TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 4 (14. November 2003) Präsenzaufgaben Aufgabe 20. Wadde-hadde-Du-de-da? Gegeben seien die folgenden Gruppen und Teilmengen. Entscheiden Sie, welche der Teilmengen Untergruppen sind: 1.) Gegeben sei die Gruppe (Z 12, 12 ). {0, 2, 4, 6, 8, 10} {} {0} {0, 6} {0, 4, 8} {0, 3, 5, 8} {0, 3, 6, 9} {6} 2.) Gegeben sei die Gruppe (R, +). {a + b 2 a, b Z} {a + b 5 a, b Q} {a + b 2 a Q, b R} {0, 2, 4, 6, 8, 10} R\Q {x R 5x + 1 = 0} {x R 5x = 0} {2x x Z} Nur die angekreuzten Mengen sind Untergruppen. (Erinnerung an den Satz aus der Vorlesung: Sei G G. (G, ) ist eine Untergruppe von (G, ) genau dann wenn (i) mit a, b G ist auch a b G, (ii) mit a G ist auch a 1 G, (iii) G {}.) 1.) Gegeben sei die Gruppe (Z 12, 12 ). {0, 2, 4, 6, 8, 10} {} (dies ist nicht ungleich der leeren Menge ) {0} {0, 6} {0, 4, 8} {0, 3, 5, 8} (bzgl. 12 nicht abgeschlossen) {0, 3, 6, 9} {6} (bzgl. 12 nicht abgeschlossen) 2.) Gegeben sei die Gruppe (R, +). {a + b 2 a, b Z} {a + b 5 a, b Q} {a + b 2 a Q, b R} {0, 2, 4, 6, 8, 10} (bzgl. + nicht abgeschlossen) R\Q (besitzt kein neutrales Element) {x R 5x + 1 = 0} (= { 1 5 }) {x R 5x = 0} (= {0}) {2x x Z} Aufgabe 21. Transpositionen tun sich zusammen: Gemeinsam sind wir stark. Gegeben sei die Permutation ( π = ) S ) Schreiben Sie π als Produkt von paarweise elementfremden Zyklen. 2.) Stellen Sie π als Produkt von Transpositionen dar. 3.) Welches Signum besitzt π? 4.) Es sei n N. Stellen Sie den Zyklus ( n) S n als Produkt von Transpositionen dar. Welches Signum hat ( n)?

2 1.) π = ( ) ( ) (5 10) ( ) 2.) π = (1 8)(8 4)(4 2) (3 9)(9 12)(12 6) (5 10) (7 11)(11 13)(13 14) 3.) Sign π = ( 1) 10 = 1. 4.) Es ist ( n) = (1 2)(2 3)(3 4)... (n 1 n), und damit Sign( n) = ( 1) n 1. Aufgabe 22. Konjugation ist ein Automorphismus. Es sei (G, ) eine Gruppe. Für ein Element a G definieren wir die Abbildung { G G f a : x a x a 1. Zeigen Sie, dass f a ein Gruppenisomorphismus ist. Wir müssen nachweisen, dass f a injektiv, surjektiv ist, und dass f a (x y) = f a (x) f a (y) für alle x, y G erfüllt ist. f a ist injektiv: Es seien x, y G mit f a (x) = f a (y) gegeben. Dann gilt a x a 1 = a y a 1. Multiplikation der Gleichung mit a 1 von links und mit a von rechts ergibt x = y. f a ist surjektiv: Es sei y G vorgegeben. Dann gilt für x = a 1 y a die Gleichung f a (x) = f a (a 1 y a) = a a 1 y a a 1 = y. f a ist strukturerhaltend: Es seien x, y G. Dann ist f a (x y) = a x y a 1 = a x a 1 a y a 1 = f a (x) f a (y). Hausaufgaben Aufgabe 23. Die Symmetriegruppe des regelmäßigen Vierecks. Wir definieren die drei Abbildungen id, σ, τ : {1, 2, 3, 4} {1, 2, 3, 4} durch id(n) = n und σ(1) = 1, σ(2) = 4, σ(3) = 3, σ(4) = 2, sowie τ(1) = 2, τ(2) = 3, τ(3) = 4, τ(4) = 1. Bestimmen Sie die Menge D aller Abbildungen, die durch alle mögliche Verknüpfungen von id, σ und τ entstehen können, also D = {id, σ, τ, σ σ, σ τ, τ σ, τ τ, σ σ σ, σ σ τ, σ τ σ, σ τ τ,...}. Überprüfen Sie, daß D eine Untergruppe von S 4 ist. Listen Sie möglichst viele Untergruppen von D auf. Zur Vereinfachung der Schreibweise verzichten wir auf das Verknüpfungszeichen. Außerdem schreiben wir z.b. σ 3 statt σσσ. Es ist günstig, σ als Spiegelung des regelmäßigen Vierecks an der Diagonalen durch die Punkte 1 und 3, aufzufassen, und τ als Drehung des regelmäßigen Vierecks um den Winkel π/ σ = τ = Es gilt σ 2 = id, τ 4 = id und τστσ = id, bzw. τσ = στ 3. Dann folgt Die Verknüpfungstafel lautet wie folgt: D = {id, σ, στ, στ 2, στ 3, τ, τ 2, τ 3 }.

3 id σ στ στ 2 στ 3 τ τ 2 τ 3 id id σ στ στ 2 στ 3 τ τ 2 τ 3 σ σ id τ τ 2 τ 3 στ στ 2 στ 3 στ στ τ 3 id τ τ 2 στ 2 στ 3 σ στ 2 στ 2 τ 2 τ 3 id τ στ 3 σ στ στ 3 στ 3 τ τ 2 τ 3 id σ στ στ 2 τ τ στ 3 σ στ στ 2 τ 2 τ 3 id τ 2 τ 2 στ 2 στ 3 σ στ τ 3 id τ τ 3 τ 3 στ στ 2 στ 3 σ id τ τ 2 Dass die Menge D eine Teilmenge von S 4 ist, ist klar, da die Elemente von D alle bijektive Abbildungen von {1,..., 4} nach {1,..., 4} sind. Dass darüber hinaus, die Untergruppeneigenschaft erfüllt ist, ist leicht an der Verknüpfungstafel abzulesen (Wie?). Alle echten Untergruppen von (D, ) sind die folgenden: U 1 = {id} U 2 = {id, σ} U 3 = {id, στ} U 4 = {id, στ 2 } U 5 = {id, στ 3 } U 6 = {id, τ 2 } U 7 = {id, τ, τ 2, τ 3 } U 8 = {id, τ 2, σ, στ 2 } U 9 = {id, τ 2, στ, στ 3 } Ein Beweis der Tatsache, daß dies alle sind, der nicht auf vollständiger Enumeration beruht, übersteigt zur Zeit das in der Vorlesung vorgestellte mathematische Handwerkszeug. Aufgabe 24. Die geheimen Freuden des General N. Bourbaki. Beweisen Sie folgendes Untergruppenkriterium: Es seien (G, ) eine Gruppe und H eine Teilmenge von G. Das Paar (H, ) ist genau dann eine Untergruppe von G, wenn die beiden nachfolgenden Bedingungen gelten: 1. H ist nicht die leere Menge. 2. Für alle x, y H ist x y 1 H, wobei y 1 das (in G gebildete) Inverse zu y ist. Aus der Vorlesung ist bekannt, daß die Teilmenge H G genau dann eine Untergruppe von (G, ) ist, wenn die drei nachfolgenden Bedingungen gelten: a.) Mit a, b H ist auch a b H. b.) Mit a H ist auch a 1 H. c.) H. Wir müssen zwei Implikationen zeigen: Es sei H eine Untergruppe von G, dann erfüllt H die zwei Bedingungen der Aufgabenstellung: Da H eine Untergruppe ist, können wir von der Richtigkeit der Bedingung a.) c.) ausgehen. Bedingung 1. entspricht der Bedingung c.), also ist sie erfüllt, wenn H eine Untergruppe ist. Bedingung 2. ist ebenfalls erfüllt: Mit x, y H ist nach Bedingung b.) auch y 1 H. Mit a.) ergibt sich nun x y 1 H. Es sei H eine Teilmenge von G, die die beiden Bedingungen der Aufgabenstellung erfüllt, dann ist H eine Untergruppe. Bedingung c.) ist erfüllt, weil sie mit Bedingung 1. übereinstimmt. Nach 1. gibt es ein a H. Mit 2. folgt (x = y = a): a a 1 = e H, wobei e das neutrale Element in G ist. Es sei a H. Dann ergibt 2. (x = e, y = a): e a 1 = a 1 H, also ist Bedingung b.) erfüllt.

4 Es seien a, b H. Dann ist, da Bedingung b.) erfüllt ist, auch b 1 H. Mit 2. (x = a, y = b 1 ) bekommen wir a (b 1 ) 1 = a b H, und damit Bedingung a.). Da die Bedingungen a.) c.) gelten, ist H eine Untergruppe von G. Aufgabe 25. Zu schwer. Lucky Luke leitet einen Treck durch das unwegsame Gebirge des bayrischen Voralpenlandes und ruft auf gut Bayrisch: Schmeisst s ois runter, wos nix taugt., wiederholt es aber nochmals: Die Frau hat Recht! Warum ist das Puzzle nicht lösbar? Hinweis: Betrachten Sie die Zahlenfolge 1, 2, 3, 4,..., 13, 15, 14 als ein Element π S 15. Jede Verschiebung der Puzzleelemente entspricht einem anderen Element der S 15. Betrachten Sie nun die Anzahl der Fehlstände einer solchen möglichen Permutation (ignorieren Sie dabei das Loch ), sowie die Zeilennummer des Loches. Was läßt sich über die Summe dieser beiden Zahlen jeweils sagen? ODER: Betrachten Sie die Folge 1, 2, 3, 4,..., 13, 15, 14, Loch als ein Element π S 16. Jede Verschiebung der Puzzleelemente entspricht einem anderen Element der S 16. Betrachten Sie nun die Verschiebung eines Puzzleteils als Transposition mit dem Loch. Was läßt sich über das Signum der zur Startposition gehörenden und der zur gewünschten Endposition gehörenden Permutation aussagen? Für eine gegebene Puzzlekonfiguration sei a 1, a 2,..., a 15 die Liste der Puzzleteile von links oben nach rechts unten zeilenweise abgelesen. Dann bezeichne F die Anzahl aller Fehlstände in dieser Folge a 1, a 2,..., a 15. Sei Z die Zeilennummer des Loches. Dann gilt: N := (F + Z) mod 2 bleibt bei jeder gültigen Verschiebung gleich. Beweis: Eine horizontale Verschiebung des Lochs ändert N offensichtlich nicht. Darum müssen wir nur vertikale Verschiebungen betrachten. x x x x x a b c d x x x x x x Im obigen Bild wird deutlich, dass eine Verschiebung von a nach unten folgenden Einfluss auf N hat: Z wird um eins größer. Die Verschiebung betrifft nur die relativen Positionen der Elemente a, b, c, d. Wenn a keinen Fehlstand mit b, c, d verursacht hatte (d.h. a < b, c, d), dann gibt es nach der Verschiebung zusätzliche drei Fehlstände (ungerade Anzahl). Wenn eines der drei Elemente b, c, d kleiner als a ist, dann gab es vor der Verschiebung einen Fehlstand von b, c, d bezüglich a. Nach der Verschiebung sind es zwei, also eine Veränderung um eins (ungerade). Die beiden anderen möglichen Fälle (ursprünglich zwei oder drei Fehlstände) führen zum selben Ergebnis: die Anzahl der Fehlstände ändern sich um eine ungerade Zahl. Somit ändert sich die Summe F + Z nur um eine gerade Zahl, und N = (F + Z) mod 2 bleibt unverändert. Die Puzzlekonfiguration im Comic hat aber N = = 5 1 mod 2, die gesuchte Puzzlekonfiguration hat N = = 4 0 mod 2, also kann man nicht von der einen zur anderen durch legale Verschiebungen gelangen.

5 Alternative Lösung: Wir fassen alle möglichen Positionen der Puzzleteile als Elemente der S 16 auf. Dabei bekommt das Loch die Nummer 16. Jedes Verschieben der Elemente entspricht einer Transposition des Loches, also des Elementes mit Nummer 16 mit einem anderen Element. Bei der Startposition befindet sich das Feld Nummer 16 in der rechten unteren Ecke. In der gewünschten Endposition soll sich Feld 16 wieder in der rechten unteren Ecke befinden. Dazu ist immer eine gerade Anzahl von Zügen nötig: Jeder Zug schiebt das freie Feld entweder nach links, nach rechts, nach oben oder nach unten. Wenn also das freie Feld am Ende wieder da sein soll, wo es am Anfang gewesen ist, muss es genauso viele Züge nach rechts gegeben haben wie es Züge nach links gegeben hat, und es muss genauso viele Züge nach unten gegeben haben wie es Züge nach oben gegeben hat. Dies bedeutet: Um von der Start- zur Endposition zu gelangen ist immer eine gerade Anzahl von Transpositionen notwendig. Nun hat aber die Permutation π S 16, die zur Startposition gehört, genau einen Fehlstand und somit ist sign(π) = 1. Die Permutation, die zur Endposition gehört, ist die Identität, und es gilt sign(id) = 1. Durch Verknüpfung der Permutation π mit einer notwendig geraden Anzahl von Transpositionen kann aber niemals die Identität erreicht werden.

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 3 (7

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

Permutationen. ... identische Abbildung

Permutationen. ... identische Abbildung Permutationen n > 0 sei S n {σ : {1, 2,..., n} {1, 2,..., n} : σ ist bijektiv}. Dann ist S n eine Gruppe bzgl. der Verknüpfung von Abbildungen (vgl. früher) und heißt symmetrische Gruppe (vom Index n).

Mehr

3. Untergruppen. 3. Untergruppen 23

3. Untergruppen. 3. Untergruppen 23 3. Untergruppen 23 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Permutationen und symmetrische Gruppe

Permutationen und symmetrische Gruppe Permutationen und symmetrische Gruppe Für eine beliebige Menge M bilden die Bijektionen von M in M, versehen mit der Komposition von Abbildungen als Operation, eine Gruppe, die sogenannte symmetrische

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Satz 3.1.15 Sei N eine Natürliche Zahl. Dann gilt S =! := 1 2. (D.h. -Fakultät Elemente.) Beweis : Um eine bijektive Abbildung σ : {1} {1} zu erhalten,

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

4. Morphismen. 26 Andreas Gathmann

4. Morphismen. 26 Andreas Gathmann 26 Andreas Gathmann 4 Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

4. Morphismen. 30 Andreas Gathmann

4. Morphismen. 30 Andreas Gathmann 30 Andreas Gathmann 4. Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen. Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung

Mehr

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17)

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17) Klausur Lineare Algebra für das berufliche Lehramt (WS 06/7) am 0.0.07 von 3:30 - :00 Uhr Dr. Vanessa Krummeck Aufgabe. (Punkte: 3 + 3 + 3 + 3 = ) Themen-Mix. Welche der folgenden Aussagen sind wahr und

Mehr

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 2. Symmetrische Gruppen 15 2. Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht. Wir wollen nun eine neue wichtige Klasse von Beispielen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Mathematik für Informatiker I, WS 2007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 2007

Mathematik für Informatiker I, WS 2007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 2007 1 Mathematik für Informatiker I, WS 007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 007 1. Ist die Permutation f ( 1 3 4 5 6 7 8 ) 9 7 3 1 6 5 4 9 8 gerade oder ungerade? Wie lautet

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

2. Abgabeblatt - Lösungen. Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe:

2. Abgabeblatt - Lösungen. Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe: Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/2019 2. Abgabeblatt - Lösungen Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe: Übungsgruppe: Namen: Tutor(in):

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Vortragsskript Einführung in die Algebra

Vortragsskript Einführung in die Algebra Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 4 (WS 2015/16) 1 Abgabetermin: Donnerstag, 19. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Lineare Algebra I. 2. Ist n = 4k für ein k N, so ist die

Lineare Algebra I. 2. Ist n = 4k für ein k N, so ist die Universität Konstanz Wintersemester 009/010 Fachbereich Mathematik und Statistik Lösungsblatt 1 Prof Dr Markus Schweighofer 100010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 11: Voraussetzung:

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Folglich besitzt die kanonische Faktorisierung von Permutationen der Ordnung 2 nur 2-Zykeln, also Transpositionen, als Elemente.

Folglich besitzt die kanonische Faktorisierung von Permutationen der Ordnung 2 nur 2-Zykeln, also Transpositionen, als Elemente. Stefan K. 5.Übungsblatt Algebra I Aufgabe 1 gesucht: die Elemente von S n mit der Ordnung 2 Lösung: Wir betrachten die kanonische Faktorisierung einer Permutation π S n : jede Permutation π e Sn ist bis

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/4 Aufgabenblatt 3 3. Januar

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 8 Homomorphie- und Isomorphiesatz Satz 8.1. Seien G,Q und H Gruppen, es sei ϕ :G H ein Gruppenhomomorphismus und ψ : G Q ein surjektiver

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

1 Algebraische Grundbegriffe

1 Algebraische Grundbegriffe 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Zwischenklausur zur Linearen Algebra I HS 2010, 23.10.2010 Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Name: Emil Mustermann Sitzplatznummer: 2 Die Bearbeitungszeit für diese Klausur beträgt

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/4) Aufgabenblatt 4. Februar

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 9 Das Signum einer Permutation Definition 9.1. Sei M = {1,...,n} und sei σ eine Permutation auf M. Dann heißt die Zahl sgn(σ)

Mehr

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann 15.04.2019 9. Vorlesung Permutationsgruppen Zyklenschreibweise für Permutationen Darstellung von Permutationen als Produkt von Transpositionen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie WS 205/206 A Rincón, A Schmitt 5 Dezember 205 Aufgabe (0+0 Punkte a Bestimmen Sie die Primfaktorzerlegungen der Zahlen 505 und 2600 und geben Sie

Mehr

6. Musterlösung zu Mathematik für Informatiker II, SS 2004

6. Musterlösung zu Mathematik für Informatiker II, SS 2004 6 Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 61 (Quadrismus) (7 Punkte) Wir wollen untersuchen, was Quadrieren in den multiplikativen Gruppen Z p mit p

Mehr

Lösung der Klausur zur Linearen Algebra I

Lösung der Klausur zur Linearen Algebra I Technische Universität Dortmund Fakultät für Mathematik Platznummer: Wintersemester 16/17 17.02.2017 Lösung der Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 06.02.2018 (Teil 2) 2. Februar 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 2. Februar 2018

Mehr

Übungsblatt 4. Hausübungen

Übungsblatt 4. Hausübungen Übungsblatt 4 Hausübungen Die Hausübungen müssen bis Mittwoch, den 07.11.18, um 18:00 Uhr in den Briefkasten mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden. Bitte schreiben

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2) 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar 2017

Mehr

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013 Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNSCHE UNVERSTÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RCHTER-GEBERT, VANESSA KRUMMECK, MCHAEL PRÄHOFER Höhere Mathematik für nformatiker Wintersemester 23/24 Aufgabenblatt 2 23 Januar 24 Präsenzaufgaben

Mehr

Man kann Aufgabe 1 auch mit Hilfe kombinatorischer Überlegungen lösen. Allerdings ist dann die Verwendung der entsprechenden Formel zu motivieren.

Man kann Aufgabe 1 auch mit Hilfe kombinatorischer Überlegungen lösen. Allerdings ist dann die Verwendung der entsprechenden Formel zu motivieren. 1 Beweisführung Man kann Aufgabe 1 auch mit Hilfe kombinatorischer Überlegungen lösen. Allerdings ist dann die Verwendung der entsprechenden Formel zu motivieren. Die Menge P der Summenpartitionen ist

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1.

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 1. Übungsblatt Aufgabe 1: (1+1+1=3 P Seien G und H Gruppen und ϕ : G H ein Gruppenhomomorphismus. Zeigen Sie: (a Das Bild ϕ(g von ϕ ist eine Untergruppe

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 13. Übungsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 13. Übungsblatt Mathematisches Institut der Universität München Wintersemester 2013/14 Daniel Rost Lukas-Fabian Moser Grundlagen der Mathematik I Lösungsvorschlag zum 13. Übungsblatt Aufgabe 1. injektive. Es wird sich

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

EINFÜHRUNG IN DIE GRUPPENTHEORIE BORIS BETZHOLZ UND TOBIAS SCHWARZ. Seminarvortrag im Rahmen des Seminars Gruppen und Codes bei Frau Dr.

EINFÜHRUNG IN DIE GRUPPENTHEORIE BORIS BETZHOLZ UND TOBIAS SCHWARZ. Seminarvortrag im Rahmen des Seminars Gruppen und Codes bei Frau Dr. EINFÜHRUNG IN DIE GRUPPENTHEORIE BORIS BETZHOLZ UND TOBIAS SCHWARZ Seminarvortrag im Rahmen des Seminars Gruppen und Codes bei Frau Dr. Baumeister 1 2 1. Einleitung Definition 1.1. Gruppe Eine Menge M

Mehr

D-MATH Tommaso Goldhirsch. Serie 3

D-MATH Tommaso Goldhirsch. Serie 3 Serie 3 Aufgabe 1 Sei G eine Gruppe und X eine Teilmenge von G. Die von X erzeugte Untergruppe von G ist die kleinste Untergruppe von G die X enthält. (Dass es eindeutig eine "kleinste" gibt wird in der

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Übungen zur Diskreten Mathematik I Blatt 1

Übungen zur Diskreten Mathematik I Blatt 1 1 Blatt 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) ((

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.01.2019 (Teil 2, Lösungen) 17. Januar 2019 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2019 Steven Köhler 17. Januar

Mehr

LA 1 WS 08/09 Zettel 1

LA 1 WS 08/09 Zettel 1 LA 1 WS 08/09 Zettel 1 Nils Mahrt 31. Oktober 2008 1. Aufgabe Sei f : X Y eine Abbildung. (a) Für A X ist zu zeigen, dass A f 1 (f(a)) ist. Sei also x A, dann ist zu zeigen, dass x f 1 (f(a)). Es gilt,

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 22. Dezember 2010 ZÜ DS ZÜ IX Übersicht: 1.

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik 6. Übungszettel, 30. April 2013 Lösungen 1. Zeigen Sie detailliert: Das homomorphe Bild einer zyklischen Gruppe ist

Mehr

WS 2003/04. Diskrete Strukturen I

WS 2003/04. Diskrete Strukturen I WS 2003/04 Ernst W. Mayr mayr@in.tum.de Institut für Informatik Technische Universität München 11-07-2004 Satz Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 : b p 1 1 mod p) (gemeint

Mehr

Matrikelnummer. Klausur 1

Matrikelnummer. Klausur 1 Klausur 1 Pro Aufgabe sind maximal vier Punkte zu erreichen. Auf jedem Klausurblatt sind mindestens der oder die anzugeben, auf dem obersten Blatt beides. Aufgabe 1. Richtig oder falsch? (1 Punkt pro richtige

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik SS 2014, 19.07.2014 Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 19 Aufgaben. Es sind maximal

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK Projektive Geometrie (Sommersemester 2005) Lösungen zu Aufgabenblatt 4 (25. Mai 2005) Präsenzaufgaben

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr