Wissenschaftliches Arbeiten Quantitative Methoden

Größe: px
Ab Seite anzeigen:

Download "Wissenschaftliches Arbeiten Quantitative Methoden"

Transkript

1 Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009

2 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung V. Metriken VI. Algorithmen VII. Optimierungsprobleme & Optimierungsverfahren VIII. Praktischer Umgang mit Daten Seite 2

3 Gliederung I. Motivation Seite 3

4 I. Motivation: Ziel der Veranstaltung Was ist das Ziel dieser Veranstaltung? Das Ziel ist die Verbesserung der Fähigkeiten zum selbständigen wissenschaftlichen Arbeiten. Wie sieht die Zielgruppe aus? Der Kurs ist vor Allem auf Studierende ausgelegt, die gerade mit dem Hauptstudium beginnen / begonnen haben. Seite 4

5 I. Motivation: Ziel der Veranstaltung Wie wird das Ziel erreicht? Welche Vorteile bringt diese Veranstaltung mir, als Student? Im Rahmen des Kurses werden grundlegende mathematische Kenntnisse vermittelt und elementare Verfahrensweisen zum wissenschaftlichen Arbeiten vorgestellt. Diese erleichtern im weiteren Verlauf des Studiums das Verständnis des Vorlesungsstoffs das Lesen wissenschaftlicher Arbeiten (in Hinblick auf die zukünftige Seminararbeit) das eigenständige Erstellen wissenschaftlicher Texte (in Hinblick auf die zukünftige Diplomarbeit) Seite 5

6 I. Motivation: Ziel der Veranstaltung Am Ende des Semesters gibt es eine Abschlussprüfung. Jeder Kursteilnehmer, der diese Prüfung besteht, erhält einen Schein (mit Note) über die erfolgreiche Teilnahme am Kurs. Seite 6

7 Gliederung I. Motivation II. Lesen mathematischer Symbole i. Das griechische Alphabet ii. iii. iv. Aussagen Mengen Summen Seite 7

8 II. Lesen mathematischer Symbole: Das griechische Alphabet alpha lambda phi beta my chi gamma ny psi delta xi omega epsilon zeta eta theta iota kappa o pi rho sigma tau upsilon Seite 8

9 II. Lesen mathematischer Symbole: Das griechische Alphabet Gamma Delta Theta Lambda Pi Sigma Phi Psi Omega Seite 9

10 II. Lesen mathematischer Symbole: Aussagen Definition: Eine Aussage ist die gedankliche Widerspiegelung eines Sachverhalts in Form eines Satzes einer natürlichen oder künstlichen Sprache. Jede Aussage ist entweder wahr oder falsch. Man spricht vom Prinzip der Zweiwertigkeit. Man nennt wahr bzw. falsch den Wahrheitswert der Aussage und bezeichnet ihn mit W (oder 1) bzw. F (oder 0). [vgl. Bronstein, Semendjajew et al.: Taschenbuch der Mathematik. 2001] Eine Aussage ist die Zuerkennung eines n-stelligen Prädikates an n Subjekte. Jeder Aussage wird ein Wahrheitswert W = wahr oder F = falsch zugeordnet, und zwar nur einer von beiden. [vgl. Stöppler: Mathematik für Wirtschaftswissenschaftler: Lineare Algebra und ökonomische Anwendung. 1972] Seite 10

11 II. Lesen mathematischer Symbole: Aussagen Beispiele: Dieses Kind ist 7 Jahre alt. 1 Subjekt: Kind 1 Prädikat: ist 7 Jahre alt Max ist älter als Moritz 2 Subjekte: Max, Moritz 1 Prädikat: ist älter als Max ist größer als Moritz und kleiner als 1.80m 3 Subjekte: Max, Moritz, 1.80m 2 Prädikate: ist größer als, ist kleiner als Seite 11

12 II. Lesen mathematischer Symbole: Aussagen Operationen mit Aussagen Negation: Sei A eine Aussage, dann wird die Negation von A mit bzw. bezeichnet. Da A entweder wahr oder falsch ist, wird die Negation durch die folgende Wahrheitstafel definiert: Sprechweise: Nicht A Beispiele: Seite 12

13 II. Lesen mathematischer Symbole: Aussagen Operationen mit Aussagen Konjunktion: Sind A und B zwei Aussagen, so kann man eine zusammengesetzte Aussage bilden, die nur dann wahr ist, wenn A und B gleichzeitig wahr sind. und wird mit bezeichnet. Sprechweise: A und B Bemerkung: Seite 13

14 II. Lesen mathematischer Symbole: Aussagen Beispiele: Die nach dem Wirtschaftlichkeitsprinzip handelnden Unternehmen maximieren den Faktorertrag und minimieren den Faktoreinsatz. 5 ist gerade und 7 ist durch 2 teilbar. Heute habe ich Uni und morgen ist Freitag. Seite 14

15 II. Lesen mathematischer Symbole: Aussagen Operationen mit Aussagen Disjunktion: Für zwei Aussagen A und B heißt die Disjunktion A oder B:, d.h. ist wahr, wenn mindestens eine der Aussagen wahr ist. Sprechweise: A oder B Bemerkung: Seite 15

16 II. Lesen mathematischer Symbole: Aussagen Beispiele: Die nach dem Wirtschaftlichkeitsprinzip handelnden Unternehmen maximieren den Faktorertrag oder minimieren den Faktoreinsatz. 5 ist gerade oder 7 ist durch 2 teilbar. Heute habe ich Uni oder morgen ist Freitag. Seite 16

17 II. Lesen mathematischer Symbole: Aussagen Operationen mit Aussagen Implikation: Die Aussage A impliziert logisch die Aussage B. Sprechweise: Wenn A, dann B A impliziert B Aus A folgt B B ist notwendig für A A ist hinreichend für B Seite 17

18 II. Lesen mathematischer Symbole: Aussagen Beispiele: Die nach dem Wirtschaftlichkeitsprinzip handelnden Unternehmen minimieren den Faktoreinsatz, wenn sie den Faktorertrag maximieren. 5 ist gerade ist eine hinreichende Bedingung dafür, dass 7 durch 2 teilbar ist. Morgen ist Freitag ist eine notwendige Bedingung dafür, dass ich heute Uni habe. Seite 18

19 II. Lesen mathematischer Symbole: Aussagen Operationen mit Aussagen Äquivalenz: Die Aussagen A und B heißen logisch äquivalent, wenn entweder A und B wahr oder A und B falsch sind. Sprechweise: A ist äquivalent mit B A dann und nur dann, wenn B A genau dann, wenn B A ist notwendig und hinreichend für B Seite 19

20 II. Lesen mathematischer Symbole: Aussagen Beispiele: Die nach dem Wirtschaftlichkeitsprinzip handelnden Unternehmen maximieren den Faktorertrag genau dann, wenn sie den Faktoreinsatz minimieren. 5 ist gerade ist eine notwendige und hinreichende Bedingung dafür, dass 7 durch 2 teilbar ist. Ich habe heute Uni ist äquivalent mit der Aussage, dass morgen Freitag ist. Seite 20

21 II. Lesen mathematischer Symbole: Aussagen Beschränkte Quantifizierungen: Häufig ist es vorteilhaft, sich bei Quantifizierungen nur auf die Elemente einer vorgegebenen nichtleeren Menge zu beziehen: All-Quantor Existenz-Quantor für alle Elemente aus der Menge es gibt ein Element aus der Menge Bemerkung: Es ist nicht wahr, dass für alle Elemente in M die Aussage p(x) gilt. ist äquivalent zu Es existiert ein Element in M, für die die Aussage p(x) nicht gilt. Seite 21

22 II. Lesen mathematischer Symbole: Aussagen Beispiele: Für alle Zahlen aus der Menge der ganzen Zahlen gilt, dass sie gerade sind. Es existiert mindestens eine Zahlen aus der Menge der ganzen Zahlen für die gilt, dass sie gerade ist. Egal durch welche Zahl aus der Menge M man 10 dividiert, das Ergebnis ist immer kleiner als 3. In der Menge M gibt es Zahlen, durch die man 10 dividieren kann, um ein Ergebnis zu erhalten, das kleiner als 3 ist. Alle Zahlen zwischen 2 und 4 sind gleich 5 sind. Die Zahl 5 liegt zwischen 2 und 4. Seite 22

23 II. Lesen mathematischer Symbole: Mengen Definition: Eine Menge A ist eine Zusammenfassung bestimmter, wohldefinierter Objekte a unserer Anschauung oder unseres Denkens zu einem Ganzen. Diese Objekte heißen Elemente der Menge... Mengen können beschrieben werden durch Aufzählung aller ihrer Elemente in geschweiften Klammern oder durch eine definierende Eigenschaft, die genau den Elementen der Menge zukommt. [vgl. Bronstein, Semendjajew et al.: Taschenbuch der Mathematik. 2001] Eine Menge ist die Zusammenfassung wohldefinierter Objekte, die Elemente der Menge. Sie wird entweder durch Aufzählung oder durch Aussagen, die Zugehörigkeiten eindeutig festlegen, gegeben. [vgl. Stöppler: Mathematik für Wirtschaftswissenschaftler: Lineare Algebra und ökonomische Anwendung. 1972] Seite 23

24 II. Lesen mathematischer Symbole: Mengen Beispiele: 3 Elemente: 2, 4, 7 4 Elemente: Uwe, Gabi, Elke, Claudia Unendlich viele Elemente: alle reellen Zahlen 2 Elemente: 2, 4 Seite 24

25 II. Lesen mathematischer Symbole: Mengen Teilmenge: Sind A und B Mengen und gilt so heißt A Teilmenge von B:. Mit anderen Worten: A ist Teilmenge von B, wenn alle Elemente von A auch zu B gehören. Gibt es für in B weitere Elemente, die nicht in A vorkommen, so heißt A echte Teilmenge von B, und man schreibt: Beispiel:, C ist echte Teilmenge von A. Seite 25

26 II. Lesen mathematischer Symbole: Mengen Operationen mit Mengen Vereinigung: Seien A und B Mengen. Die Vereinigungsmenge oder Vereinigung ist definiert durch Sprechweise: A vereinigt mit B Bemerkung: Seite 26

27 II. Lesen mathematischer Symbole: Mengen Beispiele: Seite 27

28 II. Lesen mathematischer Symbole: Mengen Durchschnitt: Seien A und B Mengen. Die Schnittmenge oder der Durchschnitt ist definiert durch Sprechweise: A geschnitten mit B Bemerkung: Seite 28

29 II. Lesen mathematischer Symbole: Mengen Beispiele: Seite 29

30 II. Lesen mathematischer Symbole: Mengen Komplement: Das relative Komplement einer Menge B bzgl. einer Menge A oder die Differenz von A und B, bezeichnet mit, ist die Menge all der Elemente, die in A, aber nicht in B liegen: Das absolute Komplement einer Menge A, bezeichnet mit ist das relative Komplement von A bzgl. der universellen Menge U (auch häufig mit Grundgesamtheit G bezeichnet), nämlich die Menge all der Elemente, die nicht in A liegen (aber in U): Sprechweise: A ohne B Seite 30

31 II. Lesen mathematischer Symbole: Mengen Beispiele: Seite 31

32 II. Lesen mathematischer Symbole: Summen Die wichtigsten Summenformeln: Arithmetische Summen: Wichtiger Spezialfall: Seite 32

33 II. Lesen mathematischer Symbole: Summen Geometrische Summe: Wichtiger Spezialfall: Seite 33

34 II. Lesen mathematischer Symbole: Summen Sonstige wichtige Summen: Seite 34

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen Tabellen erstellen mit Word 7 Computeria Rorschach Wir erstellen mit Word 7/10 eigene Tabellen Roland Liebing 10.02.2012 Tabellen erstellen mit Word7/10 Wir klicken in der Registerkarte Einfügen auf die

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik

MatheBasics Teil 1 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen Liste des (neu)griechischen Alphabets, sortiert nach Zeichen A &Agr; x0391 iso-grk1 Griechischer Großbuchstabe Alpha Α x0391 xhtml-sym Griechischer Großbuchstabe Alpha a &agr; x03b1 iso-grk1 Griechischer

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Technische Universität Dortmund Fakultät für Mathematik Institut für Analysis Rolf Walter Grundbegriffe der Mengenlehre Inhalt: Logisches Schließen................................................ 1 Mengen............................................................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

β Ζ φ ε = δ δ = + = = = = = ρ ρ γ γ γ γ γ γ γ = = = = = = + + = = = + + = = = = $ σ r ( ) K r = = = O M L r M r r = = O M L r M r r = = = = = = = = ( ) ( ) = ( ) = ± ( ) ( ) = ± ( ) = ± (

Mehr

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B.

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B. GRIECHISCH GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern Rabanus-Maurus- Schule Fulda 2003 B. Mersmann Griechisch oder Französisch? Das eine muss das andere nicht ausschließen.

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Logik, Mengen und Zahlen

Logik, Mengen und Zahlen Zahlenmengen Herbert Paukert. 1 Logik, Mengen und Zahlen Version 2.0 Herbert Paukert Logik und Mengenlehre [ 02 ] Mathematische Beweisverfahren [ 12 ] Natürliche und ganze Zahlen [ 15 ] Teilbarkeit der

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Wie lange ist die Seidenstraße?

Wie lange ist die Seidenstraße? KinderUni 2008 Wie lange ist die Seidenstraße? Wie lange ist die Seidenstraße? Eine spannende Reise von Konstantinopel nach Indien und China im Mittelalter Institut für Byzanzforschung 1 KinderUni 2008

Mehr

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass. Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Christian Krämer 15. November 2011 Inhalt 1 Einführung Mathe-Umgebungen Einfache Terme 2 Mathematische Ausdrücke Mathematische

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

Alphabetisierung und Grundbildung

Alphabetisierung und Grundbildung 1 Master of Arts (Weiterbildung) Alphabetisierung und Grundbildung Aufbau-Studiengang (4 Sem.) und Fortbildungen Leipziger Buchmesse Sa., 20. März 2010, 14 15 Uhr Stefanie Schröder, M.A. PROFESS / BVAG

Mehr

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 /

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / # + #! 0%1!! % & ) % #,./!. 21. 3 # 4 % 5 6, #!!/ 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / ; 89 8 :!/ ; 1 & 6 8? 88 / 555/ 88 / 1 #Α, + 1 8 Χ1, Ε # 8 Β #Α 1 > # +,8 +. 8 ; & : 1 8 18 1

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

2 Logik. 2.1 Aussagen und Aussageformen

2 Logik. 2.1 Aussagen und Aussageformen Ein anderer Grundpfeiler der Mathematik neben der Mengenlehre ist die Logik, welche sich mit Aussagen, Verknüpfungen von Aussagen und deren Wahrheitsgehalt befaßt..1 Aussagen und Aussageformen In der Umgangssprache

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }.

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }. 2. Mengen Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (z. B. Zahlen) zu einer Menge zusammen. Eine Menge muss kein

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Anschlussbelegungder9polSub DX,Y,Z,(N): 230VAnschlussEinbaustecker: Steckdosen: DurchöffnendeskleinenDeckelsaufderVorderseiteerreichenSiedir6,3A DiebeidenSteckdosenwerdenüberPin1und14derSoftwaregeschaltet

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

1 Logik und Mengenlehre

1 Logik und Mengenlehre 1 LOGIK UND MENGENLEHRE 1 1 Logik und Mengenlehre Definition. (Cantor, 1895) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Lineare Algebra für Dummies

Lineare Algebra für Dummies Lineare Algebra für Dummies M. Wohlgemuth L A TEX-Fassung J.Voss 8. Juli 2003 Vorwort Schon mehrmals wurde hier oder anderswo nach einem Buch mit dem Titel Lineare Algebra für Dummies gefragt. In der

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy Grundkurs Semantik Sitzung 3: Mengenlehre Andrew Murphy andrew.murphy@uni-leizpig.de Grundkurs Semantik HU Berlin, Sommersemester 2015 http://www.uni-leipzig.de/ murphy/semantik15 15. Mai 2015 Basiert

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Mathematik für Techniker

Mathematik für Techniker Siegfried Völkel u.a. Mathematik für Techniker 7., neu bearbeitete und erweiterte uflage 16 1 Rechenoperationen Prinzip der Mengenbildung Wenn eine ussageform für die Objekte eines Grundbereichs vorliegt,

Mehr

Wichtige mathematische Symbole

Wichtige mathematische Symbole Wichtige mathematische Symbole Die folgende Liste enthält wichtige Zeichen und Symbole, die vor allem in der Mathematik, aber z.t. auch in den angewandten Fachbereichen Verwendung finden. Der Schwerpunkt

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen.................................. 1. Griechisches Alphabet............................. 1.3 Logische Symbole................................

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Kapitel 11 Aussageformen Mathematischer Vorkurs TU Dortmund Seite 103 / 170 11.1 Denition: Aussageformen Eine Aussageform

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Aussagenlogik-Boolesche Algebra

Aussagenlogik-Boolesche Algebra Aussagenlogik-Boolesche Algebra 1 Aussagen In der Mathematik und in der Logik werden Sätze der Umgangssprache nur unter bestimmten Bedingungen Aussagen genannt. Sätze nennt man Aussagen, wenn sie etwas

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

± Plus-Minus-Zeichen, Toleranzzeichen. * Asterix (Multiplikation) : Doppelpunkt (Division) = gleich MATHEMATISCHE ZEICHEN.

± Plus-Minus-Zeichen, Toleranzzeichen. * Asterix (Multiplikation) : Doppelpunkt (Division) = gleich MATHEMATISCHE ZEICHEN. MATHEMATISCHE ZEICHEN Symbol Bezeichnung ± Plus-Minus-Zeichen, Toleranzzeichen HTML Entities ± HTML Unicode dezimal ± + Plus-Zeichen (Addition) 1. Summand- + 2. Summand = Summe + + Minus-Zeichen (Subtraktion)

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Logische Strukturen 7. Vorlesung

Logische Strukturen 7. Vorlesung Logische Strukturen 7. Vorlesung Martin Dietzfelbinger 18. Mai 2010 Kapitel 2 Prädikatenlogik Was ist das? Logik und Strukturen Natürliches Schließen Normalformen Herbrand-Theorie Prädikatenlogische Resolution

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume Kapitel VIII: Der Raum R n ; allgemeine Vektorräume a) Vektoren: Definition und Grundlagen Größen, die sich durch Angabe eines Zahlenwertes und einer Einheit vollständig beschreiben lassen, nennt man Skalare

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr