Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Größe: px
Ab Seite anzeigen:

Download "Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie"

Transkript

1 FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie Name: Vorname: Matrikel-Nr.: Studiengang: Besuchte Übungsgruppe (bitte ankreuzen): Herr Habeck (Di., 14-16) Herr Habeck (Di., 16-18) Herr Körber (Do., 10-12) Frau Reifenhäuser (Di., 12-14) Herr Kloft (Do., 08-10) Frau Reifenhäuser (Mi., 18-20) keine Übungsgruppe Aufgabe Punkte Erz. Punkte Erreichte Punktzahl: Die Modulprüfung ist bestanden von max. 50 Punkten ja / nein Note: Technische Hinweise: 1. Taschenrechner und elektronische Geräte aller Art sind nicht zugelassen! 2. Handys bitte ausschalten. 3. Eigenes Papier ist nicht zugelassen, bitte verwenden Sie zum Ausprobieren das Blatt am Ende der Arbeit oder die Rückseiten. 4. Steht eine Lösung nicht unmittelbar unter der Aufgabe, ist ein Querverweis unbedingt erforderlich. 5. Die Heftklammer darf nicht entfernt werden, auch das Notizblatt darf nicht von der Arbeit getrennt werden. 6. Nicht mit Bleistift schreiben!

2 Aufgabe 1: a) Berechnen Sie ϕ(63) und ϕ(5 + ϕ(16)). ϕ(63) = ϕ(5 + ϕ(16)) = Nebenrechnungen: b) Bestimmen Sie alle m N, m > 1, für die [5] m [6] m [9] m = [13] m erfüllt ist und für die (gleichzeitig) [3] m und [7] m invers bzgl. der Multiplikation sind. Lösung: Nebenrechnung: c) Beweisen Sie oder widerlegen Sie: (p + 2)(p 2 + 3) ist für alle Primzahlen p durch 4 teilbar. 2

3 Aufgabe 2: a) Bestimmen Sie ein x Z mit 0 x 26 und 14x Lösung: x = Nebenrechnung: b) Bestimmen Sie die letzten beiden Ziffern von Lösung: Die letzten beiden Ziffern von sind Nebenrechnung: 3

4 Aufgabe 3: Für alle x, y Z sei x y := 2y 3 + 2x y. a) Beweisen oder widerlegen Sie: (1) (Z, ) besitzt mindestens ein linksneutrales Element. (2) (Z, ) besitzt mindestens ein rechtsneutrales Element. b) Geben Sie (ohne Beweis!) eine Verknüpfung an, so dass das Verknüpfungsgebilde (Z, ) genau die drei rechtsneutralen Elemente e r1 = 1, e r2 = 2 und e r3 = 3 besitzt. 4

5 c) Bertrachten Sie das von k Z abhängige Verknüpfungsgebilde (Z, ) mit der Verknüpfung x y = (2k + 5)x y für alle x, y Z. Bestimmen Sie k so, dass (Z, ) kommutativ ist. Lösung: Für k = ist (Z, ) kommutativ. Begründung: d) Seien (Z, ) und (Z, ) algebraische Strukturen mit a b = a b und a b = a + 2b für alle a, b Z. Beweisen oder widerlegen Sie: ist distributiv bezüglich. 5

6 Aufgabe 4: a) Sei (M, +, ) der Ring der reellen 2 2-Matrizen. Beweisen oder widerlegen Sie: (1) In (M, +, ) existiert ein rechtsneutrales Element. (2) (M, +, ) ist nullteilerfrei. b) Sei f : (G, ) (H, ) eine verknüpfungstreue Abbildung zwischen den Gruppen (G, ) und (H, ), wobei e G bzw. e H das neutrale Element von G bzw. H bezeichnet. Beweisen Sie: f(e G ) = e H. Beweis: c) Sei (G, ) eine Gruppe mit vier Elementen a, b, c, d. Zudem gilt c a = d, d = c 1. Geben Sie das neutrale Element der Gruppe an und bestimmen Sie die Verknüpfungstafel von (G, ). Das neutrale Element der Gruppe ist Verknüpfungstafel: a b c d a b c d 6

7 Aufgabe 5: a) Sei σ x die Spiegelung an der x-achse und σ y die Spiegelung an der y-achse. Geben Sie die reelle 2 2-Matrix M an, die die Abbildung σ y σ x darstellt. Begründen Sie Ihre Aussage. Matrix: M = Begründung: b) Sei f : C C gegeben durch f(z) = z 5i i. (1) Berechnen Sie alle Fixpunkte der Abbildung f. Lösung: Nebenrechnung: 7

8 (2) Begründen Sie, dass die Abbildung f eine Kongruenzabbildung ist und ermitteln Sie, ob f orientierungserhaltend oder orientierungsumkehrend ist. Bestimmen Sie weiterhin, um welchen Typ Kongruenzabbildung es sich handelt und charakterisieren Sie diesen, z.b. durch Angabe von Drehzentrum und Drehwinkel bei einer Drehung. 8

9 Aufgabe 6: Beweisen oder widerlegen Sie: a) Das regelmäßige 35-Eck ist mit Zirkel und Lineal konstruierbar. (Hinweis: Verwenden Sie den Satz von Gauß.) b) Es gibt ein Achteck, dessen Symmetriegruppe D + 4 ist. c) Es gibt ein Neuneck, dessen Symmetriegruppe D + 6 ist. 9

10 Notizen und Nebenrechnungen Dieses Blatt wird nicht korrigiert. 10

11 Notizen und Nebenrechnungen Dieses Blatt wird nicht korrigiert. 11

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 15.02.2017 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 08.0.01

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Matrikelnummer. Klausur 1

Matrikelnummer. Klausur 1 Klausur 1 Pro Aufgabe sind maximal vier Punkte zu erreichen. Auf jedem Klausurblatt sind mindestens der oder die anzugeben, auf dem obersten Blatt beides. Aufgabe 1. Richtig oder falsch? (1 Punkt pro richtige

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten der Universität Koblenz-Landau, Campus Koblenz

Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten der Universität Koblenz-Landau, Campus Koblenz Fachbereich 3: Mathematik/ Naturwissenschaften Mathematisches Institut Eva-Maria Gerster; Prof. Dr. H.-S. Siller; Prof. Dr. T. Götz Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31 Scheinklausur Höhere Mathematik Musterlösung 8.. 00, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 9 Summe Punkte / / / / /7 /5 / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Fakultät für Mathematik Institute IAG und IMO Prof. Dr. H. Bräsel/Dr. M. Höding Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Bitte in Druckschrift ausfüllen! Name

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

Ich benötige einen Schein. Ich habe bereits genug Scheine.

Ich benötige einen Schein. Ich habe bereits genug Scheine. 1 Klausur 20.01.2003 Algebra I WS 2002/03 Dr. Elsholtz Name, Vorname Matr.nummer Fachrichtung Fachsemester Ich benötige einen Schein. Ich habe bereits genug Scheine. Die folgende Klausur hat mehr Aufgaben

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 17. April 2015 Algebra I Klausur 2 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 6 7 6 6

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

1.4 Gruppen, Ringe, Körper

1.4 Gruppen, Ringe, Körper 14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls

Mehr

Nachholklausur zur Linearen Algebra I, WS 03/04

Nachholklausur zur Linearen Algebra I, WS 03/04 16.4.2004 Nachholklausur zur Linearen Algebra I, WS 03/04 Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information Prof. Dr. Bernhard Steffen Dawid Kopetzki Repetitorium zur Vorlesung Mathematik für Informatiker 1 Sommersemester 2015 Probeklausur Nr. 2 Information Diese Aufgaben dienen als Grundlage zur Wiederholung

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Semesterklausur zur Elementargeometrie (L) von 60 Punkten bestanden Korrektor

Semesterklausur zur Elementargeometrie (L) von 60 Punkten bestanden Korrektor Technische Universität Berlin Wintersemester 03/04 Fakultät II, Institut für Mathematik Prof. Dr. Ulrich Kortenkamp Sekretariat MA6-2 Andreas Fest Semesterklausur zur Elementargeometrie (L) 06.02.2004

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

3. Algebra und Begriffsverbände. Algebraische Strukturen

3. Algebra und Begriffsverbände. Algebraische Strukturen 3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 28. Januar 2004, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen, Formelsammlung Schreiben Sie bitte auf dieses

Mehr

Semestralklausur zur Vorlesung Mathematische Strukturen

Semestralklausur zur Vorlesung Mathematische Strukturen Name: Vorname: Matr.Nr: Universität Duisburg-Essen WS 2010/2011 Ingenieurwissenschaften / Informatik 14. Februar 2010 Dozentin: Prof. Dr. B. König Klausur Semestralklausur zur Vorlesung Mathematische Strukturen

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Klausur zur Linearen Algebra I

Klausur zur Linearen Algebra I Technische Universität Dortmund Wintersemester 2011/2012 Fakultät für Mathematik 23.03.2012 Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 4. Februar 2002, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen Schreiben Sie bitte auf dieses Deckblatt oben

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Proseminar Algebra und diskrete Mathematik. SS 2017

Proseminar Algebra und diskrete Mathematik. SS 2017 Proseminar Algebra und diskrete Mathematik. SS 2017 Bachelorstudium Lehramt Sekundarstufe (Allgemeinbildung) Lehramtsstudium Unterrichtsfach Mathematik Ganze Zahlen: 1. Zeigen Sie folgende Teibarkeiten

Mehr

Symmetrie von Ornamenten

Symmetrie von Ornamenten Symmetrie von Ornamenten Teilnehmer: Theresa Lechner Alexey Loutchko Dennis Menge Simon Reinke Fynn Strohecker Thimo Wellner Gruppenleiter: Jürg Kramer Anna v. Pippich Gymnasium Ernestinum, Coburg Heinrich-Hertz-Oberschule,

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

15. Gruppen, Ringe und Körper

15. Gruppen, Ringe und Körper Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof aa Dr J Giesl Formale Sprachen, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur

Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 10. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (7 einschließlich zweier Deckblätter)

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Übungsklausur zur Linearen Algebra I

Übungsklausur zur Linearen Algebra I Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik 14.12.2009 Übungsklausur zur Linearen Algebra I Name: Prüfen Sie sofort, ob Sie alle 8 Aufgaben erhalten haben. Entfernen

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Musterlösung zur Nachklausur Lineare Algebra I

Musterlösung zur Nachklausur Lineare Algebra I Musterlösung zur Nachklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw falsch? Setzen Sie in jeder Zeile genau ein Kreuz Für jede korrekte Antwort erhalten Sie 0,5

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3.1 Gruppen Vergleicht man die Gesetze (A1 (A4 und (M1 (M4, so stellt man eine grosse Ähnlichkeit in den Strukturen fest. Man kann das zugrundeliegende

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Matrizenrechnung Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra: Matrizenrechnung

Mehr

4 Das Vollständigkeitsaxiom und irrationale Zahlen

4 Das Vollständigkeitsaxiom und irrationale Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr