Data Science (WS 2017/2018) Klaus Berberich

Größe: px
Ab Seite anzeigen:

Download "Data Science (WS 2017/2018) Klaus Berberich"

Transkript

1 1

2 Data Science (WS 2017/2018) Klaus Berberich

3 0. Organisation

4 Agenda 1. Einführung 2. Regression 3. Klassifikation 4. Clusteranalyse 5. Neuronale Netze 6. Assoziationsanalyse 7. Visualisierung Data Science / Kapitel 0: Organisation 4

5 Vorlesung und Übung Vorlesung und Übung Mittwoch, 08:15 09:45 (1. Stunde), Raum 7110 Mittwoch, 10:00 11:45 (2. Stunde), Raum 7110 Übungen etwa alle 14 Tage in der 2. Stunde Data Science / Kapitel 0: Organisation 5

6 Prüfung Schriftliche Klausur am Ende des Semesters 120 Minuten Hilfsmittel: drei von Hand beschriebene DIN-A4 Blätter nicht programmierbarer Taschenrechner Modul Data Science ersetzt bisheriges Vertiefungsmodul Entscheidungsunterstützende Systeme Data Science / Kapitel 0: Organisation 6

7 Webseite Webseite zur Vorlesung: Ankündigungen Folien und Übungsblätter zum Download Sonstige Ressourcen (z.b. Code und Daten) Data Science / Kapitel 0: Organisation 7

8 Literatur zur Vorlesung M. J. Zaki und W. Meira Jr.: Data Mining and Analysis, Cambridge University Press, 2014 [Online] C. C. Agarwal: Data Mining, The Textbook, Springer, 2015 [Online] Data Science / Kapitel 0: Organisation 8

9 Literatur zur Vorlesung S. Raschka: Python Machine Learning, Packt Publishing, 2015 [Online] S. Raschka: Machine Learning with Python, mitp, 2017 [Online] Data Science / Kapitel 0: Organisation 9

10 Literatur zur Vorlesung F. Provost and T. Fawcett: Data Science for Business, Cambridge University Press, 2014 [Online] J. D. Kelleher, B. Mac Namee, A. D Arcy: Fundamentals of Machine Learning for Predictive Analytics, MIT Press, 2015 [Online] Data Science / Kapitel 0: Organisation 10

11 1. Einführung

12 Was ist Data Science? Data Science 12

13 Was ist Data Science? Data Science zielt darauf ab, aus Daten Erkenntnisse zu gewinnen, aus denen sich oft geschäftsrelevante Handlungsempfehlungen ableiten lassen (actionable insights) Data Science greift Methoden auf z.b. aus den Gebieten Statistik Machine Learning Data Mining Datenbanken Quelle: [KDnuggets] 13

14 Was ist Data Science? Begriff Data Science existiert seit mehr als 20 Jahren, hat in den letzten fünf Jahren an Popularität gewonnen, u.a. aufgrund von wachsenden Mengen verfügbarer Daten (z.b. explizit oder implizit durch Benutzer erzeugte Daten) gestiegenes Bewusstsein für den Wert von Daten ( data is the new oil ) gewachsene Speicherkapazität und Rechenleistung ermöglichen Bewahren und Analyse (großer) Datenmengen breite Verfügbarkeit von Softwarepaketen zur Speicherung und Analyse (großer) Datenmengen 14

15 Datenwachstum Jährliches Datenwachstum wie aktuell prognostiziert von International Data Corporation (IDC) Zettabytes Data created Quelle: [IDC] (1 Zettabyte entsprechen Byte also 10 9 Terabytes) 15

16 Strukturierte und unstrukturierte Daten Strukturierte Daten haben festgelegte Struktur (Schema) Beispiele: Artikel- und Kundendaten aus ERP-System Formate: gespeichert in RDBMS, CSV-Dateien ~10% Unstrukturierte Daten haben keine festgelegte Struktur Beispiele: Zeitungsartikel, s, Office-Dokumente, etc. Formate: Textdateien, HTML-Dateien, Office-Formate, etc. Semistrukturierte Daten als Mischformen ~80% Beispiele: s (Absender, Betreff und Text) Formate: XML, JSON ~10% 16

17 Strukturierte Daten als Ausgangslage Großteil existierender und neuer Daten unstrukturiert Verfahren erwarten in der Regel strukturierte Daten m Merkmale (features) n Datenpunkte (data points) f 1 f 2... f m n Unstrukturierte Daten können häufig in strukturierte Daten umgewandelt werden (vgl. Kapitel 4) 17

18 Merkmalsarten Merkmale lassen sich hinsichtlich ihrer Skalenniveaus unterscheiden, d.h. welche mathematischen Operationen sinnvoll auf ihren Werten anwendbar sind nominal (z.b. Geschlecht, Herkunft) keine Ordnung, Gleichheit überprüfbar, Häufigkeiten ordinal (z.b. Güteklasse, Kleidergröße) Ordnung definiert, vergleichbar, Häufigkeiten metrisch (z.b. Alter, Gewicht) vergleichbar, Häufigkeiten, Mittelwert, etc. 18

19 Kapitel 2: Regression (3 VL) Vorhersage eines abhängigen metrischen Merkmals anhand unabhängiger metrischer Merkmale Beispiel: Mietpreise in Saarbrücken Größe (m 2 ) Entfernung (km) Miete (Euro/Monat) m 6.5 g e Anwendungen: Vorhersage (z.b. Mietpreis, Energieverbrauch) Faktorenanalyse 19

20 Kapitel 3: Klassifikation (4 VL) Vorhersage eines abhängigen nominalen Merkmals anhand unabhängiger metrischer Merkmale Beispiel: Erkennen von Spam in s Viagra Kino Rezept Übung Kategorie Spam kein Spam Spam kein Spam Spam..... [Rezept < 3] [Viagra < 1] S Anwendungen: S ks Erkennen von handgeschriebenen Ziffern Vorhersage von Kundenabwanderungen 20

21 Kapitel 4: Clusteranalyse (4 VL) Aufteilung von Datenpunkten (z.b. Kunden, Dokumente) in möglichst homogene Gruppen Beispiel: Kunden eines Filmportals KundenNr Action Drama Family Horror {1, 4} {2, 3, 5} Anwendungen: Kundensegmentierung Datenexploration und -zusammenfassung 21

22 Kapitel 5: Neuronale Netze (4 VL) Neuronale Netze können u.a. für Regressionsund Klassifikationsprobleme verwendet werden q Neuronale Netze sind ein vielseitiges Werkzeug und aktuell eines der spannendsten Gebiete der Informatik exzellente Ergebnisse z.b. in Computer Vision, NLP benutzerfreundliche Bibliotheken (z.b. Keras, Gluon) und effizientes Training auf GPUs (z.b. TensorFlow) 22

23 Kapitel 6: Assoziationsanalyse (3 VL) Erkennen von Mustern (Assoziationen) in Datenmengen Beispiele: Einkäufe von Kunden KundenNr Artikel 1 { Äpfel, Bananen, Bier, Windeln } 2 { Bier, Windeln, Chips } 3 { Bier, Chips } 4 { Chips, Windeln } 5 { Äpfel, Bananen, Bier, Chips, Windeln } 6 { Bananen, Chips, Windeln }.. {Bier, Chips} {Äpfel, Bananen} Anwendungen: Generieren von Empfehlungen (z.b. Produkte) Datenexploration und -zusammenfassung 23

24 Kapitel 7: Visualisierung (2 VL) Geschickte Visualisierung kann zu neuen Erkenntnissen über die Daten führen, aber auch helfen, anders gewonnene zu kommunizieren Dimensionsreduktion zur Darstellung hochdimensionaler Daten Visualisierung dynamischer Daten Interaktive Visualisierungen Quelle: [seaborn] 24

25 Überwachtes vs. unüberwachtes Lernen Verfahren des maschinellen Lernens lassen sich in verschiedene Kategorien einteilen, zwei wichtige sind überwachtes Lernen (supervised learning) mit Klassifikations- und Regressionsverfahren als Beispielen verwendet Trainingsdaten (z.b. klassifizierte Datenpunkte) unüberwachtes Lernen (unsupervised learning) mit Verfahren zur Clusteranalyse als Beispiel erkennt Zusammenhänge in gegebenen Daten 25

26 Python Python (3.6) als Programmiersprache für Codebeispiele in dieser Vorlesung Essentielle Bibliotheken für Data Science mit Python pandas ( numpy ( scikit-learn ( keras ( Anaconda ( als Distribution, welche alle genannten Bibliotheken mitbringt 26

27 Software und Bibliotheken Neben Python gibt es eine Reihe empfehlenswerter Softwarepakete und Bibliotheken für Data Science R als Programmiersprache für statistische Berechnungen KNIME und RapidMiner als GUI-basierte Werkzeuge tra tra tra tra tra tra SVM tra mod exa Generalized Linear M... tra mod Gradient Boosted Tr... tra mod exa wei tra tra exa wei tra W-IBk mod W-J48graft exa tra mod exa W-LMT 27

28 Software und Bibliotheken Weka (für Java) Spark MLlib (für Spark als verteilte Plattform) 28

29 Ressourcen Wettbewerbe, Datensätze und Diskussionen Newsletter zum Thema Data Science

30 Zusammenfassung Data Science zielt darauf ab, verwertbare Erkenntnisse aus (großen) Datenmengen zu gewinnen Strukturierte (10%), semi-strukturierte (10%) und unstrukturierte Daten (80%) Merkmale werden nach Skalenniveaus eingeteilt in nominale (z.b. Name), ordinale (z.b. Kleidergröße) und metrische (z.b. Gewicht) Überwachtes und unüberwachtes Lernen als zwei Kategorien von Verfahren des maschinellen Lernens 30

31 Literatur [1] D. Reinsel, J, Gantz, J. Rydning: Data Age 2025, IDC Whitepaper, 2017 [Online] 31

Entscheidungsunterstützende Systeme

Entscheidungsunterstützende Systeme Entscheidungsunterstützende Systeme (WS 015/016) Klaus Berberich (klaus.berberich@htwsaar.de) Rainer Lenz (rainer.lenz@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de)

Mehr

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016 Citizen Data Science Balázs Bárány Linuxwochen Wien 2016 29. April 2016 Inhalt Einführung: Data Science Werkzeuge und Methoden Citizen Data Science Daten holen Daten verstehen Daten-Vorverarbeitung Prädiktive

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Übersicht über 1. Vorlesungsabschnitt Form und Darstellung von Informationen

Übersicht über 1. Vorlesungsabschnitt Form und Darstellung von Informationen Einführung in die Informatik für Hörer aller Fakultäten Prof. Jürgen Wolff von Gudenberg (JWG) Prof. Frank Puppe (FP) Prof. Dietmar Seipel (DS) Vorlesung (Mo & Mi 13:30-15:00 im Zuse-Hörsaal): FP: Form

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Vorbesprechung Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2015 Vorbesprechung, SS 2015 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source:

Mehr

Methodenkurs Text Mining 01: Know Your Data

Methodenkurs Text Mining 01: Know Your Data Methodenkurs Text Mining 01: Know Your Data Eva Enderichs SoSe2015 Eva EnderichsSoSe2015 01: Know Your Data 1 Eva EnderichsSoSe2015 01: Know Your Data 2 Typen von Korpora annotiert VS naturbelassen wenige

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Session: 1 SO Selbstoptimierte Zustandsüberwachung für die Prognose von Fehlzuständen für Windkraftanlagen SO-Pro (Resolto)

Session: 1 SO Selbstoptimierte Zustandsüberwachung für die Prognose von Fehlzuständen für Windkraftanlagen SO-Pro (Resolto) Session: 1 SO Selbstoptimierte Zustandsüberwachung für die Prognose von Fehlzuständen für Windkraftanlagen SO-Pro (Resolto) 06. Juli 2016 Bielefeld www.its-owl.de Agenda Abschlusspräsentation Einführung

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen 1 J. Fürnkranz Data Mining und maschinelles Lernen Johannes Fürnkranz juffi@ke.tu-darmstadt.de 2 J. Fürnkranz Inhalt Einführung in maschinelles Lernen und Data Mining mit Schwerpunkt auf symbolisch/logischen

Mehr

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG DB Fernverkehr AG Dr.-Ing. Axel Schulz, Dr. Matthias Platho P.FMB 2, DB Fernverkehr AG Frankfurt, 22.05.2015 Motivation An meinem

Mehr

Extensible Visualization

Extensible Visualization Extensible Visualization Oliver Linder Client Technical Professional 2013 IBM Corporation Agenda Vergleich von Visualierungsansätzen IBM Rapidly Adaptive Visualization Engine Ablauf Quelle (Analyticszone.com)

Mehr

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ

Mehr

Sports Data Mining. The Field and Methodology. Sublogo. 24.05.2014 Fachbereich Informatik Prof. Johannes Fürnkranz 1

Sports Data Mining. The Field and Methodology. Sublogo. 24.05.2014 Fachbereich Informatik Prof. Johannes Fürnkranz 1 Sports Data Mining The Field and Methodology 24.05.2014 Fachbereich Informatik Prof. Johannes Fürnkranz 1 Definition Hierarchie für Sport und Sportdatenbeziehungen Eins kein Zusammenhang Zwei Domain-Experten

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Dipl.-Ing. Martin Vogel Büro: A2-18 b Telefon: Sprechzeit: dienstags & donnerstags, 13:30-15:30 Uhr

Dipl.-Ing. Martin Vogel Büro: A2-18 b Telefon: Sprechzeit: dienstags & donnerstags, 13:30-15:30 Uhr Vorstellung Prof. Dr.-Ing. Gudrun Breitzke Lehrgebiete im Bachelor-Studiengang: Ingenieurinformatik (1. Semester) Mathematik (1. und 2. Semester) CAD (2. Semester) Büro: A2-18 a Telefon: 0234 32-10206

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Information Mining - Einführung

Information Mining - Einführung Information Mining - Einführung Norbert Fuhr Abteilung Informatik und Angewandte Kognitionswissenschaften Fachgebiet Informationssysteme norbert.fuhr@uni-due.de 1 Aufgabenstellungen im Data Mining Klassifikation

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Algorithmische Geometrie 1. Einführung

Algorithmische Geometrie 1. Einführung Algorithmische Geometrie 1. Einführung JProf. Dr. Heike Leitte Computergraphik und Visualisierung Algorithmische Geometrie Veranstaltung: 2 SWS Vorlesung: Mi, 9:15 10:45 1 SWS Übung: Do 14:00 16:00 Übungen:

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Einführung in die Praktische Informatik WS 09/10

Einführung in die Praktische Informatik WS 09/10 Einführung in die Praktische Informatik WS 09/10 Prof. Dr. Christian Sengstock Institut für Informatik Neuenheimer Feld 348 69120 Heidelberg http://dbs.ifi.uni-heidelberg.de sengstock@informatik.uni-heidelberg.de

Mehr

SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH

SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH GERHARD SVOLBA COMPETENCE CENTER ANALYTICS WIEN, 17. NOVEMBER 2015 SAS CONTEXTUAL ANALYSIS 14.1 EIN BLICK IN DIE PRODUKTBESCHREIBUNG

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen

Mehr

Software und Visualisierungen. Erich Schubert, Dr. Arthur Zimek. 2013-0X-XX KDD Übung

Software und Visualisierungen. Erich Schubert, Dr. Arthur Zimek. 2013-0X-XX KDD Übung Software und Visualisierungen Erich Schubert, Dr. Arthur Zimek Ludwig-Maximilians-Universität München 2013-0X-XX KDD Übung Ein recht einfacher Datensatz, online unter: http://aima.cs.berkeley.edu/data/iris.csv

Mehr

Quantitative Methoden der Betriebswirtschaftslehre I Überblick

Quantitative Methoden der Betriebswirtschaftslehre I Überblick Quantitative Methoden der Betriebswirtschaftslehre I Überblick Prof. Dr. Norbert Trautmann Universität Bern Frühjahrssemester 2016 Gliederung 1 2 3 4 5 Prof. Dr. Norbert Trautmann, Frühjahrssemester 2016

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Begleitendes Praktikum zu Computer Vision und Mustererkennung: Vertiefung

Begleitendes Praktikum zu Computer Vision und Mustererkennung: Vertiefung Begleitendes Praktikum zu Computer Vision und Mustererkennung: Vertiefung WS11/12 Übersicht Kontakt Aufgaben Bibliotheken Hinweise zu C# Kontakt Internet: http://cvpr.unimuenster.de/teaching/ws11/praktikumcomputervisionundmustererkennungws11/

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Diskrete Strukturen Tutorium I 29. Oktober Tim Weißker

Diskrete Strukturen Tutorium I 29. Oktober Tim Weißker Diskrete Strukturen Tutorium I 29. Oktober 2015 Tim Weißker Willkommen Chennaiyin FC vs. Athlético de Kolkata, Chennai, Indien (Oktober 2015) 2 Diskrete Strukturen - Tutorium I Willkommen Chennaiyin FC

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Personalisierung internetbasierter Handelsszenarien. Matthias Pretzer

Personalisierung internetbasierter Handelsszenarien. Matthias Pretzer Matthias Pretzer matthias.pretzer@informatik.uni-oldenburg.de http://diko-project.de/ Fachbereich Informatik Abteilung Informationssysteme Prof. Dr. Appelrath Inhalt: Motivation Grundlagen Anwendungsszenario

Mehr

Datenbanken und Informationssysteme. Datenbanken und Informationssysteme

Datenbanken und Informationssysteme. Datenbanken und Informationssysteme Datenbanken und Informationssysteme Wolfgang Menzel: Natürlichsprachliche Systeme (NATS) Norbert Ritter: Datenbanken und Informationssysteme (IS) NATS Ziele der Vorlesung (1) Vermittlung von Grundlagen-

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Wolfgang Menzel: Natürlichsprachliche Systeme (NATS) Norbert Ritter: Datenbanken und Informationssysteme (IS) NATS Ziele der Vorlesung (1) Vermittlung von Grundlagen-

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

Programmieren I. Überblick. Institut für Angewandte Informatik. KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Programmieren I. Überblick.  Institut für Angewandte Informatik. KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft Programmieren I Überblick KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Übersicht Modul Programmieren Programmieren I (1. Semester) 4 Vorlesungs- und Übungsstunden / Woche 1 Stunde

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

kultur- und sozialwissenschaften

kultur- und sozialwissenschaften Bernward Tewes unter Mitarbeit von Hans-Joachim Mittag und Hans-Georg Sonnenberg Einführung in SPSS mit Ausblicken auf die freie Statistiksoftware R kultur- und sozialwissenschaften Das Werk ist urheberrechtlich

Mehr

Vorlesung Software Engineering

Vorlesung Software Engineering Vorlesung Software Engineering Kapitel 4 Qualitätsmanagement und Software-Metriken Software-Metriken mittels Werkzeug Understand - 1 - Neues Projekt anlegen New Project... - 2 - Neues Projekt anlegen Auswahl

Mehr

NI-TDM-Datenformat. Komfortables Arbeiten mit TDM-Dateien in LabVIEW

NI-TDM-Datenformat. Komfortables Arbeiten mit TDM-Dateien in LabVIEW NI-TDM-Dateiformat NI-TDM-Datenformat Im Verlauf des gesamten Entwicklungsprozesses für ein neues Produkt werden große Mengen technischer Daten erzeugt sei es bei der Simulation bestimmter Vorgänge oder

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Sports Data Mining. Tools and Systems for Sports Data Analysis

Sports Data Mining. Tools and Systems for Sports Data Analysis Sports Data Mining Tools and Systems for Sports Data Analysis Inhalt 1. Überblick 2. Tools a. Spezielle b. Allgemeine 3. Anwendungsbeispiel Wieso spezielle Tools? Video Analysen Benutzbarkeit Vorschläge

Mehr

Computergraphik I. Organisatorisches. G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

Computergraphik I. Organisatorisches. G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de Computergraphik I Organisatorisches G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de Voraussetzungen Ein wenig Mathematik Trigonometrie Lineare Algebra: Rechnen mit Vektoren und

Mehr

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013 Forschunsprojekte und Independent Coursework Prof. Dr. Christian Herta 29. Januar 2013 Forschungsgebiete Suchtechnologie, Text- und Webmining Verarbeitung unstrukturierter Daten, insbesondere Text Large

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Einladung zu den IBM SPSS Data und Text Mining Tagen Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Lassen Sie Daten und Texte für sich arbeiten mit Smarter Analytics

Mehr

Kundenwissen für den Energieversorger der Zukunft

Kundenwissen für den Energieversorger der Zukunft Kundenwissen für den Energieversorger der Zukunft Dr. Leading Tobias customer Graml insights CTO company tobias.graml@ben-energy.com for utilities in Europe Sechs Jahre Expertise in Datenanalyse und Kundenverhalten

Mehr

Richtlinien und Hinweise für. Seminararbeiten

Richtlinien und Hinweise für. Seminararbeiten Richtlinien und Hinweise für Seminararbeiten Lehrstuhl für VWL (Wirtschaftspolitik, insbes. Industrieökonomik) Ökonomie der Informationsgesellschaft Prof. Dr. Peter Welzel Gliederung Die folgenden Richtlinien

Mehr

Dynamische Optimierung im Dienstleistungsbereich

Dynamische Optimierung im Dienstleistungsbereich Dynamische Optimierung im Dienstleistungsbereich Univ.-Prof. Dr. Jochen Gönsch Universität Duisburg-Essen Mercator School of Management Lehrstuhl für Betriebswirtschaftslehre, insb. Service Operations

Mehr

Neue Studie zum digitalen Universum entdeckt Big Data Gap

Neue Studie zum digitalen Universum entdeckt Big Data Gap 13. Dezember 2012 Neue Studie zum digitalen Universum entdeckt Big Data Gap Big Data Gap 23 Prozent (643 Exabyte) des digitalen Universums könnten nützliche Erkenntnisse bringen. Derzeit sind nur drei

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Enterprise Content Management

Enterprise Content Management Enterprise Content Management Dr.-Ing. Raymond Bimazubute Lehrstuhl für Künstliche Intelligenz Friedrich Alexander Universität Erlangen-Nürnberg Email: raymond.bimazubute@informatik.uni-erlangen.de Vorbemerkungen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard 1.1 Vorlesung Zeit und Ort: Mittwochs 16.00 18.00 Uhr Gebäude 101 HS 00-036 Informationen zur Vorlesung,

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

BORRMA-web. Boschung Road & Runway Management

BORRMA-web. Boschung Road & Runway Management BORRMA-web Boschung Road & Runway Management Die Software BORRMA-web sammelt die Daten von Glatteisfrühwarnsystemen, Taumittelsprühanlagen und Fahrzeugen in einer zentralen Datenbank. Die Daten werden

Mehr

Visual Business Analytics Visueller Zugang zu Big Data

Visual Business Analytics Visueller Zugang zu Big Data Visual Business Analytics Visueller Zugang zu Big Data Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:

Mehr

Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07)

Fragenkatalog zur Vorlesung Grundlagen des Data Mining (WS 2006/07) Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07) 1. Grenzen Sie die Begriffe "Daten" und "Wissen" mit je 3 charakteristischen Eigenschaften gegeander ab. 2. Nennen Sie vier verschiedene

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Interdisziplinäres Seminar. Multivariate Statistik bei psychologischen Fragestellungen. Markus Bühner und Helmut Küchenhoff WS 2008/09

Interdisziplinäres Seminar. Multivariate Statistik bei psychologischen Fragestellungen. Markus Bühner und Helmut Küchenhoff WS 2008/09 Interdisziplinäres Seminar Multivariate Statistik bei psychologischen Fragestellungen Markus Bühner und Helmut Küchenhoff WS 2008/09, Homepage: http://www.stat.uni-muenchen.de/~helmut/seminar_0809.html

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Business Breakfast im Café Landtmann. 22. November 2016

Business Breakfast im Café Landtmann. 22. November 2016 Business Breakfast im Café Landtmann 22. November 2016 9:00 Uhr: EINLASS 9:30 Uhr: BEGRÜßUNG Wolfgang Kern / Qlik Elfriede Harrer / Harrer & Partner 10:00 Uhr QLIK SENSE // NEUE FEATURES UND MEHR Christof

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

Datenvisualisierung ohne Grenzen?

Datenvisualisierung ohne Grenzen? Datenvisualisierung ohne Grenzen? Zürich explorer Schweizer Tage der öffentlichen Vaduz 20. September 2012 Marco Sieber Agenda Ausgangslage Evaluation von Standardprogrammen Möglichkeiten und Grenzen von

Mehr

Semantic Web Technologies I

Semantic Web Technologies I Semantic Web Technologies I Lehrveranstaltung im WS11/12 Dr. Elena Simperl PD Dr. Sebastian Rudolph M. Sc. Anees ul Mehdi Ontology Engineering Dr. Elena Simperl XML und URIs Einführung in RDF RDF Schema

Mehr

2. Datenvorverarbeitung

2. Datenvorverarbeitung Kurzreferat Das Ziel beim Clustering ist es möglichst gleich Datensätze zu finden und diese in Gruppen, sogenannte Cluster zu untergliedern. In dieser Dokumentation werden die Methoden k-means und Fuzzy

Mehr