c) ~c(~a ~b) mittels LC Tensor. ~a ( ~ b ~c) = X ijk a i b j c k ~e i (~e j ~e k ) = X a i b j c k jkl mil ~e m ijklm = X X a i b j c k jm ki ~e m a i b j c k ji km ~e m ijklm ijklm = X X a i b j c i ~e j a i b i c k ~e k ijklm ik = ~ b(~a ~c) ~c(~a ~b)

7 7 Mathey Einführung in die theor. Physik 1 Vektoren, Vektorräume, Basen, etc. Physikerzugang: Größen werden häufig in einer Basis dargestellt. Dann werden mittels Basistransformationen deren Eigenschaften nachgewiesen, und ihre Basisunabhängigkeit gezeigt. Rechnungen werden meistens in einer Basis durchgeführt. Geschickte Basiswahl vereinfacht die Rechnung. Mathematikerzugang: Algebraische und geometrische Objekte werden basisunabhängig definiert. Dies muss möglich sein, wenn ein bestimmtes Objekt tatsächlich basisunabhängig ist. Darüberhinaus zeigt es, welche Eigenschaften des mathematischen Umfeldes notwendig, um dieses mathematische Objekt zu ermöglichen.

8 Geometrische Beschreibung von Kurven Beschreibung einer Kurve ohne eine vorgegebene Parametrisierung Eine Kurve ist ein Schnitt zweier Flächen: Eine Fläche kann z.b. durch z = f (x, y) dargestellt werden. Oder allgemeiner durch F (x, y, z) = 0. Eine Kurve ist daher: K {(x, y, z) F 1 (x, y, z) =0, F 2 (x, y, z) =0} Beispiel: Kreis in x-y Ebene, um 0 mit Radius R. K = (x, y, z) z =0, x 2 + y 2 = R 2 Diese Kurve kann auch durch eine Parameterdarstellung gegeben werden: K = {R(cos(y), sin(y), 0) 0 apple y < 2 } Dies kann gezeigt werden, indem die definierenden Gleichungen überprüft werden. Parametrisierungen sind nicht eindeutig, z.b. kann man für den oberenn Halbkreis schreiben K = R(, p o 1 2, 0) 1 apple apple 1 8

9 9 Mathey Einführung in die theor. Physik 1 Die Bewegung eines Massepunktes wird durch eine Abbildung beschrieben. Geschwindigkeit: Beschleunigung: t x(t) v(t) d x(t) dt a(t) d2 x(t) dt 2 Die Zeitableitung erfolgt komponentenweise: ~v = d~r dx dt = dt, dy dt, dz dt Trajektorien Beispiele: Geradlinige Bewegung: ~r(t) =~r 0 + f (t)~s Geschwindigkeit: ~v(t) =f 0 (t)~s Beschleunigung: ~a(t) =f 00 (t)~s O x(t) a(t) v(t) ~a = d 2 ~r dt 2 = d 2 x dt 2, d 2 y dt 2, d 2 z dt 2

10 10 Mathey Einführung in die theor. Physik 1 Beispiele für Trajektorien Gleichförmige, geradlinige Bewegung: ~r(t) =~r 0 + ~v 0 t Geschwindigkeit: ~v(t) =~v 0 Beschleunigung: ~a(t) =0 Gleichförmig beschleunigte Bewegung: ~r(t) =~r 0 + ~v 0 t ~a 0t 2 Geschwindigkeit: ~v(t) =~v 0 + ~a 0 t Beschleunigung: ~a(t) =~a 0 Gleichförmige Kreisbewegung, mit Winkelgeschwindigkeit!: ~r(t) =R(cos(!t), sin(!t), 0) Geschwindigkeit: ~v(t) = d~r(t) dt = R!( sin(!t), cos(!t), 0) Beschleunigung: ~a(t) = d2 ~r(t) ~r(t) = R, d~r(t) dt = R! 2 ( cos(!t), sin(!t), 0) =! 2 ~r(t) Es gilt: dt 2 = R!, d2 ~r(t) = R! 2 dt 2

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 2013/2014 Prof. Dr. J. Schmalian Blatt 4 Dr. P. P. Orth Abgabe und Besprechung 22.11.2013 1. Kronecker und

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Serie 1: Wiederholung von Vektoren und Koordinatengleichungen

Serie 1: Wiederholung von Vektoren und Koordinatengleichungen Serie : Wiederholung von Vektoren und Koordinatengleichungen Bemerkungen: Die Aufgaben der Serie bilden den Fokus der Übungsgruppen vom./5. Februar. Der entsprechende Stoff befindet sich in den Abschnitten..5

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht.

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 2: ǫ Tensor [6] Gegeben sind die Vektoren a =

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

Klassische Theoretische Physik I

Klassische Theoretische Physik I Universität KarlsruheTH) WS 008/09 Klassische Theoretische Physik I V:Prof. Dr. D. Zeppenfeld,Ü: Dr. S. Gieseke Prüfung Nr. 1 Lösungsvorschläge Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 25/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Das Levi-Civita-Symbol alias ε-tensor

Das Levi-Civita-Symbol alias ε-tensor 1 Das Levi-Civita-Symbol alias ε-tensor Wir gehen aus vom Kreuzprodukt und schreiben dieses auf eine zunächst komplex anmutende Art: a a 2 b 3 a 3 b 2 0 a 3 a 2 b 1 b = a 3 b 1 a 1 b 3 = a 3 0 a 1 b 2

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Lösung 01 Klassische Theoretische Physik I WS 15/16

Lösung 01 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx)

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx) Beispiele für Klausurfragen zur orlesung ektoranalysis (xx.xx.xxxx) Im folgenden finden Sie eine Liste von Fragen, die bei vergangenen Prüfungsterminen zur orlesung ektoranalysis gestellt wurden (Prof.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0

Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0 Verschiedenes Exponieren einer Matrix Wir betrachten als Beispiel folgende Matrix: A = Man kann die Funktion f(a) einer Matrix A so berechnen, indem man auf die Reihendarstellung der Funktion f(x) zurückgeht.

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

HM II Tutorium 3. Lucas Kunz. 10. Mai 2016

HM II Tutorium 3. Lucas Kunz. 10. Mai 2016 HM II Tutorium 3 Lucas Kunz 10. Mai 2016 Inhaltsverzeichnis 1 Theorie für das Tutorium 2 1.1 Definition der Determinante.......................... 2 1.2 Errechnung von Determinanten........................

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Rechenmethoden der Physik Vorlesungsskript

Rechenmethoden der Physik Vorlesungsskript Rechenmethoden der Physik Vorlesungsskript Prof. Dr. Gernot Akemann Fakultät für Physik Universität Bielefeld Inhaltsverzeichnis 0 Inhaltsübersicht 5 0.1 Literatur: einige Standardwerke........................

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Blatt 3 Hausaufgaben

Blatt 3 Hausaufgaben Blatt 3 Hausaufgaben (Abgabe: 14. May, 13:15) 1. Drehungen Ein 3-Tupel (a 1, a 2, a 3 ) enthält die Komponenten eines Vektors a in kartesischen Koordinaten. Beim Übergang von einem Koordinatensystem K

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe weiß (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Skript zum Brückenkurs 2014

Skript zum Brückenkurs 2014 Skript zum Brückenkurs 214 Tobias Müller TobiasMueller@physik.uni-kassel.de 3. April 214 Inhaltsverzeichnis 1 Vektoren und Matrizen 3 1.1 Vektrorrechnung im R n............................ 3 1.1.1 Rechenoperationen...........................

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

1. Raum und Koordinatensysteme

1. Raum und Koordinatensysteme 1 1. Raum und Koordinatensysteme Messgrößen in der Physik Messen geschieht zunächst durch Vergleich mit einem Maßstab. Messbare Grundgrößen der klassischen Mechanik sind räumliche Abstände, zeitliche Abstände

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 H. van Hees Wintersemester 18/19 Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 Schul-Mathe-Test Ziel dieses Mathe-Tests ist es, dass wir (Dozent und Tutoren) Ihre Vorkenntnisse in der

Mehr

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden.

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Determinante Die Determinante det A = det(a 1,..., a n ) einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Multilineariät: det(..., αa j + βb j,...) = α det(...,

Mehr

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch,

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch, Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 202/3 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ T0: Nachholklausur Mittwoch, 03.04.203

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Kapitel I (Vektorrechnung)

Kapitel I (Vektorrechnung) Kapitel I (Vektorrechnung 1. Vektoren Unser Raum ist 3-dimensional. Wir kennen drei Hauptrichtungen: rechts-links, vornehinten, oben-unten. Als Modell wählen wir: Ein Punkt O als Ursprung 3 zueinander

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Höhere Mathematik III für Physiker Analysis 2

Höhere Mathematik III für Physiker Analysis 2 Ralitsa Bozhanova Jonas Kindervater Ferienkurs im Anschluss an das Wintersemester 2008 Höhere Mathematik III für Physiker Analysis 2 16. bis 20. Februar 2009 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Der

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Prof. Dr. E. Triesch Höhere Mathematik II WiSe 6/7 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I Übersicht Messungen, Einheiten (1) Mathematische Grundlagen (3, E1, E2, E4, E5) Kinematik von Punktteilchen (2+4, E2,

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Mathematische Methoden

Mathematische Methoden Institut für Theoretische Physik der Universität zu Köln http://www.thp.uni-koeln.de/~berg/so/ http://www.thp.uni-koeln.de/~af/ Johannes Berg Andrej Fischer Abgabe: Montag,. Juni Mathematische Methoden.

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen . Zykloide. Rollkurven 3. Tangenten der Zykloide 4. Bogenlänge der Zykloide 5. Bogenelement 6. Zykloidenbogen 7. Krümmungskreisradius der Zykloide 8. Natürliche Gleichung der Zykloide 9. Die natürliche

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

ffl Kräfte ~K: der Betrag gibt die Stärke der Kraft die Richtung gibt die Richtung in welcher die Kraft ausgeübt wird. ffl Geschwindigkeiten ~v: der B

ffl Kräfte ~K: der Betrag gibt die Stärke der Kraft die Richtung gibt die Richtung in welcher die Kraft ausgeübt wird. ffl Geschwindigkeiten ~v: der B Kapitel I (Vektorrechnung) x1. Vektoren Unser Raum ist 3-dimensional. Wir kennen drei Hauptrichtungen: rechts-links, vornehinten, oben-unten. Als Modell wählen wir: ffl Ein Punkt O als Ursprung ffl Drei

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

D = Lösung der Aufgabe 1

D = Lösung der Aufgabe 1 Klassische Theoretische Physik I, WiSe 7/8 Aufgabe : Verständnisfragen und kleine Aufgaben 3P Beantworten Sie die Fragen kurz, aber vollständig. (a) 4P Formulieren Sie zwei der drei Kepler schen Gesetze

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr