Anwendung der Predictive Analytics

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anwendung der Predictive Analytics"

Transkript

1 TDWI Konferenz mit Track 2014 München, Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, Freiberg (Sachsen), Deutschland

2 Die Dozenten Univ. Prof. Dr. rer. oec. Carsten Felden Dekan Fakultät für Wirtschaftswissenschaften, insbes. Internationale Ressourcenwirtschaft Institut für Wirtschaftsinformatik an der Technischen Universität Bergakademie Freiberg (Sachsen). Geschäftsführer der Marmeladenbaum GmbH (www.marmeladenbaum.de) Dipl. Wirt. Inf. Claudia Koschtial Leitung des Projektcluster ebusiness (escience Sachsen) Geschäftsführerin der Marmeladenbaum GmbH Carsten Felden Claudia Koschtial 2

3 Agenda Einführung und Einordnung Business Analytics Begriffe Analytische Fähigkeiten Hype Cycle Analytischer Prozess Praktischer Teil Carsten Felden Claudia Koschtial 3

4 Eine kurze Geschichte der Business Analytics Business Analytics beschreibt den Prozess der so genannten Datenveredelung. Es ist ein strategisches Werkzeug für Entscheidungsträger in Unternehmen. Analyticslösungen kommen branchenübergreifend zum Einsatz. Ziel ist es, Antworten nicht nur auf die Frage: Was war?, sondern auch: Was wird sein? zu finden. [Felden, 2009] Carsten Felden Claudia Koschtial 4

5 Rollen der Predictive Analytics in der Wissenschaft Generierung neuer Theorien. Maßnahmenentwicklung. Vergleich konkurrierender Theorien. Verbesserung existierender Modelle. Untersuchung von Relevanz. Untersuchung der Vorhersagbarkeit eines empirischen Phänomens. Carsten Felden Claudia Koschtial 5

6 Vier Typen der analytischen Fähigkeit nach Gartner Carsten Felden Claudia Koschtial 6

7 Hype Cycle für Business Intelligence (2007) Carsten Felden Claudia Koschtial 7

8 Hype Cycle für Business Intelligence (2011) based analytics and business intelligence marketupdate august 2011/ Carsten Felden Claudia Koschtial 8

9 Hype Cycle für Business Intelligence (2013) &url=http%3a%2f%2fbayanbox.ir%2fid%2f %3fdownload&ei=fgknu83kcqnk0awi_o DAAg&usg=AFQjCNHm3Dkv GWKz8DwaSK83TMeGWHvNQ&bvm=bv ,d.d2k Carsten Felden Claudia Koschtial 9

10 Hype Cycle für Emerging Technologies (2014) content/uploads/hype cycle pr.pngpv4a3db6f9c029a4db.png Carsten Felden Claudia Koschtial 10

11 Statistische Grundlagen Maschinelles Lernen und Data Mining Knowledge Discovery in Databases (KDD) beschreibt den.. non trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.. [Fayyad et al. 1996] Prozess, umfangreiche Datenbestände implizit vorhandenes Wissen entdecken Knowledge Extraction Data Archaeology Data Analysis Carsten Felden Claudia Koschtial 11

12 Statistische Grundlagen Prozessmodelle Knowledge Discovery in Databases Data Mining Interpretation Wissen Transformation Muster Vorverarbeitung Auswahl Transformierte Daten Vorverarbeitete Daten Datenbank Zieldatenbestand Carsten Felden Claudia Koschtial 12

13 Statistische Grundlagen Klassische Aufgabenstellungen Aufgaben Verfahren Klassifikation/ Regression Clusterung Künstliche Neuronale Netze Clusterverfahren Abhängigkeitsanalyse Entscheidungsbäume Assoziationsanalyse Carsten Felden Claudia Koschtial 13

14 Agenda Einführung und Einordnung Business Analytics Begriffe Analytische Fähigkeiten Hype Cycle Analytischer Prozess Praktischer Teil Carsten Felden Claudia Koschtial 14

15 Barrieren bei der Nutzung Komplexität. Unternehmerische Daten. Intensiver Verarbeitungsaufwand. Expertise der Anwender. Interoperabilität. Preis der Software Carsten Felden Claudia Koschtial 15

16 Unterschiede und Gemeinsamkeiten Unterschiede Grafische Modellierung der Prozessschritte Parallele Bildung und Bewertung von Modellen Umfang der möglichen Datenvorverarbeitung Anzahl der möglichen Modelle Gemeinsamkeiten Keine Programmierkenntnisse mehr notwendig Vorgefertigte Lösungen, die direkt auf Daten anwendbar sind Viele Inputformate Carsten Felden Claudia Koschtial 16

17 Predictive Analytics in der Praxis Marktdateninformationssystem Break up Analysis Kundendatenanalyse Carsten Felden Claudia Koschtial 17

18 Marktdateninformationssystem Carsten Felden Claudia Koschtial 18

19 Marktdateninformationssystem Carsten Felden Claudia Koschtial 19

20 ETL Prozess Carsten Felden Claudia Koschtial 20

21 Analytics Carsten Felden Claudia Koschtial 21

22 Predictive Analytics in der Praxis Marktdateninformationssystem Break up Analysis Kundendatenanalyse Carsten Felden Claudia Koschtial 22

23 Grundlagen Relevante Positionen Anhang: für detaillierte Werte Cut off Elemente Forderungen gegen Gesellschafter Immaterielles Anlagevermögen (AV) Materielles AV: Anlagevermögen im assets in process of formation and advances Finanzielles AV: Eigenkapitalinvestitionen in Tochter, verbundenen oder Elternunternehmen Finanzielles AV: Forderungen gegen Tochter, verbundenen oder Elternunternehmen Finanzielles AV: Forderungen gegen Dritte: andere verbundene Unternehmen, andere Anzahlungen für Aktiva Finanzielles AV: eigene Aktien Umlaufvermögen (UV) Bestände: laufende Verträge, offene Vorauszahlungen Forderungen (UV): Forderungen gegen Tochterunternehmen, verbundenen oder Elternunternehmen Forderungen (UV): Vorauszahlungen an Steuerzahlungen Forderungen (UV): Forderungen gegen Dritte: Forderungen von anderen verbundenen Unternehmen, vorausbezahlte DL Forderungen (UV): Noch nicht gestellte Rechnungen Kurzfristiges UV: Investitionen in Tochterunternehmen, verbundenen und Elternunternehmen Kurzfristiges UV: eigene Aktien Vorauszahlungen und amortisierbare Disagio auf ausgegebene Verbindlichkeiten Zu zahlende Dividenden Risiken: Verbindlichkeiten aus Bürgschaften, Wechsel und Scheckbürgschaften (bspw. Bankkredite und Tochtergesellschaften), Haftungsverhältnisse aus der Bestellung von Sicherheiten für fremde Verbindlichkeiten, Forderungen für Kredite von Tochterunternehmen Bericht Bilanz Bilanz Bilanz Bilanz Bilanz Anhang Bilanz Bilanz Bilanz Bilanz Anhang Anhang Bilanz Bilanz Bilanz, Anhang Register of shareholders resolutions Anhang Carsten Felden Claudia Koschtial 23

24 Grundlagen Ergebnis: Break Up Value Der resultierende Break Up Wert ist: positiv, wenn das Unternehmen noch all seine Verbindlichkeiten erfüllen kann. Negativ, wenn das Unternehmen nicht mehr all seine Verbindlichkeiten erfüllen kann. Carsten Felden Claudia Koschtial 24

25 1046 Firmen. Projekt Datengrundlage 204 Firmen wurden gelöscht, da die Bilanzdaten nicht verfügbar waren: Einzelunternehmen oder Firmen ohne Daten. 842 Firmen wurden untersucht. 229 Firmen bei denen die detaillierte Aussage #NA oder leer war > kein Benchmark möglich (BUV: 151 nicht Bankrott, 78 Bankrott; Altmann: 115 nicht bankrott, 48 grey zone, 66 Bankrott). Carsten Felden Claudia Koschtial 25

26 Predictive Analytics in der Praxis Marktdateninformationssystem Break up Analysis Kundendatenanalyse Carsten Felden Claudia Koschtial 26

27 Datenaufbereitung / ETL Carsten Felden Claudia Koschtial 27

28 Mustersuche und Vorhersage Carsten Felden Claudia Koschtial 28

29 Vielen Dank! Fragen? freiberg.de freiberg.de Carsten Felden Claudia Koschtial 29

Anwendung der Business Analytics

Anwendung der Business Analytics Anwendung der Business Analytics TDWI 2013 München Prof. Dr. Carsten Felden Dipl.-Wirt.-Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Grundseminar HAW Master Informatik 18.04.2017 Inhaltsübersicht Data Mining & Begriffswelt des Data Mining Klassifikation & Klassifikatoren

Mehr

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze INAUGURALDISSERTATION zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften an der Wirtschaftswissenschaftlichen

Mehr

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009 Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008 1. Übung Knowledge Discovery Wintersemester 2008/2009 Vorbemerkungen Vorlesungsfolien und Übungsblätter können Sie im Internet

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch?

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch? Oberseminar Data Mining 07. April 2010 Methodik des Data Mining Knowledge Discovery In Databases oder auch Data Mining - Der moderne Goldrausch? Data Mining...? Hochleistungsrechnen Geoinformationssysteme

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen

Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen Die Integration von Data-Mining in die Geschäftsprozesse von Versicherungsunternehmen Systematische Potenzialanalyse und ein generisches Prozessmodell Berlin, 22.03.2006 Andreas Reuß Universität Ulm Sektion

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note:

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note: Fakultät für Wirtschaftswissenschaft Matrikelnr: Name: Vorname: : Modul 32711 Business Intelligence Termin: 28.03.2014, 9:00 11:00 Uhr Prüfer: Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

Maschinelles Lernen und Data Mining: Methoden und Anwendungen

Maschinelles Lernen und Data Mining: Methoden und Anwendungen Maschinelles Lernen und Data Mining: Methoden und Anwendungen Eyke Hüllermeier Knowledge Engineering & Bioinformatics Fachbereich Mathematik und Informatik GFFT-Jahrestagung, Wesel, 17. Januar 2008 Knowledge

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Schwerpunkt Wirtschaftsinformatik. Prof. Stefan Lessmann

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Schwerpunkt Wirtschaftsinformatik. Prof. Stefan Lessmann Orientierungsveranstaltung für Studierende der Bachelorstudiengänge BWL und VWL Schwerpunkt Wirtschaftsinformatik Prof. Stefan Lessmann Agenda Schwerpunkt Wirtschaftsinformatik Gegenstand der Wirtschaftsinformatik

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Tutorium Investition & Finanzierung Tutorium 5: Unternehmensfinanzierung und Außenfinanzierung in Form der Beteiligungsfinanzierung

Tutorium Investition & Finanzierung Tutorium 5: Unternehmensfinanzierung und Außenfinanzierung in Form der Beteiligungsfinanzierung Fachhochschule Schmalkalden Fakultät Informatik Professur Wirtschaftsinformatik, insb. Multimedia Marketing Prof. Dr. rer. pol. Thomas Urban Tutorium Investition & Tutorium 5: Unternehmensfinanzierung

Mehr

Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods

Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods von Constance Scheffler Wissenschaftliche Gesellschaft für Innovatives Marketing e.v.

Mehr

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels TDWI Konferenz München, 24.06.2014 M.Sc.Susann Dreikorn Institut für Wirtschaftsinformatik, 2014 Agenda

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Einführung in Data-Mining mit analytischen Funktionen und R

Einführung in Data-Mining mit analytischen Funktionen und R Einführung in Data-Mining mit analytischen Funktionen und R Vladimir Poliakov Nürnberg Schlüsselworte Analytics, Statistik, OLAP, Data-Mining, R, R Software, R Commander, RStudio, Rattle Package, analytische

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Predictive Modeling mit künstlich neuronalen Netzen

Predictive Modeling mit künstlich neuronalen Netzen München, 22. 24. Juni 2015 Predictive Modeling mit künstlich neuronalen Netzen Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, 09599 Freiberg

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com

mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com Wer sind wir? Wir sind ein unabhängiges Beratungs- und Analystenhaus für Business Intelligence Beratungs-

Mehr

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Dr. Thomas Bernard Fraunhofer-Institut für Systemtechnik, Optronik und Bildauswertung Karlsruhe HANNOVER

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Jochen Heßler, 16.03.2015 2002 Gegründet in Freiburg, Deutschland 2002 Heute Büros in Freiburg, Frankfurt, Düsseldorf, Paris, Boston

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR

UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR drd. ing. Matthias Marcus Wanner Das empirische Prozessmanagement und die semantische Prozessmodellierung zur

Mehr

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Einordnung der Begriffe Business Intelligence Strategic Association Management Controlling and Data Warehousing Data Mining, Knowledge

Mehr

1.2 Beweis, Theorien, Hypothesen und wissenschaftliche Methodik 9

1.2 Beweis, Theorien, Hypothesen und wissenschaftliche Methodik 9 Inhalt Vorwort IX 1 Die psychologische Fachsprache 1 1.1 Wie Sie die Fachsprache meistern 2 Vom Nutzen der psychologischen Fachbegriffe 2 Wie man ein Glossar anlegt 5 Begriffe, bei denen Vorsicht geboten

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Einführung in Data Mining Ulf Leser Wissensmanagement in der Bioinformatik Wo sind wir? Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung des

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Seminar im Sommersemester 2005 DATA WAREHOUSING. Data Mining. Christian Knappe. Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena

Seminar im Sommersemester 2005 DATA WAREHOUSING. Data Mining. Christian Knappe. Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena Seminar im Sommersemester 2005 DATA WAREHOUSING Data Mining Christian Knappe Fachrichtung Wirtschaftsinformatik Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Lehrstuhl für

Mehr

Einführung in Data Mining anhand des Modells CRISP-DM

Einführung in Data Mining anhand des Modells CRISP-DM Einführung in Data Mining anhand des Modells CRISP-DM Seminarvortrag Linnea Passing Seminar, Scientific Programming, FH Aachen Stand: 11.01.2011 Rechen- und Kommunikationszentrum (RZ) Agenda Motivation

Mehr

Spezialisierungskatalog

Spezialisierungskatalog Spezialisierungskatalog Inhaltsverzeichnis: 1. Friedrich Schiller Universität 2. TU Ilmenau 3. FH Erfurt 4. FH Jena 5. FH Nordhausen 6. FH Schmalkalden 7. BA Gera 8. BA Eisenach 1. Friedrich-Schiller-Universität

Mehr

Supply Risk Managements

Supply Risk Managements Frühwarnsysteme als Bestandteil eines effektiven Supply Risk Managements Dr. Andreas Wels BME-/IHK-Forum Risikomanagement im Einkauf, Chemnitz, 25ster September 2008 Dr. Andreas Wels Frühwarnsysteme als

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann. Lehrstuhl für Wirtschaftsinformatik II

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann.  Lehrstuhl für Wirtschaftsinformatik II Kurzinformation zur Vorlesung Data und Web Mining Univ.-Prof. Dr. Ralph Bergmann www.wi2.uni-trier.de - I - 1 - Die Ausgangssituation (1) Unternehmen und Organisationen haben enorme Datenmengen angesammelt

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

Der Gartner Hype Cycle als. prognostischer Hintergrund

Der Gartner Hype Cycle als. prognostischer Hintergrund Der Gartner Hype Cycle als 2 prognostischer Hintergrund Die Digitale Revolution steht nicht bevor, sondern sie entfaltet in vielen Bereichen schon die Kraft der schöpferischen Zerstörung. Eine wichtige

Mehr

Department Geoinformation in Environmental Planning Einsatz von Data Mining ein nichtparametrischer Klassifikator in der Umweltanalyse

Department Geoinformation in Environmental Planning Einsatz von Data Mining ein nichtparametrischer Klassifikator in der Umweltanalyse Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.v. Arbeitskreis Auswertung von Fernerkundungsdaten 26 Oktober, Halle (Saale) Department Einsatz von Data Mining ein

Mehr

Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte

Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte Bachelorarbeit Institut für Informatik der Technischen Universität München 4. Juli 2011 Agenda 1 Einführung: Tag Cloud 2

Mehr

CORPORATE FACTSHEET ACTIONABLE INSIGHTS DELIVERED FAST.

CORPORATE FACTSHEET ACTIONABLE INSIGHTS DELIVERED FAST. CORPORATE FACTSHEET ACTIONABLE INSIGHTS DELIVERED FAST. Process Analytics Factory ein weltweit einmaliges Analysezentrum für SAP-basierte Geschäftsprozesse WORKING CAPITAL Unlock Cash from Working Capital

Mehr

PNML-notierte Objekt-Petrinetze zur Integration von Prozess- und Organisationsmodellen

PNML-notierte Objekt-Petrinetze zur Integration von Prozess- und Organisationsmodellen Gefördert vom PNML-notierte Objekt-Petrinetze zur Integration von Prozess- und Organisationsmodellen Th. Theling 1, K. Sarshar 2, P. Loos 2, M. Jerrentrup 3 1 Johannes Gutenberg-Universität Mainz 2 Institut

Mehr

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Dr. Thomas Bernard 6. Karlsruher Automations-Treff (KAT) Leit- und Automatisierungstechnik der Zukunft Karlsruhe,

Mehr

THE KNOWLEDGE PEOPLE. CompanyFlyer.indd 1 07.03.2016 11:48:05

THE KNOWLEDGE PEOPLE. CompanyFlyer.indd 1 07.03.2016 11:48:05 THE KNOWLEDGE PEOPLE CompanyFlyer.indd 1 07.03.2016 11:48:05 BE SMART IT-CONSULTING Smartes IT-Consulting für die Zukunft: Agilität, Dynamische IT, Komplexitätsreduzierung, Cloud, Industrie 4.0, Big Data

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

Anwendungen des Data Mining in der Praxis. Seminarvortrag von Holger Dürr

Anwendungen des Data Mining in der Praxis. Seminarvortrag von Holger Dürr Anwendungen des Data Mining in der Praxis Seminarvortrag von Holger Dürr Seminar Data Mining Wintersemester 2003/20042004 Professor Dr. Schweigert - Universität Ulm Themenübersicht Data Mining - Kleine

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Inhaltsverzeichnis. Holger Schrödl. Business Intelligence mit Microsoft SQL Server 2008. BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1

Inhaltsverzeichnis. Holger Schrödl. Business Intelligence mit Microsoft SQL Server 2008. BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1 sverzeichnis Holger Schrödl Business Intelligence mit Microsoft SQL Server 2008 BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41210-1

Mehr

Talanx Asset Management GmbH Jahresabschluss 2012. eine Marke der

Talanx Asset Management GmbH Jahresabschluss 2012. eine Marke der Talanx Asset Management GmbH Jahresabschluss 2012 eine Marke der Bilanz. Bilanz zum 31. Dezember 2012 A K T I V A 31.12.2012 31.12.2012 31.12.2011 A. Anlagevermögen I. Immaterielle Vermögensgegenstände

Mehr

»Controlling in der Krankenversicherung« 5. Arbeitstreffen Leipzig, 26. 27. November 2015

»Controlling in der Krankenversicherung« 5. Arbeitstreffen Leipzig, 26. 27. November 2015 USER GROUP»Controlling in der Krankenversicherung«5. Arbeitstreffen Leipzig, 26. 27. November 2015 Mitglieder der TERMIN BEGINN ENDE 26. 27. November 2015 26. November, 9.30 Uhr 27. November, 14.30 Uhr

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Einführung in Data Mining Ulf Leser Wissensmanagement in der Bioinformatik Wo sind wir? Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung des

Mehr

Analytisches CRM in der Automobilindustrie

Analytisches CRM in der Automobilindustrie Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

2.0 aus Erfahrung lernen

2.0 aus Erfahrung lernen Enterprise 20Fallstudien 2.0 aus Erfahrung lernen Prof. Dr. Andrea Back Institut für Wirtschaftsinformatik, Universität St. Gallen Prof. Dr. Michael Koch Forschungsgruppe Kooperationssysteme, Universität

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement

Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement Steuerungsverfahren und ihre Datenstrukturen 02 - Datenmanagement 1 Übersicht - Datenmanagement 1 Übersicht - Datenmanagement...1 2 Übersicht: Datenbanken - Datawarehouse...2 3 Übersicht: Data Mining...11

Mehr

Vorläufiger Prüfungsplan für das Sommersemester 2016

Vorläufiger Prüfungsplan für das Sommersemester 2016 Allgemeiner Hinweis: Dieser Plan ist vorläufig, unverbindlich und betrifft nur die schriftlichen Prüfungen. Den verbindlichen Prüfungsplan inkl. mündlicher Prüfungen mit Prüfungsdatum, -zeit und -ort finden

Mehr

Buchführung und Bilanzierung Einführung

Buchführung und Bilanzierung Einführung Buchführung und Bilanzierung Einführung Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen - Studiengang Wirtschaftsingenieurwesen - - Studiengang Automobilwirtschaft - Wintersemester

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 348

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 348 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 348 Konzeption eines Projektvorgehensmodells für die Business-Intelligence-Strategieberatung

Mehr

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ

Mehr

Optimiertes IT Service Management durch Predictive Analytics. München, 23.06.2015 Dr. Katrin Zaiß, Kay Kasperkowitz TDWI Konferenz 2015

Optimiertes IT Service Management durch Predictive Analytics. München, 23.06.2015 Dr. Katrin Zaiß, Kay Kasperkowitz TDWI Konferenz 2015 Optimiertes IT Service Management durch Predictive Analytics München, 23.06.2015 Dr. Katrin Zaiß, Kay Kasperkowitz TDWI Konferenz 2015 Agenda Herausforderungen im IT Service Management (ITSM) Predictive

Mehr

IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung

IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung Evaluieren & Erkennen, Weiterentwickeln & Reporten Datenerhebung, Datenanalyse und Data Mining

Mehr

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 IMPULS AM VORMITTAG Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 INHALTE Teradata? Wer sind denn die überhaupt? Big Data? Wirklich? Wo? Die vorgegebenen Impulsfragen: 1.

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data

Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data Institut für Finanz- und Aktuarwissenschaften Lise-Meitner-Str. 14 89081 Ulm Oktober 2015 www.ifa-ulm.de Einführung Mit

Mehr

Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008

Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008 Ermittlung dynamischer Fahrzeiten für die City-Logistik Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008 Inhalt Einführung Planung in der City-Logistik Erhebung dynamischer Fahrzeiten Konzeption

Mehr

Sonstiges Wahlfach Wirtschaftsinformatik

Sonstiges Wahlfach Wirtschaftsinformatik Sonstiges Wahlfach Wirtschaftsinformatik Anhang Nr. 48: Wirtschaftsinformatik Das Fach ist bestanden, wenn 24 Leistungspunkte erworben wurden. Veranstaltungsform SWS Turnus Leistungspunkte Prüfungsform

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

PROF. DR. BRIGITTE WERNERS UNTERNEHMENSFORSCHUNG UND RECHNUNGSWESEN

PROF. DR. BRIGITTE WERNERS UNTERNEHMENSFORSCHUNG UND RECHNUNGSWESEN PROF. DR. BRIGITTE WERNERS UNTERNEHMENSFORSCHUNG UND RECHNUNGSWESEN INFORMATIONEN ZU DEN WAHLPFLICHTMODULEN IM BACHELORSTUDIENGANG IN MANAGEMENT & ECONOMICS AGENDA Was ist OR / Management Science Wer kann

Mehr

Warum. Natural AnalyticsTM. wichtig ist

Warum. Natural AnalyticsTM. wichtig ist Warum Natural AnalyticsTM wichtig ist Wir sind alle geborene Analytiker. Die Menschheit entwickelte sich in einer Welt voll komplexer Informationen und wichtiger Entscheidungen. Wir erkennen Muster und

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr