Faktorisierung von Polynomen f Z[X] mit der Gittermethode (Lenstra-Lenstra-Lovasz)

Größe: px
Ab Seite anzeigen:

Download "Faktorisierung von Polynomen f Z[X] mit der Gittermethode (Lenstra-Lenstra-Lovasz)"

Transkript

1 Faktorisierung von Polynoen f Z[X] it der Gitterethode (Lenstra-Lenstra-Lovasz) Factorize(f) input: quadratfreies Polyno f Z[X] output: Liste der Faktoren von f bestie eine Prizahl p it deg(f od p) = deg f und p discrf berechne Faktorisierung von f od p in Z p [X]: f = h (1) h (2)... h (t) Liste 1 := {h (1), h (2),..., h (t) }; f 1 := 1; f 2 := f; Liste 2 := ; solange f 2 ±1 : wähle h Liste 1; h 0 := Findfactor(f 2, h, p); Liste 2 := Liste 2 {h 0 }; f 1 := f 1 h 0 ; f 2 := f 2 /h 0 ; für h (i) Liste 1 : falls h (i) h 0 in Z p [X]: Liste 1 := Liste 1 \ {h (i) }; Return(Liste 2) Findfactor(f, h, p) input: sei f Z[X] it deg f = n, sei p Prizahl, sei h Z[X] ein noriertes Polyno it deg h = l n, und es gelte: - (h od p) (f od p), - (h od p) irreduzibel, - (h od p) 2 (f od p) - Koeffizienten von h sind reduziert od p output: der eindeutig bestite irreduzible Faktor h 0 f in Z[X] it (h od p) (h 0 od p) falls l = n : Return(f) bestie kleinstes k it p kl > κ(f, n 1) = 2 n(n 1)/2( ) 2(n 1) n/2 f 2n 1 n 1 bestie ittels Hensel-Lifting h Z p k[x] it h f in Z p k[x] und h h od p u := ax{v ; l (n 1)/2 v } versuche, für = (n 1)/2 u, (n 1)/2 u 1,..., (n 1)/2, n 1 ittels Searchfactor(f, h, p, k, ) das gesuchte h 0 zu bestien liefert echten Faktor h 0 oder, falls erfolglos, h 0 = f) 1 2

2 Searchfactor(f, h, p, k, ) input: sei f Z[X] it deg f = n, sei p Prizahl, k, N +, sei h Z[X] ein noriertes Polyno it deg h = l, und es gelte: - (h od p k ) (f od p k ), - (h od p) irreduzibel, - (h od p) 2 (f od p) - Koeffizienten von h sind reduziert od p k (also h l p 2k ) - p kl > κ(f, ) := 2 n/2( 2 ) n/2 f +n output: sei h 0 Z[X] der bis auf Vorzeichen eindeutig bestite Faktor von f in Z[X] it (h od p) (h 0 od p) Es wird entschieden, ob deg h 0 gilt oder nicht; wenn ja, wird h 0 berechnet konstruiere Gitter L R +1 it der Basis {p k X i ; 0 i < l} {hx j ; 0 j l} Zur Begründung des Faktorisierungssalgorithus ittels der Gitterethode Notation: generell ist nachfolgend f Z[X] it deg f = n, h Z[X] noriertes Polyno it deg h = l( n) p eine Prizahl, k, Z + it l h f in Z p k[x] h irreduzibel in Z p [X] h 2 f in Z p [X] Gitterdefinition: in R +1 R + R X R X wird ein Gitter definiert L h, := {g Z[X] ; deg g, h g in Z p k[x]} Dieses Gitter hat als Basis {p k X i ; 0 i < l} {h X j ; 0 j l} und es ist det L h, = p kl berechne ittels Reduce eine reduzierte Gitterbasis b 1,..., b +1 von L falls b 1 < (p kl / f ) 1/n : berechne t := ax{j +1 ; b j < (p kl / f ) 1/n } Return(gcd(b 1,..., b t )) ansonsten Fehlanzeige 3 4

3 Lea 1: Es gibt einen irreduziblen Faktor h 0 Z[X] von f it h h 0 in Z p [X]. h 0 ist bis auf Vorzeichen eindeutig bestit. Lea 2: Mit h 0 wie in L1 sind für g Z[X] it g f in Z[X] äquivalent 1. h g in Z p [X] 2. h g in Z p k[x] 3. h 0 g in Z[X] Be: insbesondere h h 0 in Z p k[x], also h 0 L h, falls deg h 0. Lea 3: Ist b L h, it ( ) p kl 1/n b < =: η ( = η(f, p, k, l, ) ) f so gilt h 0 b in Z[X], also insbesondere gcd(f, b) 1. Erinnerung: gilt g f in Z[X] und deg g, so gilt ( ) 1/2 2 g f Lea 4: Ist b 1,..., b +1 eine LLL-reduzierte Basis für L h, und gilt ( ) 1/2 2 f 2 /2 < η so gilt deg h 0 b 1 < η Lea 5: Unter den Voraussetzungen von L4 sei Dann gilt t := ax{j + 1 ; b j < η} deg h 0 = + 1 t und h 0 = gcd(b 1,..., b t ) 5 6

4 Zur Koplexität der LLL-Faktorisierungsethode Koplexität der Gitterreduktion Reduce(b i,..., b n ), wobei b i 2 B (1 i n): O(n 4 log B) O(n log B) Koplexität von Searchfactor(f, h, p, k, ) O( 4 k log p) O( k log p) Koentar: wesentlich ist der Aufwand für die Gitterreduktion, bei der B = 1 + l p 2k (wegen h l p 2k ) und n = + 1 angesetzt werden uss. Die Ungleichung p kl > κ(f, ) führt auf = O(k log p) und wegen log l < l ist dann auch log B O(k log p). Die Koeffizienten der Gittervektoren b j, die zur Berechnung von h 0 ittels ggt herangezogen werden, sind durch n p kl / f beschränkt, wodurch an ittels bekannter Abschätzungen für den Aufwand von ggt- Berechnungen auf O( 3 ) arithetische Operationen von Zahlen der Grösse O(log B) kot. Koplexität von Findfactor(f, h, p) (dabei sei n = deg f und 0 = deg h 0 ) O( 0 (n 5 + n 4 log f + n 3 log p)) O(n 3 n 2 log f + n log p) Koentar: aus der Bestiung p k 1 < κ(f, n 1) folgt k log p O(n 2 + n log f + log p). Searchfactor wird aufgerufen für = (n 1)/2 u, (n 1)/2 u 1,..., (n 1)/2 u 1 =: 1 wobei 1 < 2 0 ist. Wegen ( 4 1 ) 4 ( 1 ) = O( ) hat an insgesat in den Aufrufen von Searchfactor O( 4 0 k log p) O( 4 0 (n 2 + n log f + log p) arithetische Operationen von Zahlen der Grösse O( 1 k log p) O( 0 (n 2 + n log f + log p) und es ist 0 n. Wenn an so abschätzt, fallen Kosten für Hensel-Lifting nicht ins Gewicht. 7 8

5 Koplexität von Factorize(f) (dabei sei f Z[X], quadratfrei, priitiv, it deg f = n) O(n 6 + n 5 log f ) O(n 3 + n 2 log f ) Koentar: zunächst uss an sich u die Grösse der Prizahl p Gedanken achen. Sei p die kleinste Prizahl it p res(f, f ), so kann an aus res(f, f ) n n f 2n 1 ein Abschätzung n log n + (2n 1) log( f ) p < A it A = 0.84 gewinnen. D.h., (log p)-tere fallen weiter nicht ins Gewicht und können unterdrückt werden. Ein Aufruf von Findfactor(f 2, h, p) kostet O( 0 (n 5 + n 4 log f )) arithetische Operationen. Aus Landau-Mignotte folgt leicht log f 2 O(n+log f ). Die 0 als Grade der verschiedenen irreduziblen Faktoren von f suieren sich zu n, sodass an die arithetischen Operationen it O(n 6 + n 5 log f ) abschätzen kann. Die beteiligten Zahlen haben eine Grösse O(n 3 + n 2 log f 2 ) O(n 3 + n 2 log f ) Der Aufwand für Resultantenberechnung, Finden einer geeigneten Prizahl, Berlekap-Faktorisierung geht in dieser Abschätzung auf. 9 Zusaenfassung: it den klassischen Algorithen für Addition, Subtraktion, Multiplikation,... ergibt sich für die LLL-Methode ein Aufwand von O(n 12 + n 9 (log f ) 3 ) geessen in Bit-Operationen. 10

Faktorisierung von Polynomen. zusammen mit Karim Belabas, Mark van Hoeij und Allan Steel.

Faktorisierung von Polynomen. zusammen mit Karim Belabas, Mark van Hoeij und Allan Steel. Faktorisierung von Polynomen Jürgen Klüners klueners@mathematik.uni-kassel.de zusammen mit Karim Belabas, Mark van Hoeij und Allan Steel. Beispiele Faktorisieren von Zahlen: 60 = 2 2 3 5. Faktorisieren

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion it Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynaische Verwaltung

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász

3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász Gitter und Codes c Rudolf Scharlau 15. Juni 2009 221 3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász Alternativ zu klassischen Konzepten wie dem von Minkowski gibt es seit gut 25 Jahren den Reduktionsbegriff

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 Beweis. 1.) ϕ : Z K : 1 1 definiert einen Homomorphismus. Da Bild ϕ endlich ist, ist Z/ Kern ϕ endlich und man sieht leicht Kern ϕ = pz für eine Primzahl

Mehr

Der LLL-Algorithmus. Konrad Schade. January 19, 2007

Der LLL-Algorithmus. Konrad Schade. January 19, 2007 January 19, 2007 Gliederung Allgemeines Ziel Vor- und Nachteil des LLL-Algorithmuses Gliederung Allgemeines Ziel Vor- und Nachteil des LLL-Algorithmuses enthaelt in seinem Namen auch die Namen seiner Erfinder,

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

4 Polynom-Faktorisierung

4 Polynom-Faktorisierung Prof. Gräbe: Algorithmen für Polynome Vorlesungsnotizen 1. Februar 2005) 1 4 Polynom-Faktorisierung Dieses Kapitel hält sich weitgehend an [?]. 4.1 Allgemeines Grundbegriffe R sei ein Integritätsbereich.

Mehr

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare

Mehr

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Der LLL - Algorithmus Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Autor: Konrad Schade Betreuer: Prof. Dr. J. Rambau 1 Einführung 1.1 Motivation In dieser Arbeit soll die Verwendung des LLL-Algotithmuses

Mehr

POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG. m x=0

POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG. m x=0 POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG MARKUS FULMEK. Problestellung Seien n, N 0 = {0,,,...} natürliche Zahlen (inklusive 0). Wir betrachten die n te Potenzsue S n () := x n. x=0 Z.B. ist

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre Teilbarkeitslehre Setup R = Z oder R = K[X ] für einen Körper K Division mit Rest Ganzzahldivision

Mehr

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1):

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1): . Großübung Polynominterpolation Allgemeines Problem: Aufgrund gegebener Messwerte (Paare aus Werten i und Funktionswerten f( i )) soll ein Funktionsverlauf rekonstruiert bzw. zumeist angenähert werden.

Mehr

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und.

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und. Seminar zur Zahlentheorie Prof. Dr. T. Wedhorn Vortrag zum Thema Euklidische und faktorielle Ringe 13.11.2007 Peter Picht und Stephan Schmidt 4 Euklidische und faktorielle Ringe (A) Assoziierheit, Irreduziblität,

Mehr

NUMERIK 1. Sommersemester 2016

NUMERIK 1. Sommersemester 2016 NUMERIK 1 Soerseester 2016 KLAUSUR LÖSUNGSVORSCHLAG Aufgabe 1 (Multiple Choice) (ca. 20 Minuten, 8 Punkte) Kreuzen Sie korrekte Aussagen an. Es können ehrere Antworten richtig sein, indestens eine ist

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Aufgabe 1. (Division mit Rest in Polynomringen) Es sei R ein kommutativer Ring {0} und R[X] ein Polynomring in der Unbestimmten X über R. Ferner

Mehr

Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen:

Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen: 1 Gitter Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen: Definition 11 (Gitter) Zu linear unabhängigen Vektoren b 1,, b n R d heißt die Menge } L(b 1,, b n ) := Zb i = t i b i

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

Über Potenzsummenpolynome

Über Potenzsummenpolynome Über Potenzsuenpolynoe Jörg Feldvoss I Sande 4b, D-21369 Nahrendorf Gerany Einleitung Für jede natürliche Zahl n bezeichnen wir it P n das n-te Potenzsuenpolyno, welches dadurch gegeben ist, dass es für

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2 Ergänzend zur Übung vom 8.6.006 anbei eine vollständige Lösung zur Aufgabe 3 vom Übungsblatt 10: Wir werden von folgendem Satz gebrauch machen, welchen wir zunächst beweisen, obwohl ich davon ausgehe,

Mehr

6. Lösungsblatt

6. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF. JOHANNES BUCHMANN DR. JULIANE KRÄMER Einführung in die Kryptographie WS 205/ 206 6. Lösungsblatt 9..205 Ankündigung Es besteht

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Systeme II 3. Die Datensicherungsschicht

Systeme II 3. Die Datensicherungsschicht Systeme II 3. Die Datensicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 12.05.2016 1 Fehlererkennung: CRC Effiziente

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R.

Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R. Hauptidealring Definition Hauptideal Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R. Satz Jeder euklidische Ring R

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Technische Universität München SoSe 2017 Fakultät für Informatik, I-16 Lösungsblatt 4 Dr. Stefanie Demirci 31. Mai 2017 Rüdiger Göbl, Mai Bui Algorithmen und Datenstrukturen Aufgabe 1 Komplexität Berechnung

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus

Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus Problemreduktion durch Transformation am Beispiel des Erweiterten Euklidschen Algorithmus Wolfgang Windsteiger JKU Linz, A 4040 Linz, Austria Kurzfassung Transformation beschreibt im Wesentlichen die algorithmische

Mehr

Von den ganzen Zahlen zu GF(p)

Von den ganzen Zahlen zu GF(p) Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche

Mehr

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1. KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die

Mehr

Algorithmen zur Berechnung der Smith-Normalform und deren Implementation auf Parallelrechnern

Algorithmen zur Berechnung der Smith-Normalform und deren Implementation auf Parallelrechnern Algorithmen zur Berechnung der Smith-Normalform und deren Implementation auf Parallelrechnern Gerold Jäger Institut für Experimentelle Mathematik Ellernstraße 29 45326 Essen 20. Juli 2001 1 Einführung

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen

Mehr

Das Generalized Birthday Problem

Das Generalized Birthday Problem Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,

Mehr

4. Dezember Kongruenzen und Restklassenringe

4. Dezember Kongruenzen und Restklassenringe 4. Dezember 2018 Kongruenzen und Restklassenringe Kongruenzen und Restklassenringe Setup R = Z oder R = K[X ] für einen Körper K m R \ {0} (m steht für modulus, lat. Maß.) Kongruenzen Definition a, b R

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Multiplikation langer Zahlen

Multiplikation langer Zahlen Multiplikation langer Zahlen Aljoscha Rudawski 20.5.2017 Inhaltsverzeichnis 1 Einleitung 1 2 Multiplikation nach Lehrbuch 1 2.1 Addition langer Zahlen............................. 2 2.2 Multiplikation

Mehr

3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01)

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01) 1 Übung zur Vorlesung,,Disrete Struturen (SS 01 Lösung zu Aufgabe Es ist zu zeigen: Für, n N 0 gilt Algebraischer Beweis ( ( n + n + + 1 0 Es sei n N 0 beliebig Wir beweisen die Behauptung durch Indution

Mehr

Ordnungsberechnung und Faktorisierung

Ordnungsberechnung und Faktorisierung sberechnung Information, Codierung, Komplexität 2 SS 2007 14. Juni 2007 Voraussetzungen: sberechnung U ist unitäre Transformation mit EV ψ zum EW e 2πiϕ kontrollierte U j -Operationen auf ψ sind durchführbar

Mehr

Prof. M. Eisermann Algebra SoSe 2010

Prof. M. Eisermann Algebra SoSe 2010 Übungsblatt 4: Teilbarkeitslehre Lassen Sie sich nicht durch die Menge der Aufgaben einschüchtern. Es gibt nur wenig schriftliche Aufgaben und wir halten die Menge der Votieraufgaben überschaubar. Alle

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i 2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Serie 3: Ringe, Körper, Vektorräume

Serie 3: Ringe, Körper, Vektorräume D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

13 Polynome. p(x) = p i x i,

13 Polynome. p(x) = p i x i, 13 Polynome Polynome und Polynomfunktionen In Beispiel 1.5.29 sowie Beispiel 5.4 haben wir bereits Polynome eingeführt. In diesem Kapitel wollen wir diese wichtige algebraische Struktur genauer untersuchen.

Mehr

Algebra und Zahlentheorie WS 13/14

Algebra und Zahlentheorie WS 13/14 Algebra und Zahlentheorie WS 13/14 FU Berlin David Müßig http://page.mi.fu-berlin.de/def/auz14/ muessig@mi.fu-berlin.de 21.01.2014 1 Hintergrund: Basen & Vektorräume 1.1 Grundlegende Begriffe Da einige

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 16.07.2018 14. Vorlesung irreduzible

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Coputergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransforationen Objektrepräsentation und -Modellierung Sichttransforationen

Mehr

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +

Mehr

Übungsblatt 7. Hausübungen

Übungsblatt 7. Hausübungen Übungsblatt 7 Hausübungen Die Hausübungen müssen bis Mittwoch, den 06.1.17, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Urbild Angriff auf Inkrementelle Hashfunktionen

Urbild Angriff auf Inkrementelle Hashfunktionen Urbild Angriff auf Inkrementelle Hashfunktionen AdHash Konstruktion: (Bellare, Micciancio 1997) Hashe Nachricht x = (x 1,..., x k ) als H(x) = k i=1 h(i, x i) mod M. Inkrementell: Block x i kann leicht

Mehr

Theorie und Praxis geometrischer Algorithmen Seminarvortrag. Resultanten. von. Manuel Caroli

Theorie und Praxis geometrischer Algorithmen Seminarvortrag. Resultanten. von. Manuel Caroli Theorie und Praxis geometrischer Algorithmen Seminarvortrag Resultanten von Manuel Caroli Motivation Schnittkurve zweier "quadrics": Menge der gemeinsamen Wurzeln ihrer Polynome Fragestellung: Finde die

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Modulare Arithmetik. Manfred Gruber SS 2010, KW 23

Modulare Arithmetik. Manfred Gruber   SS 2010, KW 23 Modulare Arithetik Manfred Gruber http://www.lrz-uenchen.de/~gruber SS 2, KW 23 odulo Für 2 N; 2 und Z := f; : : : ; betrachten wir die Abbildung odulo g r : Z! Z ; a! a od = a ba=c : Beerkung. r (a) =

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001 Grundlagen zu Datenstrukturen und Algorithen Schitt, Schöer SS 2001 http://www.pi-sb.pg.de/~sschitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für das 7. Übungsblatt Letzte

Mehr

Unterlagen zu endlichen Körpern. Erhard Aichinger

Unterlagen zu endlichen Körpern. Erhard Aichinger Unterlagen zu endlicen Körpern Erard Aicinger Linz, im November 2005 Alle Recte vorbealten 1 KAPITEL 1 Endlice Körper 1 Definition endlicer Körper DEFINITION 11 Ein Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Technische Universität München WiSe 2012/13 Institut für Informatik I-16 Lösungsblatt 7 Dr. Tobias Lasser 3. Dezember 2012 Jakob Vogel Algorithmen und Datenstrukturen Aufgabe 1 Rechnen mit Landau-Symbolen

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

2.2 Turnübungen Wir rechnen paarweise das kgv und anschließend den ggt der drei kgv: ggt( kgv( 2,18),kgV( 2,12),kgV( 18,12)

2.2 Turnübungen Wir rechnen paarweise das kgv und anschließend den ggt der drei kgv: ggt( kgv( 2,18),kgV( 2,12),kgV( 18,12) Hans Walser, [20100524a] Zwischen ggt und kgv 1 Motivation In der Schule lernte an den Satz, dass das Produkt zweier Zahlen gleich de Produkt ihres größten geeinsaen Teilers (ggt) it ihre kleinsten geeinsaen

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

Wurzel aus 2 und Wurzel aus 1: was ist das und wie rechnet man damit?

Wurzel aus 2 und Wurzel aus 1: was ist das und wie rechnet man damit? Wurzel aus 2 und Wurzel aus : was ist das und wie rechnet man damit? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 3/7, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

Signale und Codes Vorlesung 11

Signale und Codes Vorlesung 11 Signale und Codes Vorlesung 11 Nico Döttling January 31, 2014 1 / 22 Ein List-Decoder für WH k Theorem (Goldreich-Levin) Für jedes ɛ > 0 existiert ein effizienter List-Decoder für WH k welcher 1 2 ɛ Fehler

Mehr

Darstellungstheorie endlicher Gruppen

Darstellungstheorie endlicher Gruppen Darstellungstheorie endlicher Gruppen Universität Regensburg Sommersemester 2014 Daniel Heiß: 8: Ganze algebraische Zahlen 02.06.2014 Notation. R bezeichne stets einen kommutativen unitären Ring. Die Operation

Mehr

Einführung in die Algebra Blatt 1

Einführung in die Algebra Blatt 1 Abgabefrist: Fr 03. 11. 2017 12:00 Uhr Blatt 1 Aufgabe 1 (2 Punkte). Lösen Sie die Gleichung x 3 3x 2 + x 1 = 0. Aufgabe 2 (2 + 2 + 2 + 2 Punkte). Sei G eine Gruppe und H G. Zeigen Sie, dass die folgenden

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008 Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 6. Dezember 008 Algebra 0. Übung mit Lösungshinweisen Aufgabe 7 Es sei K ein Körper und f K[X]

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Multiplikation von Matrizen

Multiplikation von Matrizen Multiplikation von Matrizen Die Regeln der Multiplikation von Zahlen können nicht direkt auf die Multiplikation von Matrizen übertragen werden. 2-E Ma Lubov Vassilevskaya Multiplikation ccvon Matrizen

Mehr

Polynome. Analysis 1 für Informatik

Polynome. Analysis 1 für Informatik Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr