Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender. 1. Stunde: Skelettmuskulatur

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender. 1. Stunde: Skelettmuskulatur"

Transkript

1 Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender 1. Stunde: Skelettmuskulatur Muskulatur: quergestreifte (Skelettmuskulatur und Herzmuskulatur) und glatte. Skelettmuskulatur: in Skelettsystem integriert. Funktion: Körperhaltung, willkürliche Bewegungen. Organisation: Generelle Organisation: vielkernige Muskelfasern, einige Zentimeter lang, µm dick. Aufgebaut aus einkernigen Myoblasten die zu Myotuben fusionieren, die dann zu Muskelfasern differenzieren. Diese enthalten Myofibrillen (ca. 1 µm Durchmesser), Zellkerne, Organellen, Sarkoplasma, und sind von der Plasmamembran (Sarkolemm) umschlossen. Querstreifung: dunkle und helle Banden, bestehend aus dicken (Myosin) und dünnen (Aktin) Filamenten. Aktin- und Myosinfilamente bilden den kontraktilen Apparat. In polarisiertem Licht: Bündel von Myosinfilamenten (1,6 µm lang) sind stark doppelbrechend (anisotrop) => dunkel, A-Banden gennant (von anisotrop). Bündel von Aktinfilamenten (1,1 µm lang): weniger doppelbrechend (isotrop) => hell, I- Banden. Im Zentrum der A-Bande: heller Bereich = H-Zone. Diese ist von der M-Linie in der Mitte geteilt. Hier sind die Myosinfilamente über Strukturproteine (z.b. Myomesin) verankert. Hier ist auch Kreatinkinase assoziiert (für die ATP Regeneration). In der H- Zone fehlen die Aktin-filamente. I-Banden sind durch eine dunkle Linie, die Z-Linie (Z-Scheibe) in der Mitte geteilt. Hier sind die Myosinfilamente durch Titinmoleküle verankert. Im Überlappungsbereich bilden Myosin- und Aktinfilamente ein hexagonales Gitter: 1 Myosin umgeben von 6 Aktin. Abschnitt zwischen zwei Z-Bänden = Sarkomer = morphologische Untereinheit des Skelettmuskels. Länge= 2,2-2,4 µm. Querstreifung ganzer Muskeln => wie kommt es? Myosinfilamente: 12 nm Durchmesser, bestehend aus ~300 Moleküle. 1 Molekül = 2 schwere Ketten von 220 kda (alpha-helikaler Schwanzteil + globulärer Kopf), 4 leichte Ketten von 20 kda. Kopfteile: katalytische Domäne (Aktin-Bindestelle, ATP Hydrolyse); Leichte-Ketten- Domäne (an die die leichten Ketten binden) = Hebelarm; Konverter-Teil (bindet katalytische Domäne und Hebelarm). Übereinander gelagert, Myosinköpfe aussen; Köpfe binden an Aktin während Kontraktion. Aktinfilamente: 10 nm Durchmesser, ~400 Moleküle (globulär, G-Aktin, 42 kda). Doppelsträngige Helix, 2,7 G-Aktin pro Windung = filamentäres F-Aktin. Regulatorproteine:

2 Tropomyosin: filamentös, erstreckt über 7 Aktin Moleküle und bindet einen Troponinkomplex. Troponinkomplex: Troponin C (bindet Ca 2+ ), Troponin T (bindet Tropomyosin), Troponin I (inhibitorisch). Anker-Proteine: Alpha-aktinin: verankert Aktin in Z-scheiben. Titin (siehe oben). Dystrophin: verankert Aktinfilamente an Sarkoglykanen (Bestandteile des Sarkolemma) Merosin: verankert Sarkoglykane an Kollagenfibrillen der extrazellulären Matrix. => Dystrophin-Mutationen rufen Duchenne-Dystrophie hervor => Sarkoglykan-Mutationen verursachen Gliedergürtel-Dystrophie => Merosin-Mutationen führen zu kongenitaler Dystrophie Kontraktion: Gleitfilamenttheorie: die Länge der Filamente ändert sich nicht, aber die Aktin- und Myosinfilamente gleiten aneinander entlang. Dehnung: Dehnung: Aktinfilamente aus den Räumen zwischen Myosinfilamenten herausausgezogen: H und I werden breiter, A bleibt konstant. Dehnung über Gleichtgewichtslänge: Titinmoleküle auch elastich gedehnt. Querbrückenzyklus: Zyklische Wechselwirkung zwischen Myosinkopf und Aktinfilament. Schritte: 1) ATP bindet an die katalytische Domäne von Myosin. Der Myosinkopf löst sich vom Aktin. 2) ATP-Spaltung zu ADP+Phosphat => umklappen des Konverters (+ Hebelarms); katalytische Domäne wird in Richtung Z-Linie verschoben. 3) Myosinkopf bindet an Aktin mit niedriger Affinität. 4) Strukturumlagerung im Myosinkopf => Hochaffine Bindung an Aktin. 5) Konverter (+ Hebelarm) wird umorientiert => Aktin und Myosin werden 6-8 nm verschoben. Phosphat dissoziiert ab = Kraftschlag (erster Teil). 6) Weiteres Umklappen von Konverter und Hebelarm => Aktin und Myosin werden 2-4 nm verschoben = Kraftschlag (zweiter Teil). ADP dissoziiert ab. 1 Kraftschlag => ~1% Reduzierung der Sarkomerlänge. Myosinkopf ist jetzt Nukleotid-frei, und hochaffin gebunden an Aktin. Nach ~1 ms wird ein neues ATP-Molekül binden und der Zyklus kann neu starten. Zyklus kann ~5-50 mal pro Sekunde laufen => z.b. 20% Verkürzung der Sarkomerlänge. Totenstarre: Mangel an ATP (wird nicht mehr neu gebildet). Was passiert dann? Rigorkomplex von Aktin und Myosinkopf. Ca 2+ -Regulierung: Aktivität über Ca 2+ -Konzentration im Sarkolemma reguliert.

3 Bei niedrigen Konzentrationen (~100 nm = 10-7 mol/l) verhindern Troponin + Tropomyosin den Schlag, indem sie die hochaffine Bindung von Myosin und Aktin verhindern. Höhere Konzentrationen ( mal höher): Troponin C bindet Ca 2+, Troponin I wird umgelagert, Troponin T Konformation wird geändert, Tropomyosin wird weggedrückt, Myosinbindungstellen werden freigesetzt. Wenn die Ca 2+ -Konzentration sinkt => umgekehrter Mechanismus, Muskel erschlafft.

4 2. Stunde: Elektromechanische Koppelung Skelettmuskelfasern werden durch die neuromuskuläre Endplatte erregt (Neuromuscular Junction, NMJ). Muskeln sind efferent innerviert von Motoneuronen. Ein Motoneuron innerviert mehrere Muskelfasern = eine motorische Einheit => bestimmt die Abstufbarkeit der Kräfte (wie?). Wie bereits in frühere Vorlesungen erklärt: Aktionspotenziale über myelinisierte Nervenfasern zu NMJ geleitet hier sind präsynaptische Endknöpfchen, in Kontakt mit Muskelfasern Ca 2+ steigt in der NMJ (wie?) Exozytose von Präsynaptischen Vesikeln (wie?) Acetycholin-Freisetzung an den aktiven Zonen (was sind die?) ~200 Vesikel freigesetzt pro Endplatte, ~2-7-fach mehr als benötigt für ein Aktionspotenzial im Muskel. Diffusion durch den synaptischen Spalt Bindung an nikotnische Acetlycholinrezeptoren, AChR (im Sarkolemma). Oberfläche ist an dieser Stelle vergrößert durch subsynaptische Einfaltungen, hohe Rezeptor- Dichte Acetlycholinrezeptoren = kationische Kanäle Depolarisation => Endplattenpotenzial (exzitatorisches postsynaptisches Potenzial, EPSP, ~40-70 mv), überschwellig. Aktionspotenzial im Muskel. Depolarisation (Na + ), später Repolarisation (K + ). Acetylcholin durch Cholinesterase in Acetat und Cholin transformiert. Cholin wird in die Präsynapse gepumpt (Na + /Cholin Kotransporter). In Muskelfasern: Aktionspotenzial am Sarkolemma: Freigabe des Querbrückenzyklus = elektromechanische Koppelung. AP breitet sich mit 3-5 m/s aus. Röhrenformige Einstülpungen des Sarkolemms bringen AP ins Innere der Fasern = Transversale Tubuli (T-Tubuli) => an Grenzen zwischen A- und I- Banden. Ein Membransystem tief im Sarkoplasma = sarkoplasmatisches Retikulum = Ca 2+ - Lager. Besteht aus longitudinalen Röhren, erweiterten Endbezirken (terminale Zisternen). Enge Kontakte mit T-Tubuli, an beiden laterale Seiten jedes Sarkomers => Triaden- Strukturen. Hier liegen in der T-Tubuli-Membran spannungsgesteuerte Ca 2+ -Kanäle, Dihydropyridin-Rezeptoren (DHPR). DHPRs im engen Kontakt mit Ca 2+ -Kanälen in der Membran der terminalen Zisternen = Ryanodin-Rezeptoren, RyR (binden Ryanodin, ein Pflanzenalkaloid). AP => Umlagerung von DHPR => Öffnung von RyR => Ca 2+ strömt in die Zelle ein Troponin, Tropomyosin-Aktivität (siehe oben, Stunde 1) => Kontraktion. Latenz =10-15 ms. Muskelerschlaffung (Relaxation): Ca 2+ -ATPasen in sarkoplasmatischen Retikulum pumpen Ca 2+ in die longitudinalen Röhren (dort ~1 mm). Dissoziation von Ca 2+ von Troponin C, etc. (siehe oben, Stunde 1). Pharmakologie: Tubocurarin: hemmt AchR kompetitiv => Muskelrelaxation

5 Bungarotoxin: hemmt AchR nicht-kompetitiv => Schlangengift. Botulinumtoxine: schneiden SNAREs, Vesikelfusions-Moleküle. Gebildet von Bakterien (Clostridia) => Lebensmittelvergiftungen (kann tödlich sein). Therapeutisch => gegen überhöhte Muskelspannung. Koffein: aktiviert die RyR, eine Kontraktur kann folgen (siehe unten). Störungen: Kontraktur: Aktivität ohne APs, z.b. durch lokale Depolarisation Auto-Antikörper gegen AchR => Abbau von AchRen => Myasthenia gravis. Mutationen in Na + -Kanälen die zu einer verzögerten Inaktivierung führen = langanhaltende Kontraktionen = Myotonie => verstärkter K + -Verlust = Hyperkaliämie => stärkere Depolarisation => Na + -Kanal-Inaktivierung => Paralyse (familiäre hyperalkaliämische periodische Paralyse). Mutationen im Ryanodin-Rezeptor: können bei Narkosen mit Halothan zu massiver Ca 2+ -Freisetzung führen => Massive Kontraktion => Anstieg der Körpertemperatur.

6 3. Stunde: Muskelkontraktion Muskelmechanik Muskelenergetik Kontraktion: Für eine motorische Einheit gilt die Alles-oder-Nichts Regel (warum?). Ein AP => eine Muskelzuckung (Einzelzuckung). Die Amplitude von einer Einzelzuckung ist ~konstant (warum?). Zeitliche Abschnitte: Latenzzeit, Gipfelzeit, Erschlaffungszeit Nicht alle Muskelfasern sind identisch: Langsame Muskelfasern (Typ I), reich an Myoglobin ( rote Muskeln ), mit langsamen Myosinformen, und einem längeren Kraftbeitrag pro verbrauchtem ATP Molekül. Schnelle Muskelfasern (Typ IIA, IIB): weniger Myoglobin ( weiße Muskeln ), schnelle Myosinisoformen, kürzerer Kraftbeitrag pro ATP Molekül,. IIA: geringe Ermüdbarkeit; IIB: starke Ermüdbarkeit. IA: meistens tonisch; IIA: phasisch/tonisch; IIB: phasisch. Was bedeutet tonisch/phasisch? Wenn der Abstand zwischen zwei Aktionpotenzialen kleiner als die Dauer einer Einzelzuckung ist (1 AP = wenige ms; Einzelzuckung = ms) => Überlagerung (Superposition) => große mechanische Antwort. Wenn die Muskelfasern sich noch etwas entspannen zwischen APs => unvollständige tetanische Kontraktionen. Wenn der Abstand zwischen APs kleiner als ~1/3 der Dauer einer Einzelzuckug wird (Verschmelzungsfrequenz) => vollständige (glatte) tetanische Kontraktion (glatter Tetanus). Die Kraft im Tetanus ist 3 bis 10-fach größer als bei Einzelzuckungen. Bei schnellen, willkürlichen Bewegungen feuern die Motoneuronen APs mit Frequenzen von 6-8 Hz => repetitive Kontraktionen => Kraft erhöht (Tetanus). Durch Aktivierung zusätzlicher motorischer Einheiten (Rekrutierung) kann die Kraft noch mehr erhöht werden. Die Aktivität motorischer Einheiten kann durch Elektromyographie untersucht werden. Langfristig kann die Kraft durch Hypertrophie bzw. Atrophie moduliert werden. Hypertrophie: die Dicke der Muskelfasern nimmt zu, durch Training (erhöhte Proteinsynthese). Atrophie: erhöhter Proteinabbau; bei Ruhigstellung, Denervierung, Alterung. Muskelmechanik: Isolierte, nicht erregte Muskeln nehmen ihre Gleichgewichtslänge ein. Die Gleichgewichtslänge ist etwas kleiner als die Muskellänge im Skelett (Ruhelänge). Wird der Muskel über die Gleichgewichtslänge gedehnt => passive Rückstellkräfte (=> meistens durch Titinmoleküle; wie?). Auftragung von Passiven Kräften vs. Muskellänge = Ruhe-Dehnungs-Kurve. Isotonische Kontraktionen: Der Muskel verkürzt sich bei konstanter Kraftentwicklung oder konstanter Belastung. Z.B. beim Anheben eines Gewichtes mit konstanter Geschwindigkeit. Isometrische Kontraktionen: Die Kraft ändert sich ohne eine Änderung der Muskellänge ohne eine Änderung der Sarkomerlänge (=> elastische Verformung des Myosinkopfes, Dehnung der Aktin- und Myosinfilamente). Was wäre hierfür ein Beispiel? Auxotonische Kontraktionen: Länge und Kraft ändern sich gleichzeitig (z.b. bei Gelenkbewegungen). Positiv auxotonische Kontraktionen = die Last steigt mit der Verkürzung an; negativ auxotonische Kontraktionen = Gegenteil. Unterstützungskontraktionen: zwei Phasen: eine isometrische Phase, und eine isotonische oder auxotonische Phase. Z.B. das Hochheben eines Gegenstands: erste

7 Phase isometrisch bis die Kraft dem Gewicht des Gegenstandes entspricht, und zweite Phase, das Anheben, isotonisch. Anschlagkontraktionen: zwei Phasen: eine isotonische Phase und eine isometrische Phase. Z.B. beim Kauen. Kontraktionsformen, bei denen die Muskeln sich verkürzen = konzentrische Kontraktionen. Kontraktionsformen, bei denen die Muskeln sich verlängern (sich dehnen) = exzentrische Kontraktionen. Die Sarkomerlänge hat einen großen Einfluss auf die isometrische Kraft. Maximale Kraft zwischen 2-2,2 µm. Über 2,2 µm => Kraft sinkt mit abnehmender Überlappung zwischen Myosin und Aktin. Unter 2 µm => Kraft sinkt mit der Doppelüberlappung der Myosinfilamente mit Aktinfilamenten beider Sarkomerhälften und der Kollision der Myosinfilamente mit den Z-Scheiben. Muskelarbeit = Last x Hubhöhe / Kraft x Weg. Mechanische Leistung = Kraft x Verkürzungsgeschwindigkeit. Muskelarbeit und Leistung sind bei mittlerer Belastung am größten. Muskelkater: Muskelschmerzen Stunden nach ungewohnten Muskelbelastungen => Anschwellen in Muskelfasern. Ursache = Mikroläsionen, besonders im Bereich der Z-Scheiben => Autolyse zerstörter Faserstrukturen. Muskelenergetik: ATP: normalerweise bei ~5 mm, kein Absinken wahrend Muskelaktivität. Regeneration durch 3 Mechanismen: 1) Anaerob-alaktazid: Kreatinphosphat + ADP = Kreatin + ATP. Kein Sauerstoffverbrauch, kein Lactat. = Lohmann-Reaktion (geht in beide Richtungen!). 2) Anaerob-laktazid: Glycolyse (Abbau von Glucose, die aus Glykogenabbau kommt). Glykogen zu Glucose bringt 3 Mol ATP pro Mol Glucose; Abbau von Glucose zu Lactat => 2 Mol ATP. 3) Aerob-alaktazid: oxidative Phosphorylierung in den Mitochondrien (in der Atmungskette). Energiequellen: Kolenhydrate, Fettsäuren. Wirkungsgrad: unter optimale Bedingungen, 40-50% der chemischen Energie wird in mechanische Arbeit umgewandelt % wird als Wärme freigesetzt. Die Regeneration von ATP in der Erholungsphase wird auch zu Wärmeverlusten führen => zusätzliche Verluste, die den Gesamtwirkungsgrad des Muskels um bis zu ~30% senken. Muskelermüdung: die Abnahme der Muskelkraft bei anhaltenden Bewegungen. Zentral (Reduktion der Willkürinnervation); Ermüdung der Präsynapse; periphere Ermüdung = Abnahme der Muskelkraft selbst.

8 4. Stunde: Reflexe Reflexe: stereotype Antworten auf spezifische Reize. Spinale Reflexe: Rückenmark. Rückenmark: Geteilt in Substantia grisea (grau; Schmetterlingsform; zentral) und Substantia alba (weiß, am Rand). Substantia grisea wird in zehn Schichten (I-X) unterteilt. Hinterhorn: hier treten die sensorichen Afferenzen ein (Primärafferenzen). Vorderhorn: motorische Ausgänge. Der Reflexweg: 1) Der Rezeptor: registriert die Reize (= Sensor). 2) Afferenzen: Signalleitung zum ZNS. 3) Verarbeitungssystem (z.b. ZNS) 4) Efferenzen: Signalleitung zum Effektor 5) Effektor: zur Ausführung der Reaktion Wenn Rezeptor und Effektor in demselben Organ lokalisiert sind, spricht man von Eigenreflexen (z.b. Achillessehnenreflex). Solche Reflexe sind oft monosynaptisch die Afferenzen sind über eine einzelne Synapse mit den Efferenzen verbunden. Nicht im selben Organ: Fremdreflexe (z.b. Pupillenlichtreflex) sie sind generell polysynaptisch. Sensoren der spinalen Motorik: Muskelspindeln: Dünne, kurze Muskelfasern, von einer spindelförmigen Kapsel umgeben (aus Bindengewebe). Einige mm lang. Diese Muskelfasern = intrafusale Fasern (alle anderen = extrafusale Muskelfasern). Kernkettenfasern: kürzer, dünner, die Kerne sind hintereinander angeordnet Kernsackfasern: mit Bereichen, in denen die Kerne dicht zusammen gebündelt sind. Etwa 2-mal langer und größer als Kernekettenfasern. Beide Arten von Muskelfasern sind primär sensible Endigungen, Ia-Fasern (Ia- Afferenzen) innerviert. Ia = großer Durchmesser (~15 µm), myelinisiert. Werden Signale schnell oder langsam fortgeleitet? Eine weitere afferente Innervation: Gruppe II (Durchmesser ~5-6 µm, myelinisiert) = sekundär sensible Endigungen. Efferente Innervation: Axone von Gamma-Motoneuronen (2-8 µm); für extrafusale Muskelfasern, Innervation durch alpha-motoaxone (12-21 µm). Gamma-Endplatten auch Kernsackfasern, Gamma-Endnetze auf Kernkettenfasern. Die Efferenzen modulieren die Schwelle (was ist das?) und die Empfindlichkeit der Muskelspindeln => Erregung durch Gamma-Efferenzen bestimmt den Dehnungszustand und so die Empfindlichkeit. Die Aktivierung von Gamma-Motoneurone kann zu einer intrafusalen Kontraktion führen, die die Länge und Spannung des Muskels nicht ändert, aber die Sensoren aktiviert. Liegen parallel zur Muskulatur. Messen die Länge und Längenänderung des Muskels Sehnenorgane: Verzweigte, myelin-lose Nervendigungen, in den Sehnen. Umhüllt durch eine Kapsel (~1 mm lang).

9 Wenn die Muskeln kontrahieren, quetschen die Sehnenstränge die Nervendigungen => Aktivierung. Die Nervendigungen => zu myelinisierte Nervenfasern, µm Durchmesser = Ib- Fasern. Liegen in Serie zur Muskulatur. Registrieren die Spannung im Muskel. Muskeldehnungsreflexe: Eigenreflexe, zur Köperstabilisirung. Die einfachsten spinalen Reflexe. Phasischer Dehnungsreflex: Afferenzen der Ia-Fasern (von der Spindel) etablieren synaptische Kontakte mit alpha-motoneuronen => monosynaptisch. Wenn die Spindelafferenzen synchron gereizt werden, elektrisch oder durch eine aufgezwungene Muskeldehnung, wie bei einem Schlag mit dem Reflexhammer, führt der Reflex zu einer Verkürzung des Muskels = T-Reflex. Tonischer Dehnungsreflex: => von Kernkettenfasern => Afferenzen zu Interneuronen (erste Synapse) => die verschalten auf alpha-motoneuronen (zweite Synapse) = ein disynaptischer Reflex. Dient zur Stabilisierung der Muskellänge. Modulation und Quantifizierung von Dehnungsreflexen: Latenz ist konstant (warum?), Intensität ist modulierbar Intensität ist abhängig von: 1) Reizstärke, die die Zahl der aktivierten Muskelspindeln bestimmt; 2) Aktivität von Gamma-Motoneuronen; 3) Hemmung der Alpha-oder Gamma- Motoneurone; 4) Vordehnung der Muskels; 5) Stärke der Vorinnevation Klinisch-relevante Messungen: Die Schwelle für die Auslösung sollte gleich sein, und in einem Normalbereich liegen. Reflexe ausgelöst durch Reflexhammer. Um den Einfluss der Vorinnervation zu messen, misst man die Verstärkung der Reflexantworten nach einem kraftvollen Verhaken und Auseinanderziehen der Hände (Jendrassik-Handgriff), oder auf-die-zähne-beißen => die Erregbarkeit der motorischen Einheiten rückt näher zum Schwellenwert. Es ist schwierig, Reflexe zu standardisieren mit einem Reflexhammer => für neurophysiologische Zwecke ist es einfacher einen elektrischen Reiz zu nutzen => H- Reflexe, nach dem Physiologen Paul Hoffman. Bei niedrigen Reizen werden die Ia- Afferenzen selektiv erreicht, und nicht die Alpha-Efferenzen. Ein Muskelspindelbedingter Reflex folgt. H-Reflexe => im EMG sind eine H-Welle (Reflex-bedingt, Latenzzeit ms) und eine M-Welle (Latenzzeit 5-10 ms) zu sehen. Die H-Welle folgt dder synaptischen Erregung der Alpha-Motoneurone, nach direkter elektrischer Aktivierung von Ia-Afferenzen. Die M-Welle = direkte Aktivierung von Alpha-Axonen. Warum ist die Latenz unterschiedlich? Fremdreflexe: Interneurone sind zwischen Afferenzen und Efferenzen geschaltet. Dienen zum Körperschutz (Lidschlussreflexe, Fluchtreflexe, etc). Latenzzeit, Dauer, Amplitude sind alle variabel (warum?) Habituation Flexorreflex: schmerzhafte Reizung führt zu einem Wegziehen der betroffenen Extremität durch Gelenkenbeugung (Flexion). Z.B. Fussohlenreflex.

10 Afferenzen: Keine homogene Fasergruppe: kutane Nozizeptoren, hochschwellige Afferenzen der Tiefensensibilität, sekundäre Muskelspindelafferenzen (II). Die ipsilateralen Extensoren werden gleichzeitig gehemmt.

11 5. Stunde: Hemmung Mechanismen Reziproke antagonistische Hemmung: Ia-Afferenzen (von Muskelspindeln) bilden hemmende Verbindungen zu antagonistischen Alpha-Motoneuronen Bedeutung: die Aktivierung des Agonisten führt in wenigen Zehnteln von Millisekunden zu einer Hemmung der ipsilateralen Antagonisten Hemmung in Antagonisten => die Spindeln in diesen Muskeln werden entdehnt, sodass sie die Antagonisten nicht mehr erregen und die Agonisten nicht mehr hemmen. Das Wegfallen der Hemmung (z.b. hier in den Agonisten) = Disinhibition. Wofür könnte die antagonistische Hemmung gut sein? Längenkontrollsystem. Autogene Hemmung: Golgi-Sehnenorgane hemmen die homonymen Alpha-Motoneurone (über Interneurone), und aktivieren gleichzeitig Alpha-Motoneurone der Antagonisten. Aktive Kontraktion => die lösen APs aus, über Ib-Afferenzen. Synapsen mit Alpha- Motoneuronen von Antagonisten und mit inhibitorischen Ib-Interneuronen. Die Interneurone bilden Synapsen mit Alpha-Motoneuronen des Agonisten => Hemmung der agonistischen Aktivität. Die autogene Hemmung wird die Muskelspannung konstant halten. Die Interneuronen stehen unter starker Kontrolle der supraspinalen motorischen Zentren. Interneuronen sind durch absteigende Bahnen moduliert: Bahnung (Fazilitation) und Hemmung (Disfazilitation) Im Interneuronverband => multimodale Integration der verschiedenen Afferenzen (welche?) Rekurrrente (rücklaufenbde) Hemmung (Renshaw-Hemmung): Rückwärtshemmung (antagonistische, autogene = Vorwärtshemmungsarten) Rekurrente Axonkollateralen von Alpha-Motoneuronen aktivieren hemmende Interneuronen (Renshaw-Zellen) die dann auf die Motoneurone zurückprojizieren Funktion: überschießende Antworten von Muskeln verhindern Präsynaptische Hemmung: Die Motorik wird vom ZNS gezielt beeinflusst. Absteigende Bahnen innervieren die präsynaptischen Endigungen der Ia-Fasern. GABA wird freigesetzt und führt zu einer primär afferenten Depolarisation Wie könnte eine Depolarisation hier entstehen? Warum ist das ungewöhnlich? Die synaptischen Eingänge von Ia-Fasern sind inhibiert Worin liegen die Unterschiede zur autogenen Hemmung? Status von Alpha-Motoneuronen? Innervationsstille (silent period): Es ist keine klassische Art von Hemmung Nach Ablauf eines monosynaptischen Reflexes (z.b. T-Reflex) ist die Erregbarkeit der Motoneurone für ~100 ms vermindert.

12 Verschiedene Faktoren: Kontraktion führt zu einer Entlastung der Muskelspindeln => Erregung durch Ia- Fasern wird vermindert Aktivierung von Golgi-Sehnenorganen => Hemmung (welche Art?) Aktivierung von Alpha-Motoneuronen wird eine bestimmte Art von Hemmung bringen In den Motoneuronen kommt es zu einer Hyperpolarisationsphase. Warum?

13 Neuromuskuläre Physiologie Prof. Dr. Silvio Rizzoli Tel: ;

14 Lehrbücher Klinke/Pape/Kurtz/Silbernagl Physiologie Thieme, 2009 Kap. 17, 18, 22 Schmidt/Lang/Heckmann Physiologie des Menschen Springer, 2010 Kap. 13, 14, 15, 19

15 Inhalt 1. Stunde: Skelettmuskulatur 2. Stunde: Elektromechanische Koppelung 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik 4. Stunde: Reflexe 5. Stunde: Hemmung Mechanismen

16 Organisation des Skelletmuskels Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

17 Organisation des Skelletmuskels Birks et al., J Physiol, 1960

18 Organisation des Skelletmuskels Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

19 Organisation des Skelletmuskels Myomesin Alpha-Aktinin Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

20 Myosinfilamente Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

21 Actinfilamente Some images of actin filament structure Heuser and Kirschner, J Cell Biology, 1980

22 Feinstruktur von Myosin Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

23 Ankern Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

24 Ankern Allen and Whitehead, I J Biochem Cell Biol, 2011

25 Ankern Duchenne-Dystrophie Gliedergürteldystrophie (limb-girdle muscular dystrophy, LGMD) Kongenitale Dystrophie Bushby, Pract Neurol, 2009

26 Ankern kongenitale-dystrophie Ferreiro et al., Neuromusc Dis, 2011

27 Kontraktion: Gleitfilamenttheorie Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

28 Movies Movie The Way Things Move: Looking Under the Hood of Molecular Motor Proteins Ronald D. Vale and Ronald A. Milligan Science. ISSN (print), (online)

29 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

30 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

31 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

32 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

33 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

34 Querbrückenzyklus (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

35 Querbrückenzyklus (II) Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

36 Ca 2+ Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

37 Sarkomerproteine Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

38 Zusammenfassung: Muskelarten Feinbau der Muskelzellen Streifung Myosin Aktin Gleitfilamenttheorie Molekülare Grundlagen (Myosin, Aktin, Ca 2+ )

39 Inhalt 1. Stunde: Skelettmuskulatur 2. Stunde: Elektromechanische Koppelung 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik 4. Stunde: Reflexe 5. Stunde: Hemmung Mechanismen

40 Funktionelle Bereiche eines Neurons Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

41 Gliazellen Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

42 Informationsleitung Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

43 Synapsen Alberts, Johnson, Walter, Lewis. Molecular Biology of the Cell, Taylor & Francis, 2007

44 Endplatte Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

45 Freisetzung (SNAREs) SNARES Jahn and Scheller, Nat Rev Molec Cell Biol, 2006

46 Minis vs. EPSC (EPP) EPSCs Katz, J Neurocytol, 1993; Rizzoli and Betz, J Neurosci, 2002

47 Courtesy of Detlev Schild Aktionspotential

48 Subsynaptische Einfaltungen Slater, J Neurocytol, 2003

49 Transversale Tubuli Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

50 Sarkoplasmatische Retikulum Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

51 Triaden-Struktur Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

52 Elektromechanische Koppelung (I) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

53 Elektromechanische Koppelung (II) Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

54 Ca 2+ Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

55 Kontraktion Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

56 Courtesy of Detlev Schild Pharmakologie:

57 Pharmakologie: SNAREs

58 Myasthenia gravis

59 Zusammenfassung Synapsen Endplatte MINIs, EPP, AP, Acetylcholin T-Tubuli, Retikulum DHPR, RyR Ca 2+ -abhängige Mechanismen Pharmakologie Endplatte/Muskel Krankheiten

60 Inhalt 1. Stunde: Skelettmuskulatur 2. Stunde: Elektromechanische Koppelung 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik 4. Stunde: Reflexe 5. Stunde: Hemmung Mechanismen

61 Elektromyographie Klinke, pg 112, abb 4.11 Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

62 Muskelkontraction Klinke, pg A Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

63 Einzelzuckung vs. Tetanus Klinke, pg A-B Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

64 Muskelfasern Tonisch vs. Phasisch Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

65 Kraft vs. Muskellänge (I) Klinke pg 114, abb 6.10A Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

66 Kraft vs. Muskellänge (II) Klinke pg 114, abb 6.10B Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

67 Kraft vs. Muskellänge (III) Klinke pg 114, abb 6.10C Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

68 Kontraktionstypen: Isotonische Kontraktionen: verkürzt sich der Muskel bein kostanter Kraftentwicklung oder konstanter Belastung. Z.B., bei anhebein eines Gewichtes mit konstante geschwindigkeit. Isometrische Kontraktionen: die Kraft ändert sich ohne eine Änderung der Muskellänge ohne eine Änderung der Sarkomerlänge (=> elastische Verformung des Myosinkopfes, Dehnung der Aktin- und Myosinfilamente). Was wäre hier als Beispiel? Auxotonische Kontraktionen: die Länge und Kraft ändern sich gleichzeitig (z.b., bei Gelenkbewegungen). Positiv auxotonische Kontraktionen = die Last steigt mit der Verkurzung an; negativ auxotonische Kontraktionen = gegenteil. Unterstützungskontraktionen: zwei Phasen: eine isometrische Phase, und eine isotonische oder auxotonische Phase. Z.B., das Hochheben eines Gegenstands: erste Phase, isometrisch bis die Kraft dem Gewicht des Gegenstandes entspricht (isometrisch), und zweite Phse, anheben (isotonisch). Anschlagkontraktionen: zwei Phasen: eine isotonische Phase, und eine isometrische phase. Z.B., bei kauen.

69 Sarkomerlänge vs. Kraft Klinke, pg 115, abb 4.13 Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

70 Muskelkater Mackey et al., J Apply Physiol, 2008

71 Energiequellen Schmidt, pg 114, Tab 6.2 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

72 Energieumsatz Klinke, pg 117, tab 4.15 Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

73 Muskelermüdung Pre-synaptic transmission is sufficient for the most intense physiological stimulation: Denker et al., PNAS, 2011a

74 Zusammenfassung Einzeltuckungen Tetanus Muskelfibertypen Kontraktionen Muskelkater Muskelenergetik Muskelermüdung

75 Inhalt 1. Stunde: Skelettmuskulatur 2. Stunde: Elektromechanische Koppelung 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik 4. Stunde: Reflexe 5. Stunde: Hemmung Mechanismen

76 Das Rückenmark Klinke, pg 762, abb 23.2A Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

77 Der Reflexweg Klinke, pg 762, abb 23.2B Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

78 Sensoren: Muskelspindel Schmidt pg 128, abb 7.1 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

79 Zur Errinerung: Nervenfasern Schmidt pg 129, Tab 7.1. Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

80 Sehnenorganen Schmidt pg 128, ab 7.2. Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

81 Entladungsmuster der Spindeln und Sehnenorgane Schmidt pg 130, Abb 7.3 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

82 Phasischer Dehnungsreflex Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

83 Dehnungsreflex (II) Klinke, pg 762, abb 23.3 Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

84 T- und H-Reflexen Schmidt. Pg 133, Abb 7.5 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

85 Flexorreflex (I) Schmidt pg 135, abb 7.6 A-B Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

86 Flexorreflex (II) Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

87 Zusammenfassung Reflexe Reflexwege Muskelspideln Sehnenorganen Muskeldehnungsreflexe Klinisch-relevante Messungen Fremdreflexen

88 Inhalt 1. Stunde: Skelettmuskulatur 2. Stunde: Elektromechanische Koppelung 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik 4. Stunde: Reflexe 5. Stunde: Hemmung Mechanismen

89 Reziproke antagonistische Hemmung Schmidt pg 137. abb 7.7 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

90 Reziproke antagonistische Hemmung Klinke pg 768. abb 23.6 A Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

91 Autogene Hemmung Klinke, pg 768, abb 23.6 B Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

92 Verschiedene Afferenzen Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

93 Bahnung und Hemmung Schmidt, pg 138, Abb 7.8 Schmidt, Lang, Heckmann. Physiologie des Menschen, Springer, 2010

94 Renshaw-Hemmung Klinke, pg 768, abb 23.6 C Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

95 Präsynaptische Hemmung Klinke, pg 768, abb 23.6 D Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

96 ZNS Kontrolle Klinke, pg 768, abb 23.6 E Klinke, Pape, Kurtz, Silbernagl. Physiologie, Thieme, 2009

97 Innervationsstille Praktikums-Heft!

98 Zusammenfassung Reziproke antagonistische Hemmung Autogene Hemmung Rekurrente Hemmung Präsynaptische Hemmung Innervationsstille

Stammzellen der Skelettmuskulatur. Aufbau der Skelettmuskulatur. Zellmembran der Skelettmuskulatur. Zytoplasma der Skelettmuskulatur

Stammzellen der Skelettmuskulatur. Aufbau der Skelettmuskulatur. Zellmembran der Skelettmuskulatur. Zytoplasma der Skelettmuskulatur Stammzellen der Skelettmuskulatur Aufbau der Skelettmuskulatur Zellmembran der Skelettmuskulatur Zytoplasma der Skelettmuskulatur Gleichgewichtslänge des Sarkomers Anordnung der Aktin- und Myosinfilamente

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Muskelphysiologie. Die Muskulatur des Menschen macht etwa 50% seiner Körpermasse aus.

Muskelphysiologie. Die Muskulatur des Menschen macht etwa 50% seiner Körpermasse aus. Muskelphysiologie Dr. Mária Dux Die Muskulatur des Menschen macht etwa 50% seiner Körpermasse aus. Themen: Skelettmuskulatur (etwa 400 Muskeln) Struktur Kontraktion Elektromechanische Kopplung Energetik

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Afferenzen der Spinalmotorik. Golgi-Sehnenorgane. Muskelspindel. 2 Neuromuskuläre Grundlagen der Bewegung. 2.2 Nervensystem

Afferenzen der Spinalmotorik. Golgi-Sehnenorgane. Muskelspindel. 2 Neuromuskuläre Grundlagen der Bewegung. 2.2 Nervensystem 2 Neuromuskuläre Grundlagen der Bewegung 2.2 Nervensystem 2.2.1 Bauelemente des Nervensystems Neuron, Rezeptor, Synapse 2.2.2 Spinalmotorisches System Afferenzen der Spinalmotorik Spinalmotorische Reflexe

Mehr

Glatte Muskulatur. Dr. G. Mehrke

Glatte Muskulatur. Dr. G. Mehrke Glatte Muskulatur 1 Glatte Muskulatur Eigenschaften und Unterschiede zur Skelettmuskulatur: Spindelförmige, einkernige Zellen, funktionell über Gap Junctions verbunden. Aktin- und Myosinfilamente sind

Mehr

Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender. 1. Stunde: Skelettmuskulatur

Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender. 1. Stunde: Skelettmuskulatur Prof. Dr. Silvio O. Rizzoli, Dr. Nora Wender 1. Stunde: Skelettmuskulatur Muskulatur: quergestreifte (Skelettmuskulatur und Herzmuskulatur) und glatte. Skelettmuskulatur: in Skelettsystem integriert. Funktion:

Mehr

Sensomotorik. Handlungen und Bewegungen Muskelaufbau und Muskelfunktion Propriozeption und Reflexe Motorische Kontrolle im ZNS Augenbewegungen

Sensomotorik. Handlungen und Bewegungen Muskelaufbau und Muskelfunktion Propriozeption und Reflexe Motorische Kontrolle im ZNS Augenbewegungen Sensomotorik Handlungen und Bewegungen Muskelaufbau und Muskelfunktion Propriozeption und Reflexe Motorische Kontrolle im ZNS Augenbewegungen Klassifikation Bewegungen Reflex (Kniesehnenreflex) Haltung

Mehr

Allgemeine Anatomie III Gelenke, Muskel

Allgemeine Anatomie III Gelenke, Muskel Allgemeine Anatomie III Gelenke, Muskel David P. Wolfer Institut für Bewegungswissenschaften und Sport, D-HEST, ETH Zürich Anatomisches Institut, Medizinische Fakultät, Universität Zürich 376-0905-00 Funktionelle

Mehr

Das sensomotorische System

Das sensomotorische System Das sensomotorische System 1. Funktionsprinzip des sensomotorischen Systems 2. Assoziationskortex 3. Motorischer Kortex 4. Kleinhirn und Basalganglien 5. Absteigende motorische Bahnen 6. Sensomotorische

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

Die Muskulatur. Die Anatomie und Physiologie der Skelettmuskulatur

Die Muskulatur. Die Anatomie und Physiologie der Skelettmuskulatur Die Muskulatur Die Anatomie und Physiologie der Skelettmuskulatur 1 Jeder Mensch verfügt über ca. 600 willkürlich bewegbare Muskeln. Vom Gedanken an eine Bewegung bis zu deren Ausführung dauert es beim

Mehr

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen:

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen: Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe besteht aus 2 Bestandteilen: Nervenzelle ( Neuron : Signal aufnehmen, verarbeiten und weiterleiten) Gliazelle, Stützzelle: div. metabolische Funktionen

Mehr

Physiologie - Muskulatur

Physiologie - Muskulatur Physiologie - Muskulatur 1. Bedeutung der Muskulatur 2. Anatomische Betrachtung 2.1 Skelettmuskulatur 2.1.1 Aufbau 2.1.2 Muskelfaserspektrum 1.1.3 Physiologische Muskelveränderungen 2.2 Herzmuskulatur

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

Muskeln. Herzmuskel. Glatte Muskulatur. Skelettmuskulatur. Elektrische Synapsen. Elektrische Synapsen

Muskeln. Herzmuskel. Glatte Muskulatur. Skelettmuskulatur. Elektrische Synapsen. Elektrische Synapsen Muskeln Elektrische Synapsen Die Fähigkeit zur aktiven Bewegung haben Tiere dank ihrer Muskeln. Diese bestehen aus kontraktilen Proteinen, die wie im Falle der Skelettmuskulatur eine hochgeordnete Struktur

Mehr

Zelluläre Kommunikation

Zelluläre Kommunikation Zelluläre Kommunikation 1. Prinzipien der zellulären Kommunikation?? 2. Kommunikation bei Nervenzellen Die Zellen des Nervensystems Nervenzellen = Neuronen Gliazellen ( Glia ) Astrozyten Oligodendrozyten

Mehr

Zelltypen des Nervensystems

Zelltypen des Nervensystems Zelltypen des Nervensystems Im Gehirn eines erwachsenen Menschen: Neurone etwa 1-2. 10 10 Glia: Astrozyten (ca. 10x) Oligodendrozyten Mikrogliazellen Makrophagen Ependymzellen Nervenzellen Funktion: Informationsaustausch.

Mehr

Ergebnisprotokoll. 10. Muskel und Reflexe

Ergebnisprotokoll. 10. Muskel und Reflexe 10. Muskel und Reflexe, Aufgabenbereich 10.1 Ergebnisprotokoll 10. Muskel und Reflexe Datum des Praktikums... Dozent:... Aufgabenbereich 10.1 Eigenschaften quergestreifter Muskulatur Aufgabe 10.1.a Reizstärke-Abhängigkeit

Mehr

Kniekehlgelenk (Art. femorotibialis)

Kniekehlgelenk (Art. femorotibialis) 2. Passiver Bewegungsapparat Das Kniegelenk ist außerordentlich wichtig. Es leitet die Bewegung, unterstützt vom Sprunggelenk, ein und gibt sie weiter. Von hier aus werden die stärksten Stöße an den ganzen

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr

Kapitel 05.11: Muskeln & Muskelphysiologie

Kapitel 05.11: Muskeln & Muskelphysiologie Kapitel 05.11: Muskeln & Muskelphysiologie 1 Kapitel 05.11: Muskeln & Muskelphysiologie Quelle Bild: Public domain/ Gemeinfrei aus dem 11. Buch der 4. Auflage des Meyers Konversationslexikons (1885-90).

Mehr

Evidenzbasierte physiotherapeutische Behandlungsmaßnahmen. bei Patienten mit hereditärer spastischer Spinalparalyse.

Evidenzbasierte physiotherapeutische Behandlungsmaßnahmen. bei Patienten mit hereditärer spastischer Spinalparalyse. Evidenzbasierte physiotherapeutische Behandlungsmaßnahmen bei Patienten mit hereditärer spastischer Spinalparalyse Susanna Freivogel Dieses Skript ist urheberrechtlich geschützt. Kopien unterliegen der

Mehr

MUSKELN. 1. Arten der Muskulatur nach Bau und Funktion. 1.1. quergestreifte Muskulatur 1.2. glatte Muskulatur 1.3. Herzmuskulatur

MUSKELN. 1. Arten der Muskulatur nach Bau und Funktion. 1.1. quergestreifte Muskulatur 1.2. glatte Muskulatur 1.3. Herzmuskulatur - 1 - MUSKELN 1. Arten der Muskulatur nach Bau und Funktion 2. Allgemeine Muskellehre 1.1. quergestreifte Muskulatur 1.2. glatte Muskulatur 1.3. Herzmuskulatur 3. Wie kann sich ein Muskel verkürzen? 4.

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

Anatomische und physiologische Grundlagen menschlicher Bewegung

Anatomische und physiologische Grundlagen menschlicher Bewegung Anatomische und physiologische Grundlagen menschlicher Bewegung Katja Müller und Anna Kuckenberg-Merz Sport Leistungskurs 2012 Lehrer: Oliver Kohlhaas Inhaltsverzeichnis 2 Bau und Funktion des Herz-Kreislaufsystems;

Mehr

Muskelphysiologie. Biotechnologie + Biochemie + Bioprozesstechnik SS 2011. Übersicht - Muskelphysiologie

Muskelphysiologie. Biotechnologie + Biochemie + Bioprozesstechnik SS 2011. Übersicht - Muskelphysiologie Prof. Dr. Michael Pfaffl Lehrstuhl für Physiologie Weihenstephaner Berg 3 85354 Freising-Weihenstephan michael.pfaffl@wzw.tum.de Muskelphysiologie Biotechnologie + Biochemie + Bioprozesstechnik SS 2011

Mehr

Abschlussarbeit Biologiezusatzkurs ( )

Abschlussarbeit Biologiezusatzkurs ( ) Abschlussarbeit Biologiezusatzkurs (12.2-13.1) Quantifizierung von Trainingseffekten auf die Rumpfmuskulatur unter Einbeziehung molekularbiologischer Hintergründe Städtisches Gymnasium Wülfrath 31.1.2010

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Anatomische, physiologische und biomechanische Grundlagen

Anatomische, physiologische und biomechanische Grundlagen w w w. a c a d e m y o f s p o r t s. d e w w w. c a m p u s. a c a d e m y o f s p o r t s. d e Anatomische, physiologische und biomechanische Grundlagen L E SEPROBE online-campus Auf dem Online Campus

Mehr

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische

Mehr

Passive Muskeldehntechniken

Passive Muskeldehntechniken l l l gesundheitssport Präventiver Gesundheitssport Passive Muskeldehntechniken zur Detonisierung der Muskulatur? Aspekte aus dem Sport für die PT~Praxis von Dirk Ehrhardt Einleitung: Die Diskussionen

Mehr

Abbildung 1. Bizeps/Trizeps - Beispiel für zwei antagonistisch arbeitende Muskeln.

Abbildung 1. Bizeps/Trizeps - Beispiel für zwei antagonistisch arbeitende Muskeln. Muskel: Hintergrund Das Skelett dient dem Körper als Stütze und zur Artikulation. Die Knochen fungieren als Gerüst und die Gelenke als Dreh- und Angelpunkte. Skelett- bzw. quer gestreifte Muskeln sind

Mehr

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang CHRISANA Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Inhaltsverzeichnis des Moduls Nervensystem Anatomie des

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr

Trainingslehre - Ausdauer. Ausdauer. Das zentrale Thema der Trainingslehre im Pflichtfach Sport! Folie 1

Trainingslehre - Ausdauer. Ausdauer. Das zentrale Thema der Trainingslehre im Pflichtfach Sport! Folie 1 Ausdauer Das zentrale Thema der Trainingslehre im Pflichtfach Sport! Folie 1 Ausdauer 1. Lohnt sich Ausdauertraining? 2. Energiebereitstellung in der Muskelzelle und Funktion des Herz-Kreislauf-Systems

Mehr

Nervenphysiologie 3.4.3

Nervenphysiologie 3.4.3 Bewegungssystem 3.4.3 Nervenphysiologie präsynaptische Endigung Dendriten Zellkörper Axonhügel Axon Bau und Einteilung der Neurone Neurone bestehen aus einem Zellkörper und Nervenfortsätzen und sind zur

Mehr

Anatomie der Muskulatur

Anatomie der Muskulatur Anatomie der Muskulatur Muskelarten Aufbau des Muskels Reizleitung Faszien/Sehnen Agonist/Antagonist/Synergist Energiebereitstellung Aufgabe der Muskeln Beispielmuskeln Wissenswertes ca 424 einzelne Muskeln

Mehr

Versuch B Muskelphysiologie

Versuch B Muskelphysiologie Eberhard-Karls-Universität Tübingen SS2005 Tierphysiologischer Kurs für Bioinformatiker Versuch B Muskelphysiologie Donnerstag, 17. März 2005 Die folgende Versuchsreihe beschäftigt sich intensiv mit dem

Mehr

Synaptische Transmission

Synaptische Transmission Synaptische Transmission Wie lösen APe, die an den Endknöpfchen der Axone ankommen, die Freisetzung von Neurotransmittern in den synaptischen Spalt aus (chemische Signalübertragung)? 5 wichtige Aspekte:

Mehr

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7. Das periphere Nervensystem: 7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7.2. Die Hirnnerven: Sie stammen aus verschiedenen Zentren im Gehirn. I - XII (Parasympathikus: 3,7,9,10)

Mehr

2.) Material und Methode

2.) Material und Methode 1.) Einleitung: Wenn man unser Nervensystem und moderne Computer vergleicht fällt erstaunlicherweise auf, dass das Nervensystem ungleich komplexer ist. Dazu ein kurzer Überblick: Das menschliche Nervensystem

Mehr

Elektromyografie: Hintergrund

Elektromyografie: Hintergrund Elektromyografie: Hintergrund Skelettmuskeln leisten bei der Fortbewegung und Unterstützung des animalischen Skeletts den größten Teil der Arbeit. Jeder Muskel besteht aus einzelnen Muskelfasern, die in

Mehr

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle Die Nervenzelle 1. Einleitung 2. Neuronen (Evolution & Funktionelle Anatomie) 3. Neuronentypen 4. Gliazellen 5. Methoden zur Visualisierung von Neuronen Quelle: Thompson Kap. (1), 2, (Pinel Kap. 3) 1.

Mehr

Möglichkeiten der Qualitätsbeurteilung von Fleisch und Fleischerzeugnissen durch den Verbraucher BAFF KULMBACH 2002 CH-SCHW

Möglichkeiten der Qualitätsbeurteilung von Fleisch und Fleischerzeugnissen durch den Verbraucher BAFF KULMBACH 2002 CH-SCHW Möglichkeiten der Qualitätsbeurteilung von Fleisch und Fleischerzeugnissen durch den Verbraucher Qualität von Fleisch und Fleischerzeugnissen Qualität Güte wertschätzend "Qualitätsfleisch Beschaffenheit

Mehr

3 Die motorische Fähigkeit Kraft

3 Die motorische Fähigkeit Kraft 3 Die motorische Fähigkeit Kraft Nach dem Studium von Kapitel 3 sollten Sie: 1. mit der Definition der motorischen Fähigkeit Kraft umgehen können, 2. die Arbeitsweisen der Muskulatur sowie die Spannungsformen

Mehr

GRUNDLAGEN NEUROANATOMIE...

GRUNDLAGEN NEUROANATOMIE... Inhaltsverzeichnis 1 NEUROLOGIE... 2 1.1 GRUNDLAGEN NEUROANATOMIE... 2 1.1.1 Allgemeines... 2 1.1.2 Aufbau eines Neurons... 2 1.1.3 Information des Nervensystems... 3 1.1.4 Synapse... 5 1.1.5 Isolierung

Mehr

Fortleitung des Aktionspotentials

Fortleitung des Aktionspotentials Fortleitung des Aktionspotentials außen innen g K Ströme während des Aktionspotentials Ruhestrom: gleich starker Ein- und Ausstrom von K+ g Na Depolarisation: Na+ Ein- Strom g K Repolarisation: verzögerter

Mehr

Arbeitsweise der Muskulatur

Arbeitsweise der Muskulatur Bewegungssystem. Muskelsystem Das aktive Bewegungssystem wird von der quer gestreiften Muskulatur bzw. der quer gestreiften Skelettmuskulatur, gebildet. Diese ist willkürlich beeinflussbar, d. h., der

Mehr

Die Muskulatur des Menschen

Die Muskulatur des Menschen Die Muskulatur des Menschen Der Mensch verfügt über mehr als 400 voneinander abgrenzbare Einzelmuskeln. Sie machen zusammen ungefähr 40 Prozent der Körpermasse aus. Ohne Muskulatur und Gelenke wäre ein

Mehr

Versuch 1: Elektrische Fische

Versuch 1: Elektrische Fische Tierphysiologisches Praktikum (Teil Neurophysiologie) SS 2005 Johannes Gutenberg Universität Mainz Protokoll zum 1.Kurstag am 02.05.2005 Versuch 1: Elektrische Fische Protokollant: Max Mustermann Matrikelnummer:

Mehr

Microscopy. Light microscope (LM) TEM

Microscopy. Light microscope (LM) TEM Microscopy Light microscope (LM) TEM Microscopes Light microscope (LM) Transmission electron microscope (TEM) Scanning electron microscope (SEM) Transmission electron microscope (TEM) Die tierische Zelle

Mehr

Das synaptische Interaktionsgeflecht

Das synaptische Interaktionsgeflecht Synaptische Integration und Plastizität. Synaptische Mechanismen von Lernen und Gedächtnis Das synaptische Interaktionsgeflecht Praesynapse Praesynapse Postsynapse Astroglia Verrechnung (Integration) an

Mehr

Beweglichkeitstraining

Beweglichkeitstraining Beweglichkeitstraining Faktoren der Beweglichkeit Dehntraining: Trainingseffekte und anpassungen Vorteile eines regelmäßigen Dehnens Fragen zum Dehnen Auf was kommt es beim Dehnen an? Trainingsmethoden

Mehr

Muskelgewebe. Katrin Feller Mättelistr. 27 3122 Kehrsatz 1. Allgemeines... 1. 2. Skelettmuskulatur... 1

Muskelgewebe. Katrin Feller Mättelistr. 27 3122 Kehrsatz 1. Allgemeines... 1. 2. Skelettmuskulatur... 1 Mättelistr. 27 3122 Kehrsatz katrin.feller@bluewin.ch Inhaltsverzeichnis 1. Allgemeines... 1 2. Skelettmuskulatur... 1 2.1. Ultrastruktureller Aufbau der Myofibrille... 2 2.2. Elektromechanische Kopplung...

Mehr

Bündel glatter Muskelzellen

Bündel glatter Muskelzellen Lumen der Harnblase Universität Leipzig, erstellt von J. Kacza Schleimhautfalten mit Urothel Blutgefäß äße lockeres Bindegewebe Bündel glatter Muskelzellen Muskelgewebe: Glatte Muskulatur Harnblase - Hund:

Mehr

Folie 1. Folie 2. Folie 3. Anatomie und Physiologie des passiven und aktiven Bewegungsapparates. Inhalte... Matthias Coenen

Folie 1. Folie 2. Folie 3. Anatomie und Physiologie des passiven und aktiven Bewegungsapparates. Inhalte... Matthias Coenen Folie 1 Anatomie und Physiologie des passiven und aktiven Bewegungsapparates Matthias Coenen ZAS Frankfurt am Main Folie 2 Inhalte... Aktiver Bewegungsapparat Passiver Bewegungsapparat Muskulatur Training

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen (funktionelle Auswirkungen)

Mehr

Inhaltsverzeichnis. VI. Ermüdung Mechanische Zeichen der Ermüdung Störungen der Energiebilanz Störungen der Erregung 211

Inhaltsverzeichnis. VI. Ermüdung Mechanische Zeichen der Ermüdung Störungen der Energiebilanz Störungen der Erregung 211 Inhaltsverzeichnis A. Einleitung 1 B. Chemische Zusammensetzung 1 I. Anorganische Bestandteile 1 1. Wassergehalt 1 2. Ionenkonzentration 2 II. Proteine 3 1. Nicht fibrilläre Proteine 3 a) Albumine 3 b)

Mehr

Datum: Name: Bio-LK Neurophysiologie Aufbau der Nervenzelle

Datum: Name: Bio-LK Neurophysiologie Aufbau der Nervenzelle Datum: Name: Selbst bei den einfachsten tierischen Organismen findet man spezialisierte Zellen die entweder Reize wahrnehmen oder die Reizinformation weiterleiten und verarbeiten. Alle mehrzelligen Tiere

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

Muskelgewebe. Hintergrundinformation zu den Präparationsabenden der MGW im April und Oktober 2011 von Dr. Thomas Kann

Muskelgewebe. Hintergrundinformation zu den Präparationsabenden der MGW im April und Oktober 2011 von Dr. Thomas Kann Muskelgewebe Hintergrundinformation zu den Präparationsabenden der MGW im April und Oktober 2011 von Dr. Thomas Kann Einleitung: Es wurden im Rahmen der histologischen Präparationsabende folgende Dauerpräparate

Mehr

Membranen. U. Albrecht

Membranen. U. Albrecht Membranen Struktur einer Plasmamembran Moleküle gegeneinander beweglich -> flüssiger Charakter Fluidität abhängig von 1) Lipidzusammensetzung (gesättigt/ungesättigt) 2) Umgebungstemperatur Biologische

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr

MUSKEL & ENERGIE II. Biologie. Sekundarstufe II

MUSKEL & ENERGIE II. Biologie. Sekundarstufe II MUSKEL & ENERGIE II Sekundarstufe II Drei Muskeltypen im Vergleich Feinbau des Skelettmuskels Die Muskelkontraktion Muskeln, Energie und Muskelkater Biologie Inhalt und Einsatz im Unterricht "Muskel &

Mehr

Generierung eines APs

Generierung eines APs Generierung eines APs Interessante Bemerkungen: Die Zahl der Ionen, die während eines Aps in Bewegung sind, ist verglichen mit der Gesamtzahl der Ionen innerhalb und außerhalb eines Neurons sehr gering!

Mehr

Anatomie des Nervensystems

Anatomie des Nervensystems Anatomie des Nervensystems Gliederung Zentrales Nervensystem Gehirn Rückenmark Nervensystem Peripheres Nervensystem Somatisches Nervensystem Vegetatives Nervensystem Afferente Nerven Efferente Nerven Afferente

Mehr

Visuelle Wahrnehmung I

Visuelle Wahrnehmung I Visuelle Wahrnehmung I Licht: physikalische Grundlagen Licht = elektromagnetische Strahlung Nur ein kleiner Teil des gesamten Spektrums Sichtbares Licht: 400700 nm Licht erst sichtbar, wenn es gebrochen

Mehr

Organsysteme und sportliches Training

Organsysteme und sportliches Training Organsysteme und sportliches Training 1. Muskulatur 2. Autonomes Nervensystem 3. Zentralnervensystem 4. Sinnessystem 5. Herz-Kreislauf-System 6. Immunsystem 7. Atmungssystem 8. Passiver Bewegungsapparat

Mehr

Facharbeit im Fach Biologie

Facharbeit im Fach Biologie Facharbeit im Fach Biologie Thema: Entstehung des Muskelkaters alte und neue Hypothesen (Abb. 1) Name des Schülers: Niklas Kreienbrink Schuljahr: 2009/2010 Jahrgangsstufe: 12 Schule: Max-Ernst-Gesamtschule

Mehr

Dehnen was wirkt wann wo wie?

Dehnen was wirkt wann wo wie? Dehnen was wirkt wann wo wie? Ein Überblick über 2 Methoden des Dehnens 1 Dehnen ist mehr als nur 1 Methode ist mehr als nur Muskelverlängerung braucht Kenntnis über Anatomie und Physiologie der Muskulatur

Mehr

Neurobiologische Grundlagen einfacher Formen des Lernens

Neurobiologische Grundlagen einfacher Formen des Lernens Professur für Allgemeine Psychologie Vorlesung im WS 2011/12 Lernen und Gedächtnis Neurobiologische Grundlagen einfacher Formen des Lernens Prof. Dr. Thomas Goschke Literaturempfehlung Gluck, M.A., Mercado,

Mehr

Einführung in die Trainingslehre. Schnelligkeit. Definitionsansätze. Stephan Turbanski. Literaturempfehlung

Einführung in die Trainingslehre. Schnelligkeit. Definitionsansätze. Stephan Turbanski. Literaturempfehlung Einführung in die Trainingslehre Stephan Turbanski Institut für Sportwissenschaften Literaturempfehlung GEESE R., HILLEBRECHT M. (1995): straining. Aachen: Definitionsansätze BAUERSFELD M., VOSS G. (1992):

Mehr

" Der Einfluss von Sport und körperlicher Bewegung auf Adipositas, biochemische & physiologische Wirkmechanismen, realistische Therapieansätze"

 Der Einfluss von Sport und körperlicher Bewegung auf Adipositas, biochemische & physiologische Wirkmechanismen, realistische Therapieansätze " Der Einfluss von Sport und körperlicher Bewegung auf Adipositas, biochemische & physiologische Wirkmechanismen, realistische Therapieansätze" Klinik für Rehabilitationsmedizin Direktor: Univ. Prof. Dr.

Mehr

Physiologie der Atmung. Cem Ekmekcioglu

Physiologie der Atmung. Cem Ekmekcioglu Physiologie der Atmung Cem Ekmekcioglu Übersicht über den Transportweg des Sauerstoffes beim Menschen Schmidt/Thews: Physiologie des Menschen, 27.Auflage, Kap.25, Springer (1997) Klinke, Pape, Silbernagl,

Mehr

Hören WS 2009/2010. Hören. (und andere Sinne)

Hören WS 2009/2010. Hören. (und andere Sinne) WS 2009/2010 Hören (und andere Sinne) Hören Chemie Mechanik Optik Hörbereich 20 16.000 Hz 10 3.000 Hz 20 35.000 Hz 1000 10.000 Hz 10 100.000 Hz 1000 100.000 Hz Hörbereich Menschliches Ohr: Wahrnehmbarer

Mehr

Mindestens 1 Tag Pause zwischen jeder Trainingseinheit

Mindestens 1 Tag Pause zwischen jeder Trainingseinheit Trainer: Stefan Dilger Vorwärts Spagat: Einheiten: 2-3 mal die Woche Dauer: ca. 30 40 Min. Mindestens 1 Tag Pause zwischen jeder Trainingseinheit Bei Muskelkater oder anderen Verletzungen am Muskel nicht

Mehr

Asmaa Mebrad Caroline Mühlmann Gluconeogenese

Asmaa Mebrad Caroline Mühlmann Gluconeogenese Gluconeogenese Asmaa Mebrad Caroline Mühlmann 06.12.2004 Definition: wichtiger Stoffwechselweg, bei dem Glucose aus Nicht-Kohlenhydrat-Vorstufen synthetisiert wird Ablauf bei längeren Hungerperioden dient

Mehr

Synapsen und synaptische Integration: Wie rechnet das Gehirn?

Synapsen und synaptische Integration: Wie rechnet das Gehirn? Synapsen und synaptische Integration: Wie rechnet das Gehirn? Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Entsprechend der Art ihrer Übertragung unterscheidet

Mehr

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s) Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen

Mehr

Funktionsabhängige Beschwerdebilder des Bewegungssystems. 2. Auflage. Kubalek-Schröder Dehler. Physiotherapie

Funktionsabhängige Beschwerdebilder des Bewegungssystems. 2. Auflage. Kubalek-Schröder Dehler. Physiotherapie Physiotherapie KubalekSchröder Dehler Funktionsabhängige Beschwerdebilder des Bewegungssystems 2. Auflage BrüggerTherapie Reflektorische Schmerztherapie . Bewegungsorganisation Muskel Sehne Abb..2 Aufbau

Mehr

Erkrankungen des peripheren Nervensystems ~~~ und deren Aufarbeitung

Erkrankungen des peripheren Nervensystems ~~~ und deren Aufarbeitung Erkrankungen des peripheren Nervensystems ~~~ und deren Aufarbeitung Stefan Rupp & Thilo v. Klopmann 03. Oktober 2012 13. Hofheimer Tierärztetag 1 Das Nervensystem - Funktion Reizbeantwortung (Input Verarbeitung

Mehr

39. Vorlesung. Hybridisierung Biologische Moleküle Photosynthese Sehvorgang Selbstorganisation Molekulare Motoren

39. Vorlesung. Hybridisierung Biologische Moleküle Photosynthese Sehvorgang Selbstorganisation Molekulare Motoren Prof. C. von Borczyskowski Physik für CS + SK 39. Vorlesung Hybridisierung 39.1 Biologische Moleküle 39.1.1 Photosynthese 39.1.2 Sehvorgang 40.1 Selbstorganisation 40.2 Molekulare Motoren Verwendete Literatur:

Mehr

Manuelle Therapie und vegetatives Nervensystem. Die Sicht eines Grundlagenforschers

Manuelle Therapie und vegetatives Nervensystem. Die Sicht eines Grundlagenforschers Manuelle Medizin SAMM Interlaken 2012 Die Sicht eines Grundlagenforschers Wilfrid Jänig Physiologisches Institut Christian-Albrechts-Universität zu Kiel Kiel Erkrankungen (einschließlich Schmerzkrankheit)

Mehr

Energiebereitstellung

Energiebereitstellung oder Wie kommt die Tinte auf den Füller? ATP Währung der Zelle Energie wird gewonnen durch: Baaam!! ATP Mechanische Arbeit (ca. 25 %; max 35%) ADP Thermoregulation (bei sportlicher Belastung 75%!!!) Energie

Mehr

SimMuscle. Physiologische Experimente am isolierten Froschmuskel im virtuellen Labor

SimMuscle. Physiologische Experimente am isolierten Froschmuskel im virtuellen Labor Lernziele: SimMuscle Physiologische Experimente am isolierten Froschmuskel im virtuellen Labor Die meisten Ihrer Registrierungen aus diesem Praktikumsversuch sowie die daraus erstellten Diagramme werden

Mehr

Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung. Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie

Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung. Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie Seit 1998 erfolgreich in der Ausbildung zum/zur Heilpraktiker/in Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie Thema:

Mehr

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften Neurobiologie Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften www.institut-fuer-bienenkunde.de b.gruenewald@bio.uni-frankfurt.de Synapsen I Präsynaptische Ereignisse - Synapsentypen

Mehr

Funktionen der Carboanhydrase-Isoenzyme im Muskel und anderen Geweben

Funktionen der Carboanhydrase-Isoenzyme im Muskel und anderen Geweben Funktionen der Carboanhydrase-Isoenzyme im Muskel und anderen Geweben Innerhalb der α-carboanhydrase (CA) Genfamilie der Säugetiere gibt es bisher zwölf enzymatisch aktive CA Isoformen. Bei fünf Isoformen

Mehr

Neurophysiologie des periphären Nervensystems. Hintergründe zur Elektromyographie

Neurophysiologie des periphären Nervensystems. Hintergründe zur Elektromyographie Neurophysiologie des periphären Nervensystems Hintergründe zur Elektromyographie Das Neuron als Grundbaustein des Nervensystems Abb. 1-1. Schematische Umrißzeichnung eines Neurons mit Benennung der verschiedenen

Mehr

Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung. Andreas Lüthi, Friedrich Miescher Institut, Basel

Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung. Andreas Lüthi, Friedrich Miescher Institut, Basel Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung Andreas Lüthi, Friedrich Miescher Institut, Basel Wie lernen wir Angst zu haben? Wie kann das Gehirn die Angst wieder loswerden? Angst und Entwicklung

Mehr

Instruktor Guide. www.fitvibe.com

Instruktor Guide. www.fitvibe.com Instruktor Guide 1 Vorwort Diese Anleitung richtet sich an Benutzer des fitvibe Excel und beinhaltet leicht verständliche Erläuterungen, wie die Leistung des Körpers durch vertikale Vibrationsstimulierung

Mehr

Ergänzungsfach Sport Gymnasium Bern-Kirchenfeld. Trainingslehre Kraft. 2. Semester 2012 Th. Glatzfelder, R. Rohner

Ergänzungsfach Sport Gymnasium Bern-Kirchenfeld. Trainingslehre Kraft. 2. Semester 2012 Th. Glatzfelder, R. Rohner Ergänzungsfach Sport Gymnasium Bern-Kirchenfeld Trainingslehre Kraft 2. Semester 2012 Th. Glatzfelder, R. Rohner Inhaltsverzeichnis 1 Einleitung...2 1.1 Die motorische Einheit...3 1.2 Der Muskelaufbau...4

Mehr

Nervensysteme und neuronale Koordination

Nervensysteme und neuronale Koordination Nervensysteme und neuronale Koordination Sensorischer Input Sensorische Filterung Funktionelle Hauptteile des Zentralnervensystems Sensorische Zentren Neuronale Verschaltung Genetische Information Erfahrung

Mehr

Schematische Übersicht über das Nervensystem eines Vertebraten

Schematische Übersicht über das Nervensystem eines Vertebraten Schematische Übersicht über das Nervensystem eines Vertebraten Die Integration des sensorischen Eingangs und motorischen Ausgangs erfolgt weder stereotyp noch linear; sie ist vielmehr durch eine kontinuierliche

Mehr

12.1 a Elektroneurographie und Elektromyographie

12.1 a Elektroneurographie und Elektromyographie 1 12.1 a Elektroneurographie und Elektromyographie Elektrophysiologische Untersuchungen (Elektroneurographie ENG; Elektromyographie EMG) kommen bei der Lyme-Neuroborreliose häufig zum Einsatz. Diese Untersuchungsmethoden

Mehr