Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus)

Größe: px
Ab Seite anzeigen:

Download "Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus)"

Transkript

1 Informationen zur Vorlesung Vorlesungen Montag: 3.Block - 4. Block ab 1:45 Uhr 3 SWS Hörsaal C im Hochhaus der h-da Übungen ( alle 14 Tage ) Montag: 5.Block 1 SWS Hörsaal C und 08.0 (im Hochhaus der h-da) Betreuer: Heinz Haberzettl / Fabian Gernandt Start: 1. Oktober 015 Kontakt: Dr Heinz Haberzettl ( heinz.haberzettl@h-da.de ) Büro : C Schöfferstrasse 3 (Hochhaus) Tutor: Fabian Gernandt ( fabian.gernandt@stud.h-da.de)

2 Mathematik für Chemiker I Themenüberblick 1. Aufbau des Zahlensystems, reelle und komplexe Zahlen. Folgen, Reihen und Grenzwerte 3. Funktionen 4. Differentialrechnung von Funktionen einer Variablen 5. Differentialrechnung von Funktionen mehrerer Variablen 6. Potenzreihenentwicklung von Funktionen 7. Integration von Funktionen

3 Literaturempfehlungen: Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3 Vieweg und Teubner, 009 ISBN: ferner Hans Gerhard Zachmann, Ansgar Jüngel Mathematik für Chemiker Wiley-VCH ISBN: Götz Brunner, Reiner Brück Mathematik für Chemiker Spektrum - Akademischer Verlag ISBN:

4 Literaturempfehlungen: Die Reihe selbstorganisiert erlernen von Frau OStR. Ursula Pirkl mit den Themenheften - Grundlegendes zu Algebra und Funktionen - Differenzialrechnung - Integralrechnung - Lineare Algebra (.Semester ) - Stochastik (.Semester ), um grundlegende Kenntnisse aufzufrischen und zu fixieren. Mit diesen Arbeitsheften wurde und wird im Vorbereitungskurs MatheFit erfolgreich mit Erstsemestern gearbeitet. ( siehe auch ) Mathe-Lernzentrum, eine Kooperation des Kompetenzzentrum Lehre plus mit dem Fachbereich Mathematik und Naturwissenschaften )

5 Informationen zur Vorlesung Aktuelle Informationen (Skripte, Übungsblätter, etc.) unter: Zu den Übungen Jede Woche wird in der Vorlesung ein Übungszettel ausgeteilt, der in der nächsten Woche abzugeben ist und in den darauf folgenden Übungsstunden besprochen wird. Die Bearbeitung und Abgabe der Übungszettel wird allen Studierenden zur kontinuierlichen Vorbereitung auf die Klausur am Semesterende empfohlen. Leistungsnachweis Der Leistungsnachweis wird mit einer schriftliche Prüfung (Klausur) durchgeführt. Es werden insgesamt drei Termine angeboten.

6 1. Mengen und Teilmengen Der naive Ansatz von G. Cantor lässt sich zusammenfassen in Definition 1: Eine Menge ist die Zusammenfassung von Objekten unserer Anschauung und unseres Denkens zu einem Ganzen. Die so zusammengefassten Objekte werden Elemente der Menge genannt. Ist also m ein Element einer Menge M, so schreiben wir kurz m M, sonst m M ( für die Aussage (x M) ). Georg Cantor 3.März Januar 1918 (Gründer der Naiven Mengenlehre) machte sein Abitur in Darmstadt. 6

7 Die leere Menge Die einfachste vorstellbare Menge ist diejenige, welche gar keine Elemente enthält. Diese heißt leere Menge und wird mit dem Symbol ( oder häufig auch mit {} ) bezeichnet. Enthält dagegen M wenigstens ein Element, so sagen wir, die Menge ist nicht leer. Diese einfachste Menge hat die Eigenschaft, in jeder anderen Menge enthalten zu sein, da sie gar kein Element besitzt. 7

8 Allgemein definieren wir: Definition : Es sei M eine Menge. Ein Menge N, für die jedes Element n N auch in M liegt, für die also n N : n M gilt, nennen wir eine Teilmenge von M und schreiben dafür N M (oder nennen M eine Obermenge von N und schreiben M N ). Eine genauere Schreibweise ist N M, N M ( gelesen N ist eine echte Teilmenge von M ). 8

9 Mengen lassen sich durch Aufzählung ihrer Elemente darstellen, wenn es sich nur um endlich viele Elemente handelt, oder aber durch Angabe einer die Menge charakterisierenden Eigenschaft (was für beliebige, auch nicht endliche Mengen möglich ist). Beispiel 1 : So kann die Menge M aller griechischen Kleinbuchstaben durch Aufzählung aller Kleinbuchstaben, also M = {α, β, γ, δ, ε, ζ, η, ϑ, ι, κ, λ, μ, ν, ξ, o, π, σ, τ, υ, ϕ, χ, ψ, ω} oder durch die sie charakterisierende Eigenschaft angegeben werden: M = {x : x ist ein griech. Kleinbuchstabe }. lies: Die Menge aller x, für die gilt... In der Schule haben Sie vielleicht auch {x...} statt {x :... } geschrieben. 9

10 Die griechischen Buchstaben zum Nachschlagen finden Sie hier einmal kurz zusammengestellt: α, A alpha η, H eta v, N ny τ, T tau β, B beta ϑ, Θ theta ξ, Ξ xi υ, Υ ypsilon γ, Γ gamma ι, I iota o, O omikron ϕ, Φ phi δ, Δ delta κ, K kappa π, Π pi χ, X chi ε, E epsilon λ, Λ lambda ρ, P rho ψ, Ψ psi ζ, Z zeta μ, M my σ, Σ sigma ω, Ω omega Hinweis: Falls die zugehörigen Schrifttypen auf Ihrem PC, Laptop, Smartphone, etc nicht geladen sind, kann auf dieser Seite jetzt Schrott stehen. ;-) Beispiel : Bezeichnen wir mit A die Menge aller Buchstaben des griechischen Alphabets, so ist A M bzw. M A für die Menge M der griechischen Kleinbuchstaben aus unserem vorigen Beispiel. Hinweis: Im Allgemeinen verwende ich =. 10

11 Verknüpfungen von Mengen Je zwei Mengen kann man nun auf die mannigfachste Art miteinander verknüpfen, um daraus eine neue Menge zu erzeugen: Definition 3: Es seien M und N zwei Mengen. Dann ist durch M N := {x : x M oder x N} = {x : x M x N} die Vereinigung (oder Union) und durch M N := {x : x M und x N} = {x : x M x N} der Durchschnitt von N und M erklärt. Mit M \ N := {x : x M und x N} = {x M : (x N)} wird die Differenz von zwei Mengen bezeichnet. 11

12 Verknüpfungen von Mengen Je zwei Mengen kann man nun auf die mannigfachste Art miteinander verknüpfen, um daraus eine neue Menge zu erzeugen: Definition 4: Es seien M und N zwei Mengen mit N M. Dann bezeichnet man die Mengendifferenz M \ N auch als Komplement von N in M M (N) = M \ N = M N = N M. Bisweilen sind auch die Bezeichnungen N C und N geläufig. Beispiel 3: In der Menge der natürlichen Zahlen sind die Mengen der geraden und ungeraden Zahlen komplementär zueinander. 1

13 Geometrische Interpretation: Es seien M 1 und M jeweils die Mengen der Punkte, die zu den umrandeten Flächen in den folgenden Bildern gehören. Dann ergeben sich für die Relationen M 1 M folgende Konfigurationen ( Euler Diagramme ): M 1 M (M 1 M ) (M 1 M ) 13

14 John Venn jr. 4.Aug April

15 Verknüpfungen von Mengen M N := {x : x M oder x N } = {x : x M x N} M N := {x : x M und x N } = {x : x M x N} M \ N := {x : x M und x N } = {x : x M (x N)} Beispiel 4: Es sei M := {α, β, γ} und N := {γ, δ}. Dann ist M N = {α, β, γ, δ}, M N = {γ} M \ N = {α, β}. und 15

16 Beispiel 5: Venn-Diagramm Wikipedia 16

17 Exkurs: Beweismethoden I. Direkter Beweis Beispiel: Gültigkeit der 3. binomischen Formel Behauptung: ( a b ) ( a + b ) = a² - b² Beweis : ( a b ) ( a + b ) = a a b a + a b b b = a a a b + a b b b = a a b b = a² - b². qed 17

18 Exkurs: Beweismethoden II. Indirekter Beweis Beispiel: Die Wurzel aus ist kein Bruch. Q Behauptung: Die Wurzel aus ist ein Bruch. Annahme: = p q Dann folgt durch Quadrieren = p² q² Q ; p und q sind teilerfremde, ganze Zahlen. q² = p², d.h. aber p ist durch teilbar. Mit p = k => q² = (k)² = 4 k² => q² = 4 k² : => q² = k², d.h. auch q ist durch teilbar. Dies ist ein Widerspruch zur Annahme, dass p und q teilerfremd sind, d.h. keinen gemeinsamen Teiler haben. Also muss die Annahme, dass ein Bruch ist, verworfen werden. 18

19 Exkurs: Beweismethoden III. Beweis durch vollständige Induktion Ablauf der vollständigen Induktion Gegeben sei eine Aussage A(n) über die natürlichen Zahlen N, (n N). 1. : Prüfen des Induktionsanfangs: A(1).a: Formulieren der Induktionsvoraussetzung: Es gelte A(n)..b: Formulieren der Induktionsbehauptung: Zu zeigen ist, dass A(n+1) gilt..c: Beweisen des Induktionsschritts: A(n) => A(n+1) Damit ist (nach Peano) gezeigt, dass die Aussage A(n) für alle n N erfüllt ist, also dass sie auf alle natürlichen Zahlen zutrifft. Die Folge von Induktionsanfang, Induktionsvoraussetzung, Induktionsbehauptung und Induktionsschritt nennt man 19 vollständige Induktion.

20 Exkurs: Beweismethoden III. Beweis durch vollständige Induktion Beispiel: Aussage A(n): Die Summe der ersten n ungeraden Zahlen ist n², (n -1) = n² n N. 1. Induktionsanfang: Dieser Schritt ist simpel: Für n = 1 gilt 1 = 1².. Induktionsschritt:.a Es gelte die Induktionsvoraussetzung A(n), also dass (n -1) = n² n N. Diese Aussage ist nicht bewiesen, sie ist nur die allgemeine Fassung des Ausdrucks im Induktionsanfang (dort wurden konkrete Zahlen eingesetzt) und wird im Induktionsschritt als Voraussetzung für die nachfolgend zu zeigende.b Induktionsbehauptung A(n+1) (n +1) = (n+1)² n N. 0

21 Exkurs: Beweismethoden III. Beweis durch vollständige Induktion Beispiel: Aussage A(n): Die Summe der ersten n ungeraden Zahlen ist n², (n -1) = n² n N. 1. Induktionsanfang: Dieser Schritt ist simpel: Für n = 1 gilt 1 = 1².. Induktionsschritt:.a Induktionsvoraussetzung: A(n), also dass (n -1) = n² n N..b Induktionsbehauptung A(n+1) ((n+1) +1) = (n+1)² n N..c Induktionsbeweis: ((n+1)-1) = (n-1) +((n+1)-1) = n² + n = n² + n + 1 = (n + 1)² qed 1

22 Exkurs: Beweismethoden III. Beweis durch vollständige Induktion noch ein Beispiel: n Aussage A(n): i=1 i = n(n+1) n N. n 1. Induktionsanfang: Für n = 1 gilt i=1 i = 1 = 1(1+1) = = 1.. Induktionsschritt:.a Induktionsvoraussetzung: A(n), i n+1.b Induktionsbehauptung A(n+1) i=1 i.c Induktionsbeweis: n+1 i=1 i = (n+1)(n+1 +1) = (n+1)(n+) = n(n+1) = n(n+1) n i=1 = n(n+1) = n²+n+n+ + (n+1) = (n+1)(n+1 +1) n = n²+n n N n N + n+ + (n+1) = i=1 i + (n+1) qed

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik Version vom

MatheBasics Teil 1 Grundlagen der Mathematik Version vom MatheBasics Teil 1 Grundlagen der Mathematik Version vom 01.09.2016 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. FSGU AKADEMIE 2008-2016 1 Was haben wir vor? Mathe-Basics Teil 1

Mehr

Mathematische Methoden I (WS 16/17)

Mathematische Methoden I (WS 16/17) Mathematische Methoden I (WS 16/17) Grundlagen Grundgrößen mit Maßeinheiten (SI-Einheiten ( Système International d Unités )) Grundgröße Einheit Formelzeichen Länge m (Meter) l Zeit s (Sekunde) t (time)

Mehr

KAPITEL 0. Zur Vorbereitung

KAPITEL 0. Zur Vorbereitung KAPITEL 0 Zur Vorbereitung 1. Grundbegriffe aus der Mengenlehre Es soll hier kurz auf die aus der Schule teilweise bekannte elementare Mengenlehre eingegangen werden, da wir deren Schreib und Sprechweise

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Aufgabensammlung Technische Mechanik

Aufgabensammlung Technische Mechanik Aufgabensammlung Technische Mechanik Bearbeitet von Alfred Böge, Gert Böge, Wolfgang Böge 23., überarbeitete und erweiterte Auflage 2016. Buch. XIV, 243 S. Softcover ISBN 978 3 658 13717 5 Format (B x

Mehr

Kapitel I. Grundlagen, Konventionen und Notationen. I.1 Quantoren und Logik

Kapitel I. Grundlagen, Konventionen und Notationen. I.1 Quantoren und Logik Kapitel I Grundlagen, Konventionen und Notationen Dieses Kapitel stellt eine Übersicht über in der Mathematik häufig gebrauchte Begriffe, Konventionen und Notationen dar. Der Inhalt dieses Kapitels wird

Mehr

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Christian Krämer 15. November 2011 Inhalt 1 Einführung Mathe-Umgebungen Einfache Terme 2 Mathematische Ausdrücke Mathematische

Mehr

Bausteine für Beweise 1

Bausteine für Beweise 1 Bausteine für Beweise 1 Schlüsselworte Aber einen gut geschriebenen Beweis erkennt man an verschiedenen Bausteinen, die jeweils mit Schüsselworten gekennzeichnet sind. Diese Schlüsselworte geben dem Beweis

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Vorkurs Mathematik 2014 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK0 vom 2.9.2014 VK0: Einführung Denkanstoÿ: Was ist wissenschaftliches Denken? Theorie (Allgemeines)

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK0 vom 6.9.2016 VK0: Einführung Denkanstoÿ: Was ist wissenschaftliches Denken? Theorie (Allgemeines)

Mehr

Beispieldokument L Y X/L A T E X

Beispieldokument L Y X/L A T E X Beispieldokument L Y X/L A T E X Hochschule für angewandte Wissenschaften München Fakultät für angewandte Naturwissenschaften und Mechatronik Studiengang: XXX Manuel Sabbagh Name 2 Name 3 Name 4 Prof.

Mehr

Übungen zur Linearen Algebra II

Übungen zur Linearen Algebra II Blatt 1 Aufgabe 1. Sei V = Mat(n, K) und U V der Untervektorraum der Diagonalmatrizen. Welche Dimension hat der Quotientenvektorraum V/U? Aufgabe 2. Sei G eine Gruppe. Wir betrachten die Relation auf G.

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Dr. D. Adams Fachhochschule Nordwestschweiz Hochschule für Technik IMN FS 2018 donat.adams@fhnw.ch 1/47 Bibliographie Lothar Papula. Mathematik für Ingenieure und

Mehr

Übungen zur Linearen Algebra I

Übungen zur Linearen Algebra I Blatt 1 Aufgabe 1. Wie lautet die Definition der Diskriminante für quadratische Polynome? Aufgabe 2. Sei X 2 + bx + c ein quadratisches Polynom, dessen Diskriminante ein Quadrat ist, und seien λ = ( b

Mehr

Teil I: Eindimensionale Analysis

Teil I: Eindimensionale Analysis 1. Etwas Logik und Mengenlehre 7 Teil I: Eindimensionale Analysis 1. Etwas Logik und Mengenlehre Bevor wir mit dem eigentlichen Inhalt der Vorlesung beginnen, müssen wir in diesem Kapitel kurz die exakte

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

2017 Hans Gsottbauer

2017 Hans Gsottbauer Gruppe 1 Groß Klein Name Schreibschrift Α α Alfa Β β Vita Γ γ Gama Δ δ Delta Ε ε Epsilon Ζ ζ Zita Wir üben schriftlich sowohl Groß- als auch Kleinbuchstaben der Schreibschrift. Die Großbuchstaben zu schreiben,

Mehr

2. Grundlagen. A) Mengen

2. Grundlagen. A) Mengen Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden

Mehr

Mathe-Umgebungen Symbole Formatierungen Referenzen Abschluss. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX.

Mathe-Umgebungen Symbole Formatierungen Referenzen Abschluss. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX. Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Iris Conradi 13. November 2012 2. Flussqubits 6. Quartisches Potential Die Phasen sind über den Fluss Φe festgelegt. Mit der Definition

Mehr

1 Variablen. Wirtschaftswissenschaftliches Zentrum 0 Universität Basel. Statistik

1 Variablen. Wirtschaftswissenschaftliches Zentrum 0 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Elementares Rechnen Variablen In vielen Vorlesungen während Ihres Ökonomiestudiums werden Ihnen mathematische Ausdrücke

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen

Mehr

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen Tabellen erstellen mit Word 7 Computeria Rorschach Wir erstellen mit Word 7/10 eigene Tabellen Roland Liebing 10.02.2012 Tabellen erstellen mit Word7/10 Wir klicken in der Registerkarte Einfügen auf die

Mehr

Einführung zur Vorlesung Mathematik für Physiker I

Einführung zur Vorlesung Mathematik für Physiker I Einführung zur Vorlesung Mathematik für Physiker I Volker Bach FB Mathematik; Johannes Gutenberg-Universität; D-55099 Mainz; Germany; email: vbach@mathematik.uni-mainz.de WS 2009/10 Vorwort In diesen Tagen

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

348 Anhang A Vektorrechnung

348 Anhang A Vektorrechnung 348 Anhang A Vektorrechnung A Vektorrechnung Kräfte, Momente und weitere Größen treten in der Mechanik als Vektoren im Anschauungsraum auf, d.h. zu ihrer Beschreibung ist neben einem Betrag die Angabe

Mehr

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten 1. Ziel dieses Merkblatts In diesem Merkblatt möchten wir kurz die formalen Anforderungen an eine Seminar- oder Abschlussarbeit darstellen.

Mehr

Myrtel auf Schatzsuche

Myrtel auf Schatzsuche Myrtel und Bo Myrtel auf Schatzsuche 6. Land Myrtel in Arbeitskarte 6. Land 1 4 6 23 17 3 22 5 26 24 25 19 20 16 14 40 12 44 8 11 10 36 31 27 34 43 9 15 35 33 18 7 29 32 21 2 30 28 37 39 38 41 45 42 47

Mehr

Textübertragung von Altgriechisch in griechische Punktschrift

Textübertragung von Altgriechisch in griechische Punktschrift Textübertragung von Altgriechisch in griechische Punktschrift Bernward Bitter Korrekturhinweise, Anmerkungen, Verbesserungsvorschläge usw. bitte an: b.bit@t-online.de Stand: 5. Februar 2012 Inhalt 1 ALLGEMEINES

Mehr

Sonderzeichen. HTML Umlaute

Sonderzeichen. HTML Umlaute Sonderzeichen HTML Umlaute Zeichen Beschreibung Name in HTML Unicode in HTML Ä A Umlaut Ä Ä ä a Umlaut ä ä Ë E Umlaut Ë Ë ë e Umlaut ë ë Ï I Umlaut Ï Ï ï i Umlaut ï ï Ö O Umlaut Ö Ö ö o Umlaut ö ö Ü U

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Mathematik, Übungsblätter und L A TEX

Mathematik, Übungsblätter und L A TEX Mathematik, Übungsblätter und L A TEX Vierte Veranstaltung Schlüsselkompetenzen für Information Engineering Alexander Holupirek Database and Information Systems Group Department of Computer & Information

Mehr

L A TEX - gleich setzt s was!

L A TEX - gleich setzt s was! L A TEX - gleich setzt s was! Ein kleiner Einführungskurs in L A TEX Jörg Binnewald, August 2011 http://latex.esc-now.de Dieses Dokument steht unter der Creative Commons 3.0 BY-NC. Hinweis zu den Slides

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Einführung, III: Verschiedenes

Einführung, III: Verschiedenes Einführung, III: Verschiedenes.1 Summennotation... 22.2 Regeln für Summen, Newtons Binomische Formeln... 22. Doppelsummen... 2.4 Einige Aspekte der Logik... 2.5 Mathematische Beweise.... 24.6 Wesentliches

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

1. Grundbegriffe, Definitionen

1. Grundbegriffe, Definitionen Teil I. Analysis 4 1. Grundbegriffe, Definitionen 1.1. Griechisches Alphabet α Alpha β Beta γ Gamma δ Delta ε Epsilon ζ Zeta η Eta ϑ Theta ι Iota κ Kappa λ Lambda µ My ν Ny ξ Xi o Omikron π Pi ρ Rho σ

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen Liste des (neu)griechischen Alphabets, sortiert nach Zeichen A &Agr; x0391 iso-grk1 Griechischer Großbuchstabe Alpha Α x0391 xhtml-sym Griechischer Großbuchstabe Alpha a &agr; x03b1 iso-grk1 Griechischer

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Grundbegriffe der Informatik Aufgabenblatt 2

Grundbegriffe der Informatik Aufgabenblatt 2 Matr.nr.: Nachname: Vorname: Grundbegriffe der Informatik Aufgabenblatt 2 Tutorium: Nr. Name des Tutors: Ausgabe: 4. November 2015 Abgabe: 13. November 2015, 12:30 Uhr im GBI-Briefkasten im Untergeschoss

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

MISSION ALPHA. Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags.

MISSION ALPHA. Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags. MISSION ALPHA Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags. MISSION BETA Wähle einen Zielraum aus, führe dort eine Interagieren-Aktion

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Indexmengen. Definition. n n n. i=1 A i := A 1... A n

Indexmengen. Definition. n n n. i=1 A i := A 1... A n Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden

Mehr

Vorlesung Unix-Praktikum

Vorlesung Unix-Praktikum in Vorlesung 12. L A TEX:, Texte Technische Fakultät Universität Bielefeld 24. Januar 2018 1 / 38 Willkommen zur zwölften Vorlesung Was gab es beim letzten Mal? in bash-kurzbefehle Der Editor emacs L A

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15 Mengen Übersicht.1 Definitionen................................................. 11. Sätze und Beweise............................................ 14.3 Erklärungen zu den Definitionen...............................

Mehr

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018 Diskrete Strukturen Vorlesung 3: Naive Mengenlehre 30. Oktober 2018 2 Organisation Prüfung: vorauss. am Freitag, den 22. Februar 2019 von 10 11 Uhr im AudiMax, HS 3, HS 9 Abmeldungen noch bis zum 12. Januar

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler wi Wirtschaft Pearson Studium Mathematik für Wirtschaftswissenschaftler Das Übungsbuch von Nils Heidenreich, Fred Böker, Britta Schnoor 1. Auflage Mathematik für Wirtschaftswissenschaftler Heidenreich

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Vorkurs Physik Mathematische Grundlagen

Vorkurs Physik Mathematische Grundlagen Vorkurs Physik 2016 Mathematische Grundlagen Die im Vorkurs behandelten mathematischen Grundlagen sind in dieser kommentierten Formelsammlung zusammengefasst. Es wurden folgende Themen behandelt: 1. Trigonometrie

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten 1. Ziel dieses Merkblatts In diesem Merkblatt möchten wir kurz die formalen Anforderungen an eine Seminar- oder Abschlussarbeit darstellen.

Mehr

Mengen. G. Cantor,

Mengen. G. Cantor, Mengen Unter einer Menge verstehen wir eine Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denken zu einem Ganzen. G. Cantor, 1845-1918 Herbert Klaeren WSI

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik überblick Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Allgemeines Termine Übung und Skript Plan Table of Contents 1 Allgemeines Termine Übung und Skript Plan 2 Allgemeines Termine

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell Das ABC der Physik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr.

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr. M a t h e m a t i s c h e s P r o p ä d e u t i k u m Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um14 00-16 00 Uhr. Erfahrungsgemäß

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr