Ferromagnetismus; Messung von Hysteresekurven

Größe: px
Ab Seite anzeigen:

Download "Ferromagnetismus; Messung von Hysteresekurven"

Transkript

1 Atom- und Kernphysik-Versuch 39 AKP-39- Ferromagnetismus; Messung von Hysteresekurven Vorbereitung Grundgrößen des magnetischen Feldes, magnetische Feldstärke, Kraftflussdichte, Induktionsfluss; magnetisches Feld einer Ringspule, Induktionsgesetz (differentielle Form). Lit.: FRAUENFELDER-HUBER Bd. II.,.3,.3 3b,. Materie im magnetischen Feld; relative und absolute Permeabilität; Diamagnetismus, Paramagnetismus, Ferromagnetismus; Atomistische Deutung der magnetischen Eigenschaften. Lit.: FRAUENFELDER-HUBER Bd. II Ferromagnetismus, Struktur der Ferromagnetika, Remanenz, Koerzitivkraft Lit.: GERTHSEN Hystereseverluste Lit.: FRAUENFELDER-HUBER Bd. II 8. (Schlussteil) Wirkungsweise und Handhabung des Fluxmeters (Lit.: 3. Anhang) Gerätebeschreibungen: http// X-Y-Schreiber LY 600 Zentro-Netzgeräte Aufgaben Zur Aufzeichnung der Hysteresekurven mit dem X-Y-Schreiber wird eine Schaltung nach Abb. hergestellt: Für das Magnetfeld H im Ringkern ergibt sich gemäß dem Ampereschen Verkettungssatz Hs d N I () (N : Anzahl der Windungen der felderzeugenden Spule) Die Stromstärke I wird mit dem X-Y-Schreiber indirekt über den Spannungsabfall U an einem äußeren Widerstand R gemessen. Für die Stromstärke I gilt Aus den Gl. und erhält man I U R d U Hs N R ()

2 AKP-39- Atom- und Kernphysik-Versuch 39 oder Abb. Versuchsanordnung zur Messung von Hysteresekurven N H U dr Die X-Koordinate der Schreibstiftstellung ist zum Spannungsabfall U und damit nach Gl. 3 auch zu H proportional. Für die im Sekundärkreis induzierte Spannung U ind gilt: (3) Aufgelöst nach ΔB erhält man: U ind d t N N A B B U ind N A dt (4) (N : Anzahl der Windungen der Induktionsspule A: Querschnittsfläche des Ringkerns) Am Ausgang des Fluxmeters liegt eine dem Spannungsstoß U dt ind proportionale Spannung an. Um am Schreiber die gewünschte Abhängigkeit B(H) zu erhalten, wird der Ausgang des Fluxmeters mit dem Y-Eingang des Schreibers verbunden.

3 Atom- und Kernphysik-Versuch 39 AKP-39-3 Die Abmessungen und Eigenschaften der Ringkerne, die Windungszahlen der Spulen und die Werte der Messwiderstände entnehme man der Tabelle am Arbeitsplatz. Aus dem äußeren und inneren Durchmesser sowie der Höhe lässt sich die Querschnittsfläche des Ringkerns berechnen. Die Fe-Ni-Ringkerne sind aus 0, mm dicken Bandblechen zusammengesetzt. Die Bleche tragen eine dünne Oxydschicht. Deshalb füllt der Eisenquerschnitt nicht den geometrischen Querschnitt aus. Das Verhältnis von Eisenquerschnitt zu geometrischem Querschnitt heißt Füllfaktor. Für die folgende Aufgabe benutze man den Ringkern und baue die oben abgebildete Schaltung auf. Als Spannungsquelle dient dabei das Netzgerät mit der Inventarnummer (39-) (30V/A).. Inbetriebnahme der Versuchsanordnung Dies geschieht in folgender Reihenfolge: - Zunächst setzt der Betreuer am X-Y-Schreiber den Schreibstift ein - Begrenzung der Maximalstromstärke am Netzgerät auf etwa 00 ma; (Verwenden Sie bei diesem Versuchsteil zur besseren Regulierung des Stromes den am Arbeitsplatz ausliegenden Vorwiderstand R V Abb. ) - Einschalten des Fluxmeters (Messbereich 00 mvs); Falls beim Einschalten ein Ausschlag erfolgt, muss der Zeiger mit Hilfe des Rückstellknopfes auf 0 gebracht werden - Einschalten des X-Y-Schreibers Der X-Y Schreiber besitzt eine Anschlagkante, die zum Ausrichten des eingelegten Papiers dient - CHART HOLD auf ON Das eingelegte Papier wird in der gewünschten Lage fixiert. Nach Umlegen des Kippschalters (auf Symbole achten) wird das Papier elektrostatisch festgehalten. Vor Entfernen des Papiers Kippschalter in richtige Position bringen - X-Maßstab zunächst auf 0 mv/cm und Y-Maßstab auf V/cm einstellen (kalibrierte Stellung). Diese Werte sind bei den Versuchen so zu verändern, dass die Hysteresekurven formatfüllend aufgezeichnet werden. - Kippschalter auf M (Measure) stellen - Mit Hilfe der Drehpotentiometer (Pfeilsymbole) Schreibstift in die rechte obere (Polung des Spannungsabfalls am Vorwiderstand beachten) Ecke des Papiers bringen - Mit Hilfe des Kippschalters (Symbole beachten) Schreibstift in Stellung bringen

4 AKP-39-4 Atom- und Kernphysik-Versuch 39. Hysteresekurve einer Nickel-Eisen-Legierung (5000 H).. Aufzeichnung einer Hysteresekurve Zu Beginn jeder Messung soll generell Schmierpapier verwendet werden und erst für die Anfertigung der endgültigen Messkurve ist Millimeterpapier einzulegen. Abb. Hysteresekurve Abb.3 Hysteresekurve Zur Aufzeichnung der Hysteresekurve (Abb. ) beginnt man mit dem Maximalwert I max = 00 ma bei Punkt, regelt dann die Spannung am Netzgerät (Bei diesem Versuchsteil Vorwiderstand verwenden) gleichmäßig auf 0 herunter (Punkt ), polt mit Hilfe des Kommutierungsschalters um und erhöht dann wieder bis zum Maximalwert (Punkt ). Der Schreiber befindet sich jetzt an der linken unteren Ecke des Papiers. Durch erneutes Verringern der Spannung bis auf den Wert 0, Umpolen (Punkt ) und anschließendes Erhöhen bis zur Maximalstromstärke (Punkt ) erhält man dann die vollständige Hysteresekurve. Ist die Kurve bei Punkt geschlossen? Wenn dies nicht der Fall ist, muss die Nullpunktdrift am Fluxmeter überprüft und nachreguliert werden. Am Ende der Messung erst den Schreiber und dann das Fluxmeter ausschalten. Bei sämtlichen Kurven wird für jeden Praktikanten jeweils ein Exemplar aufgenommen. Falls Ummagnetisierungsverluste bestimmt werden, wird zusätzlich noch eine weitere Kurve aufgezeichnet, die zum Wiegen verwendet wird... Bestimmung von Remanenz und Koerzitivfeldstärke Nach der Aufzeichnung auf Millimeterpapier wird graphisch durch Symmetrisieren der Nullpunkt der Kurve bestimmt und das Koordinatenkreuz eingezeichnet. Mit Hilfe der Gleichungen 3 und 4 soll der Maßstab für H in A/m auf der x-achse und für B in Vs/m auf der y-achse angegeben werden. Die benötigten Daten entnehme man der Tabelle. Aus dem Diagramm bestimme man (siehe Abb. 3) die Remanenz B r und die Koerzitivfeldstärke H c...3 Sättigungsinduktion Bei einer Maximalstromstärke von 00 ma sind die bei Punkt und hin- und zurücklaufenden Äste der Hystereseschleife nicht mehr zu trennen, es tritt also keine Hysterese mehr auf. Die Magnetisierung steigt jedoch noch weiter an, da die Kurve bei Punkt noch nicht waagerecht verläuft. Um das Material in Sättigung zu bringen (μ r = ), muss deshalb die Stromstärke auf einen höheren Wert begrenzt werden. Die dazu benötigte Messbereichserweiterung am X-Y-Schreiber bewirkt, dass die Hysteresekurve insgesamt nicht mehr aufgelöst wird.

5 Atom- und Kernphysik-Versuch 39 AKP-39-5 Zur Ermittlung der Sättigungsinduktion des Materials wird am X-Y-Schreiber in x-richtung der Messbereich von etwa 0, V/cm eingestellt. Am Amperemeter wird der Messbereich auf 0 A erweitert. Um eine Maximalstromstärke von,3 A zu erreichen, wird das Netzgerät (39-) (7,3 V/5 A) benutzt. Zur Bestimmung der Sättigungsinduktion von PERMENORM 5000 H ist der ermittelte Wert mit dem Füllfaktor zu korrigieren, sofern dies nicht bereits bei der Achsenteilung vorgenommen wurde...4 Ummagnetisierungsverluste Zur Bestimmung der Ummagnetisierungsverluste wiege man mit der Analysenwaage zunächst das Millimeterpapier, schneide dann die Hysteresekurve aus und bestimme die Masse der von ihr eingeschlossenen Fläche. Aus dem Massenverhältnis lässt sich der Flächeninhalt der Hysteresekurve und damit die Energiedichte der Ummagnetisierung berechnen. Man gebe diese in J/kg an. (Dichte der Fe-Ni-Legierung: ρ = 8.5 g/cm 3 ). In welcher Form wird diese Energie frei?.3 Hysteresekurve eines Eisenkerns.3. Messung am Ringkern 3 Als Spannungsquelle dient das Netzgerät mit der Bezeichnung (39-) (7,5 V/5 A). Am Amperemeter wird der Messbereich auf 0 A erweitert und am X-Y-Schreiber in x-richtung der Messbereich 0, V/cm gewählt. Mit Hilfe des Netzgerätes wird eine Maximalstromstärke von 5 A eingestellt. Zur Aufzeichnung der Kurve verfahre man wie unter.. beschrieben..3. Bestimmung von Remanenz und Koerzitivfeldstärke Durchführung wie unter... Vergleiche mit den Ergebnissen aus.. und berechne Hc(Ringkern 3) Br (Ringkern 3) und H (Ringkern ) H (Ringkern ) Um welches Material handelt es sich demnach? c r.3.3 Ummagnetisierungsverluste Man bestimme die Ummagnetisierungsverluste wie unter..4. Für welche Anwendungen eignet sich dieses Material? (Dichte des Fe-Kerns: ρ = 7.80 g/cm 3 )..3.4 Irreversibilität der Hysteresekurven Um die Abhängigkeit der Magnetisierung von der Vorgeschichte des Materials zu erkennen, zeichne man zunächst von Ringkern 3 noch einmal eine bis zur Sättigung (I = 5 A) reichende Hystereseschleife. Beim zweiten Umlauf wird die Stromstärke nur bis ca. 0,5 A verringert, geringfügig wieder erhöht und dann bis auf 0 verkleinert. Analog verfahre man beim Rücklauf in der steigenden Flanke der Kurve. Man zeichne den Umlaufsinn ein und erkläre das erhaltene Kurvenbild.

6 AKP-39-6 Atom- und Kernphysik-Versuch Innere Hysteresekurve Zur Aufzeichnung einer inneren Hysteresekurve wird folgende Einstellung gewählt X-Maßstab (Schreiber): Messbereich Fluxmeter: ca. 0 mv/cm ca. 0 mvs Was lässt sich aus dem Diagramm erkennen (Unterschied zur Sättigungskurve)? Falls noch hinreichend Zeit zur Verfügung steht, sollten die folgenden Punkte.4 und.5 bearbeitet werden:.4 Hysteresekurve einer anderen Fe-Ni-Legierung (5000 Z).4. Aufzeichnung der Hysteresekurve Man benutze dazu Ringkern und verfahre wie unter... Dieser und der nächste Abschnitt müssen im NAN-Modul nicht bearbeitet werden..4. Remanenz und Koerzitivfeldstärke Messung wie unter.. (Daten von Ringkern benutzen!). Man vergleiche mit den Ergebnissen aus.. und erkläre die qualitativen Unterschiede der beiden Kurven. Da bei diesem Material die Sättigung bereits bei kleineren Feldstärken erreicht wird, kann die Sättigungsinduktion aus dem unter.4. erhaltenen Diagramm bestimmt werden..5 Messungen an einem Holzkern Als Füllmaterial der felderzeugenden Spule dient jetzt ein Holzkern (Ringkern 4), der die gleichen geometrischen Abmessungen wie die anderen Ringkerne besitzt. Um die Größenverhältnisse zwischen μ Eisen und μ Vakuum zu verdeutlichen, wird die Kurve zunächst mit den gleichen Messbereichseinstellungen wie unter.3. aufgenommen. Danach schalte man am Fluxmeter auf einen geeigneten (empfindlicheren) Messbereich um und zeichne die Kurve mit dem Schreiber nochmals auf..6 Magnetmodelle Die am Arbeitsplatz stehenden Magnetmodelle sind z. B. in GERTHSEN (siehe Vorbereitung) beschrieben. Man stelle die Modelle in das von den Helmholtz-Spulen erzeugte Magnetfeld und beobachte unter Veränderung und Umpolung des Feldes die Effekte: Sättigungsmagnetisierung Remanenz Koerzitivfeldstärke Weiss-Bereiche und Wanderung der Bloch-Wände.

7 Atom- und Kernphysik-Versuch 39 AKP Anhang 3. Wirkungsweise des Fluxmeters Das Fluxmeter ist ein Gerät, das einen an seinem Eingang auftretenden Spannungsstoß misst. In Verbindung mit einer Induktionsspule, die einen magnetischen Fluss Ф umfasst, kann das Integral der elektrischen Spannung, die bei Veränderung eines die Messspule durchsetzenden Magnetflusses vom Wert Ф nach dem Wert Ф entsteht, gemessen werden U d t Das Prinzip des Fluxmeters basiert auf einer Proportionalität zwischen der Ausgangsspannung und dem Integral der Eingangsspannung (Spannungsstoß), das hier gleich der Änderung des magnetischen Flusses ist. 3. Handhabung des Fluxmeters Abb. 4 Frontplatte des Fluxmeters Beim Einschalten des Geräts leuchtet die Kontrolllampe auf. Mit dem Messbereichsschalter lässt sich der jeweilige Messbereich einstellen, wobei jeweils für den Vollausschlag (00 Skt) des Messinstruments der angegebene Messbereich in x mvs gilt. Die Bezeichnung μa auf der Skala ist ohne Bedeutung. (INPUT) sind die Eingangsbuchsen für die zu integrierende Spannung. Die Ausgangsbuchsen - für die Verbindung zum X-Y-Schreiber - befinden sich unterhalb des Messinstruments. An ihnen liegt bei Vollausschlag des Messinstruments eine Spannung von 000 mv an. Vor Beginn einer Messung wird der Integrierkondensator C mit Hilfe des kleinen orangefarbenen Druckknopfes ZERO entladen und damit die Anzeige auf 0 gebracht. flux lat.: Fluss

8 AKP-39-8 Atom- und Kernphysik-Versuch 39

Ferromagnetische Hysterese Versuch P1-83,84

Ferromagnetische Hysterese Versuch P1-83,84 Vorbereitung Ferromagnetische Hysterese Versuch P1-83,84 Iris Conradi Gruppe Mo-02 28. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis Grundlegende Erklärungen 3 1 Induktivität und Verlustwiderstand

Mehr

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer

Mehr

Vorbereitung: Ferromagnetische Hysteresis

Vorbereitung: Ferromagnetische Hysteresis Vorbereitung: Ferromagnetische Hysteresis Carsten Röttele 10. Dezember 2011 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule 2 1.1 Messung..................................... 2

Mehr

Ferromagnetische Hysteresis

Ferromagnetische Hysteresis Auswertung Ferromagnetische Hysteresis Stefan Schierle Carsten Röttele 6. Dezember 2011 Inhaltsverzeichnis 1 Induktion und Verlustwiderstand einer Luftspule 2 1.1 Messung.....................................

Mehr

Protokoll zum Versuch

Protokoll zum Versuch Protokoll zum Versuch Ferromagnetische Hysterese Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Induktivität und Verlustwiderstand einer Luftspule 1.1 Messungen und Berechnen Wir haben die

Mehr

Ferromagnetische Hysterese Versuch P1 83, 84

Ferromagnetische Hysterese Versuch P1 83, 84 Auswertung Ferromagnetische Hysterese Versuch P1 83, 84 Iris Conradi, Melanie Hauck Gruppe Mo-02 19. August 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Lustspule

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Ferromagnetische Hysteresis

Ferromagnetische Hysteresis Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-83 Ferromagnetische Hysteresis - Vorbereitung - Vorbemerkung Als Hinführung zum Thema Ferromagnetismus

Mehr

Messung der Hystereseschleife (HYS)

Messung der Hystereseschleife (HYS) Messung der Hystereseschleife (HYS) Seite 1 Messung der Hystereseschleife (HYS) 1. Stichworte Magnetfeld und magnetische Flußdichte Dia-, Para- und Ferromagnetismus Hysterese, Remanenz und Koerzitivkraft

Mehr

Versuchsauswertung: P1-83,84: Ferromagnetische Hysteresis

Versuchsauswertung: P1-83,84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsauswertung: P1-83,84: Ferromagnetische Hysteresis Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand

Mehr

Praktikum Elektrotechnik

Praktikum Elektrotechnik Messbericht, ergab die Note 6.0 Rot = Kommentare von Martin Schlup (Professor für elektrotechnische Fächer an der ZHW) Praktikum Elektrotechnik Versuch 2.4 Magnetischer Fluss und Induktionsgesetz Zusammenfassung

Mehr

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung

Mehr

Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010

Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010 Versuch P1-83,84 Ferromagnetische Hysteresis Auswertung Von Ingo Medebach und Jan Oertlin 4. Januar 2010 Inhaltsverzeichnis 1. Induktivität und Verlustwiderstand einer Luftspule...2 1.1. Induktivität und

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.2 1 19. Februar 23 Aufgaben Aufgabe 1 In einer magnetfelderzeugenden Spule fließt ein periodisch sich ändernder Strom I (siehe nebenstehendes Schaubild) mit der für jede Periode geltenden

Mehr

Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold

Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold Valentin Conrad 22.12.2006 Didaktik der Physik Universität Bayreuth 1 1 Einführung Die Hallsonde ist ein Messgerät um Magnetfelder

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen

Mehr

AUSWERTUNG: FERROMAGNETISCHE HYSTERESIS

AUSWERTUNG: FERROMAGNETISCHE HYSTERESIS AUSWERTUNG: FERROMAGNETISCHE HYSTERESIS TOBIAS FREY, FREYA GNAM, GRUPPE 26, DONNERSTAG 1. INDUKTIITÄT UND ERLUSTWIDERSTAND EINER LUFTSPULE 1.1. Messung. Ein orwiderstand R und die Spule L werden im ersuch

Mehr

Ferromagnetische Hysteresis Versuchsvorbereitung

Ferromagnetische Hysteresis Versuchsvorbereitung Versuche P1-32,33,34 Ferromagnetische Hysteresis Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 Inhaltsverzeichnis 1 Begriffsbildung

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

PD Para- und Diamagnetismus

PD Para- und Diamagnetismus PD Para- und Diamagnetismus Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Magnetfeld in Materie............................ 2 1.2 Arten von Magnetismus...........................

Mehr

Versuch 17. Ferromagnetismus. Wintersemester 2005 / Daniel Scholz.

Versuch 17. Ferromagnetismus. Wintersemester 2005 / Daniel Scholz. Physikalisches Praktikum für das Hauptfach Physik Versuch 17 Ferromagnetismus Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Inhalt. Kapitel 4: Magnetisches Feld

Inhalt. Kapitel 4: Magnetisches Feld Inhalt Kapitel 4: Magnetische Feldstärke Magnetischer Fluss und magnetische Flussdichte Induktion Selbstinduktion und Induktivität Energie im magnetischen Feld A. Strey, DHBW Stuttgart, 015 1 Magnetische

Mehr

Betriebsgerät zum Franck-Hertz-Versuch Best.- Nr. CL09031

Betriebsgerät zum Franck-Hertz-Versuch Best.- Nr. CL09031 Betriebsgerät zum Franck-Hertz-Versuch Best.- Nr. CL09031 Dieses Gerät liefert alle zur Durchführung des Franck-Hertz-Versuches erforderlichen Spannungen und enthält einen hochempfindlichen Gleichstromverstärker

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3.

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3. Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld LD Handblätter Physik P3.4.3.1 Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Versuch P1-83 Ferromagnetische Hysteresis Auswertung

Versuch P1-83 Ferromagnetische Hysteresis Auswertung Versuch P1-83 Ferromagnetische Hysteresis Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: Montag, 24.10.2011 1 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Universität Ulm Fachbereich Physik Grundpraktikum Physik

Universität Ulm Fachbereich Physik Grundpraktikum Physik Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Transformator Nummer: 25 Kompiliert am: 19. Dezember 2018 Letzte Änderung: 19.12.2018 Beschreibung: Webseite: Bestimmung der physikalischen

Mehr

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Die Momentspule (nach Helmholtz)

Die Momentspule (nach Helmholtz) Die Momentspule (nach Helmholtz) Bedienungsanleitung Die Momentspule nach Helmholtz besitzt, im Gegensatz zu einer üblichen Momentmessspule (Zylinderspule), einen großen und gut zugänglichen Messraum.

Mehr

Magnetische Suszeptibilität: Magnetismusarten

Magnetische Suszeptibilität: Magnetismusarten agnetische Suszeptibilität, agnetismusarten agnetische Suszeptibilität: Im allgemeinen ist H: = χ m H χ m = magnetische Suszeptibilität [χ m ] = 1 Damit wird: at = µ 0 ( H + ) = µ 0 (1 + χ m ) }{{} =µ

Mehr

Versuchsvorbereitung: P1-83, 84: Ferromagnetische Hysteresis

Versuchsvorbereitung: P1-83, 84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsvorbereitung: P1-83, 84: Ferromagnetische Hysteresis Christian Buntin Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung Elektrizitätslehre und Schaltungen Versuch 14 ELS-14-1 Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre.

Mehr

114 - Drehpendel. 1. Aufgaben. 2. Grundlagen

114 - Drehpendel. 1. Aufgaben. 2. Grundlagen 114 - Drehpendel 1. Aufgaben 1.1 Ermitteln Sie die Trägheitsmomente eines Drehtisches und zweier Probekörper (Stab, Scheibe) durch das Ausmessen von Torsionsschwingungen! 1.2 Bestimmen Sie das Direktionsmoment

Mehr

Ferromagnetismus. Anleitung zum Physikalischen Praktikum. Computational Science. Naturwissenschaftliche Fakultät II - Physik

Ferromagnetismus. Anleitung zum Physikalischen Praktikum. Computational Science. Naturwissenschaftliche Fakultät II - Physik UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikalischen Praktikum Computational Science Ferromagnetismus 1. Auflage 2012 Dr. Stephan Giglberger Inhaltsverzeichnis

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

2. Aufgaben: Magnetismus

2. Aufgaben: Magnetismus 2. Aufgaben: Magnetismus 1) Welche toffe sind magnetisierbar (ferromagnetisch)? Eisen (tahl), Gusseisen, ickel und Kobalt 2) Welche Wirkung geht von Magneten aus? Magnete ziehen Teile aus Eisen, ickel

Mehr

Physikalisches Anfaengerpraktikum. Hysteresie

Physikalisches Anfaengerpraktikum. Hysteresie Physikalisches Anfaengerpraktikum Hysteresie Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 28. November 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Eines der interessantesten

Mehr

Demonstrations - Messgerät Best.- Nr

Demonstrations - Messgerät Best.- Nr Demonstrations - Messgerät Best.- Nr. 2002719 1. Produktbeschreibung 1.1. Unterrichtsziele Dieses Messgerät wurde für den Einsatz im Schulunterricht entwickelt. Aufgrund der Skalenlänge von 230 mm und

Mehr

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007 Versuch E11 - Hysterese Aufnahme einer Neukurve Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Ziel des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Magnetisches Feld..........................

Mehr

Zusammenfassung v13 vom 20. Juni 2013

Zusammenfassung v13 vom 20. Juni 2013 Zusammenfassung v13 vom 20. Juni 2013 Magnetfeldberechnungen Gerader Leiter im Abstand r: B = µ 0 I/(2 r) (57) Auf der Achse einer Leiterschleife mit Radius R im Abstand x von der Mitte der Schleife: B

Mehr

Die Schaltung wird wie abgebildet zusammengestellt. Der Schalter ist zunächst in der Position links.

Die Schaltung wird wie abgebildet zusammengestellt. Der Schalter ist zunächst in der Position links. Der Umschalter, 1 Buchse 1 STE Leitung, T-förmig 1 STE Leitung, Umschalter, links 2 STE Lampenfassung E10 2 Glühlampe 3,5 V/0,2 A 1 STE Batterie, 3 V Ein Schalter soll zwischen 2 Stromkreisen hin- und

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom Physikalische Grundlagen Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom 1. Aufbau des s Der dient zur verlustarmen Änderung

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Nichtlineare Magnetisierungskennlinie B(H) eines Transformators. Zusammenhang zwischen Spannung, Fluß, Magnetisierungsstrom und Feldstärke

Nichtlineare Magnetisierungskennlinie B(H) eines Transformators. Zusammenhang zwischen Spannung, Fluß, Magnetisierungsstrom und Feldstärke Seite 1 von 13 Thema der Vorlesung: Nichtlineare Magnetisierungskennlinie B(H) eines Transformators Zusammenhang zwischen Spannung, Fluß, Magnetisierungsstrom und Feldstärke Schaltung zur Messung der magnetischen

Mehr

Elektrotechnisches Laboratorium

Elektrotechnisches Laboratorium E Labor Hysteresisschleife 1 Höhere Technische Bundes-, Lehr- u. Versuchsanstalt (BULME) Graz Gösting Abgabedatum: Elektrotechnisches Laboratorium Jahrgang: 2004/05 Gruppe: 3 Name: Schriebl, Galien, Schuster

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3

Mehr

15. Magnetische Eigenschaften der Festkörper

15. Magnetische Eigenschaften der Festkörper 15. Magnetische Eigenschaften der Festkörper Magnetit [ mineralienatlas.de ] WS 2013/14 1 Ursachen des Magnetismus Quasigebundene und quasifreie Elektronen Magnetische Momente der Atome: Bahnmagnetismus

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

Ferromagnetische Hysteresis Versuchsauswertung

Ferromagnetische Hysteresis Versuchsauswertung ersuche P1-83,84 Ferromagnetische Hysteresis ersuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik ersuchstag: 22.11.2010 1 P1: Ferromagnetische

Mehr

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Chemiker/innen Magnetismus und Transformator WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung

Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: Montag, 24.10.2011 Inhatsverzeichnis 1 Induktivität und Verustwiederstand einer Luftspue 2 1.1

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite von 8 FH München, FB 0 Grundlagen der Elektrotechnik SS 004 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 4 Σ N Aufgabensteller: Buch, Göhl,

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elektrotechnik II Übungsaufgaben Mag. Manfred Smolik Wien, 2. Juni 2016 Inhaltsverzeichnis 1 Kondensator 1 2 Magnetische Feldstärke 4 3 Magnetischer Fluss, magnetische Flussdichte 6 4 Induktivität

Mehr

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E 7a Spulenfelder Aufgaben 1. Überprüfen Sie die Kalibrierung des Teslameters mit einer Kalibrierspule.. Nehmen Sie die Flussdichte

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

Hysteresekurve und magnetische Suszeptbilität

Hysteresekurve und magnetische Suszeptbilität M.Links & R.Garreis Hysteresekurve und magnetische Suszeptbilität Anfängerpraktikum SS 2013 Martin Link und Rebekka Garreis 10.06.2013 Universtität Konstanz bei Phillip Knappe 1 M.Links & R.Garreis Inhaltsverzeichnis

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 24.09.1998 Aufg. P max 0 2 1 9 2 10 3 12 4 9 5 19 6 6 Σ 67 N P Zugelassene

Mehr

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite)

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite) Übungsaufgabe 1 Wahr oder falsch? Kreuze an. N 1 N 2 I 1 I 2 wahr falsch 250 1000 1,2 A 4,8 A 1000 250 1,2 A 4,8 A 250 500 0,9 A 450 ma 750 15000 20 ma 0,4 A 300 900 600 ma 3,6 A Wahr oder falsch? Kreuze

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

Physikalisches Grundpraktikum E13 Hystereseverhalten

Physikalisches Grundpraktikum E13 Hystereseverhalten Aufgabenstellung: 1. Messen Sie eine Schar von Hysteresekurven und leiten Sie daraus die Neukurve ab. Ermitteln Sie für jede Hysteresekurve die Koerzitivfeldstärke und die Remanenz. 2. Stellen Sie die

Mehr

Materie im Magnetfeld

Materie im Magnetfeld . Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.

Mehr

Stromdurchflossene Leiter im Magnetfeld, Halleffekt

Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll zum Versuch Stromdurchflossene Leiter im Magnetfeld, Halleffekt Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Dezember 2007 1 Messung des magnetischen Feldes mit einer Feldplatte

Mehr

Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung!

Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung! Thema Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung! Im August 2014 zum Patent angemeldet. Autor: Michael Konstanzer, Erfinder der Trafoschaltrelais

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,

Mehr

Name: Punkte: Note: Ø: 3. Musterklausur

Name: Punkte: Note: Ø: 3. Musterklausur ame: Punkte: ote: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben: e =,602 0-9

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig E 6 Magnetische Hysterese Aufgaben 1 Nehmen Sie mit Hilfe eines Teslameters die Neukurve und die Hysteresekurve

Mehr

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen Prof. Dr. K. Wüst WS 2008/2009 FH Gießen Friedberg, FB MNI Studiengang Informatik Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen 13.2.2009 Aufgabenstellung mit Musterlösungen Punkteverteilung

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! EXPERIMENTALPhysik II SS 10 Klausur 14.07.2010 Name:... Matrikelnummer:... nur für die Korrektoren: Studienrichtung, -ziel (bitte ankreuzen): Aufgabe Punkte Physik BA 1-8... Physik LA 9... Mathe BA 10...

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-h. Mertins, MSc. M. Gilbert FK04 Ferromagnetismus & magnetische Werkstoffe (Pr_PhII_FK04_Magnetismus_7, 24.10.2015)

Mehr

Wiederholung der Grundlagen (Schülerübungen)

Wiederholung der Grundlagen (Schülerübungen) Wiederholung der Grundlagen (Schülerübungen) 1. Baue die abgebildete Schaltung auf und messe bei verschiedenen Widerständen jeweils den Strom I: Trage deine Ergebnisse in die Tabelle ein: R ( ) U (V) I

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr