Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008

Größe: px
Ab Seite anzeigen:

Download "Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008"

Transkript

1 Fakultät für Mathematik Institute IAG und IMO Prof. Dr. H. Bräsel/Dr. M. Höding Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Bitte in Druckschrift ausfüllen! Name Vorname Fachrichtung Matrikelnummer Punktebewertung Aufgabe 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) 2(c) 2(d) 2(e) Punkte erreichte Punkte Alle Aussagen sind sorgfältig zu begründen! und Zeit zur Bearbeitung: 90 min! 1

2 [ 1. Sei G 1 die von den reellen Matrizen A = 0 1 und B = [ 0 1 mit der Matrizenmultiplikation als Operation erzeugte Gruppe (M, ). Sie hat die Elemente M 1 = E, M 2 = A, M 3 = B, M 4 = A 2, M 5 = A 3, M 6 = AB, M 7 = BA, M 8 = BA 2. (a) Ergänzen Sie die Gruppentafel M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 1 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 2 M 6 M 8 M 3 M 7 M 3 M 3 M 7 M 1 M 8 M 6 M 5 M 2 M 4 M 4 M 8 M 7 M 6 M 3 M 5 M 7 M 3 M 8 M 6 M 6 M 6 M 3 M 2 M 7 M 8 M 1 M 4 M 5 M 7 M 7 M 8 M 5 M 6 M 3 M 4 M 1 M 2 M 8 M 8 M 6 M 4 M 3 M 7 M 2 M 5 M 1 (b) Weisen Sie die Gruppeneigenschaften nach. Warum gilt sofort das Assoziativgesetz? (c) Geben Sie eine Untergruppe G = (M, ) von G 1 mit 4 Elementen an (Begründung nicht vergessen!) und zeigen Sie, daß diese ein Normalteiler ist. (d) Überprüfen Sie die Gruppe und die Untergruppe auf Kommutativität. (e) Sind G 1 und G zyklisch? (f) Geben Sie ein minimales Erzeugendensystem für die Untergruppe G an. (g) Ist die Untergruppe G isomorph zur Gruppe G 2 = (Z 5 \ {[0 5 }, )? Lösung: [ [ (a) M 1 = = E, M = [ M 4 = A 2 = , M 5 = A 3 = = A, M 3 = [ 0 1 [ 0 1 Ausfüllen der [ Gruppentafel: [ [ 0 1 M 2 M 2 = = = M [ [ [ M 2 M 4 = = = M = B,

3 (b) [ [ [ 0 1 M 2 M 5 = = = M = E [ [ [ 0 1 M 4 M 2 = = = M [ [ [ M 4 M 4 = = = E 0 1 Alle anderen kann man sofort eintragen, da vorausgesetzt wird, daß eine Gruppe vorliegt: M 2 M 1 = M 2, M 4 M 1 = M 4, M 4 M 5 = M 2, M 5 M 1 = M 5, M 5 M 2 = M 1, M 5 M 4 = M 2, M 5 M 5 = M 4. M i, M j M : M i M j M, damit ist die Abgeschlossenheit erfüllt (Verknüpfungstabelle). Assoziativgesetz gilt sofort, da M abgeschlossen bzgl. Multiplikation und das Assoziativgesetz für allgemeine Matrizenmultiplikation gilt. M 1 = E ist neutral: M i M gilt: M 1 M i = M i M 1 = M i. Inverse Elemente sind aus der Gruppentafel zu entnehmen: Suche ein neutrales Element in der Tafel, dann sind die beiden Elemente, deren Multiplikation M 1 ergibt, invers zueinander: zu M 1 : M 1, zu M 2 : M 5, zu M 3 : M 3, zu M 4 : M 4, zu M 5 : M 2, zu M 6 : M 6, zu M 7 : M 7 und zu M 8 : M 8. (c) G = (M, ) mit M = {M 1, M 2, M 4, M 5 } M 1 M 2 M 4 M 5 M 1 M 1 M 2 M 4 M 5 M 2 M 2 M 4 M 5 M 1 M 4 M 4 M 5 M 1 M 2 M 5 M 5 M 1 M 2 M 4 Da die Menge M abgeschlossen bzgl. der Multiplikation, ist G Untergruppe. Wenn G Normalteiler sein soll, muss gelten: M i M = M M i i = 1,..., 8. Es ist klar, dass dies für i = 1, 2, 4, 5 erfüllt ist, da M Trägermenge der Untergruppe ist M 3 M = M M 3 {M 3, M 7, M 8, M 6 } = {M 3, M 6, M 8, M 7 } M 6 M = M M 6 {M 6, M 3, M 7, M 8 } = {M 6, M 8, M 7, M 3 } M 7 M = M M 7 {M 7 M 8, M 6, M 3 } = {M 7, M 3, M 6, M 8 } 3

4 M 8 M = M M 8 {M 8, M 6, M 3, M 7 } = {M 8, M 7, M 3, M 6 } Damit gilt: G ist Normalteiler. (d) G 1 ist nicht kommutativ, z. B. M 2 M 3 M 3 M 2. G ist kommutativ: M i, M j M : M i M j = M j M i. Gruppentafel wird an der Hauptdiagonalen gespiegelt und es entsteht wieder die gleiche Tafel. (e) Wenn die Gruppe zyklisch sein soll, muss ein Element der Ordnung 8 existieren. Nach den inversen Elementen kommen dafür nur M 2 oder M 5 in Frage: O(M 2 ) = 4 da M 2 M 2 M 2 M 2 = E O(M 5 ) = 4 da M 5 M 5 M 5 M 5 = E d. h. Gruppe ist nicht zyklisch. Da in G das Element M 2 ist und O(M 2 ) = 4 gilt, ist die Untergruppe zyklisch. (f) Da in G das Element M 2 ist und O(M 2 ) = 4, ist {M 2 } minimales Erzeugendensystem: M 2, M 2 2 = M 4, M 3 2 = M 5, M 4 2 = M 1 = E (f) G 2 = (z 5 \{0}, ) mit mit 0(1) = 1, 0(2) = 4, 0(3) = 4, 0(4) = 1 bijektive Abbildung ϕ : M 1 1 M 4 4 M 2 2 M 5 3 Dann entsteht aus der Gruppentafel von G aus (c): ϕ Umsortierung Diese ist gleich der Gruppentafel der G 2, also sind die Gruppen isomorph. 4

5 2. Betrachtet werden die Gruppen G 1 = (C \ {0}, } und G 2 = {R >0, }. (a) Man zeige, daß die Abbildung f : C \ {0} R >0 mit f(z) = z für alle z C \ {0} ein surjektiver Homomorphismus ist. (Hinweis: Die Verwendung der Eulersche Form der komplexen Zahlen erleichtert die Beweisführung.) (b) Welche Kongruenzrelation wird durch den surjektiven Homomorphismus in C \ {0} induziert? (c) Man bestimme den Kern der Abbildung und beschreibe allgemein die Kongruenzklassen. (d) Man beschreibe die entstehende Faktorgruppe und deute die Elemente der Trägermenge der Faktorgruppe G 1 /K und deren Verknüpfung geometrisch. (e) Der Homomorphiesatz sagt aus, daß die Faktorgruppe G 1 /K isomorph zu G 2 = {R >0, } ist. Welche bijektive Abbildung gehört zu dieser Isomorphie? (Begründung!) Lösung: (a) zu zeigen: f(z 1 z 2 ) = f(z 1 ) f(z 2 ). f(z 1 z 2 ) = f(r 1 r 2 e i(ϕ 1+ϕ 2 ) ) = r 1 r 2 = f(r 1 e iϕ 1 ) f(r 2 e iϕ 2 ) = f(z 1 ) f(z 2 ) Damit ist die Homomorphie gezeigt. Jedes x R >0 ist Bildelement, da x R >0 f(x e iϕ ) = x gilt, daraus folgt die Surjektivität von f. (b) z 1 Rz 2 f(z 1 ) = f(z 2 ) (c) Kern(f) = {z f(z) = 1 = z } = {e iϕ 0 ϕ 2π} [z = {re iϕ r = z 0 ϕ 2π} (d) G 1 K = (M, ): M = {[z z = r r R >0 } und [z 1 [z 2 = [z 1 z 2. Die Elemente der Trägermenge der Faktorgruppe sind Kreise in der Gaußschen Zahlenebene mit Mittelpunkt im Ursprung und Radius r > 0, r R >0. Wird der Kreis mit Radius r 1 mit dem Kreis mit Radius r 2 komplex multipliziert, entsteht ein Kreis mit Radius r 1 r 2. (e) Die bijektive Abbildung ist durch [z r = z bestimmt, da jede positive reelle Zahl r als Urbilder (bezüglich f) alle komplexen Zahlen z mit z = r hat, die durch den natürlichen Homomorphismus in [z abgebildet werden. 5

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I Stefan K. 3.Übungsblatt Algebra I Aufgabe 1 a) zu zeigen: Z(G) ist ein Normalteiler in G Nach Definition des Zentrums ist Z(G) = {h G hg = gh g G}, = {h G hgh 1 = g g G}. (1) Nachweis, daß Z(G) G eine

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 24.10.2017 24. Vorlesung Kongruenzrelationen in Gruppen Faktorgruppe nach einer Kongruenzrelation R Normalteiler in Gruppen Faktorgruppe nach einem Normalteiler

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Algebra und Geometrie 06. September 011 Klausur zur Vorlesung Aufgabe 1 (5 Punkte) Sei G eine Gruppe und X G eine beliebige Teilmenge von G. X := X N G a) Zeigen Sie, dass X der kleinste Normalteiler

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 11 Das Gruppenaxiom (G3) ist nicht erfüllt Es gibt zwar zu jedem x M eine Linksinverse (dh ein Element x mit x x = 1 ) und eine Rechtsinverse (dh ein Element x mit xx = 1 ), die beiden stimmen jedcoh nicht

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 30 2 Algebraische Grundstrukturen Definition. Eine Verknüpfung auf einer Menge G ist eine Abbildung : G G G (a, b) a b. Schreibweise. a b, a b, ab, a + b. Beispiele. (i) G = N : N N N (a, b) a + b. G =

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 30.1.2014 M. Isberner MafI1-Tutorium 30.1.2014 1 / 16 Thema heute Thema heute: Algebra (Teil 3) Kern Faktorstrukturen (für Ringe) Homomorphismen (für

Mehr

Übungsblatt 4. Hausübungen

Übungsblatt 4. Hausübungen Übungsblatt 4 Hausübungen Die Hausübungen müssen bis Mittwoch, den 07.11.18, um 18:00 Uhr in den Briefkasten mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden. Bitte schreiben

Mehr

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17)

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17) Klausur Lineare Algebra für das berufliche Lehramt (WS 06/7) am 0.0.07 von 3:30 - :00 Uhr Dr. Vanessa Krummeck Aufgabe. (Punkte: 3 + 3 + 3 + 3 = ) Themen-Mix. Welche der folgenden Aussagen sind wahr und

Mehr

Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur

Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 10. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (7 einschließlich zweier Deckblätter)

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

3. Algebra und Begriffsverbände. Algebraische Strukturen

3. Algebra und Begriffsverbände. Algebraische Strukturen 3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 15.02.2017 Name: Vorname:

Mehr

Thema: Die Einheitengruppe des Restklassenrings /n

Thema: Die Einheitengruppe des Restklassenrings /n RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter

Mehr

6. Musterlösung zu Mathematik für Informatiker II, SS 2004

6. Musterlösung zu Mathematik für Informatiker II, SS 2004 6 Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 61 (Quadrismus) (7 Punkte) Wir wollen untersuchen, was Quadrieren in den multiplikativen Gruppen Z p mit p

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 56 Basiswechsel bei Tensorprodukten Lemma 56.1. Es sei K ein Körper und seien V 1,...,V n endlichdimensionale

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 8 Homomorphie- und Isomorphiesatz Satz 8.1. Seien G,Q und H Gruppen, es sei ϕ :G H ein Gruppenhomomorphismus und ψ : G Q ein surjektiver

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Lineare Algebra Probeklausur (WS 2014/15)

Lineare Algebra Probeklausur (WS 2014/15) Lineare Algebra Probeklausur (WS 2014/15) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift (Kugelschreiber

Mehr

Testklausur II mit Lösungen

Testklausur II mit Lösungen Fachbereich Mathematik/Informatik 2. Juli 2011 Prof. Dr. H. Brenner Körper- und Galoistheorie Testklausur II mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/2018 1.03.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

Definition: Halbgruppe. Definition: Gruppoid. Definition: Gruppe. Definition: Monoid. Definition: Gruppenhomomorphismus. Definition: abelsche Gruppe

Definition: Halbgruppe. Definition: Gruppoid. Definition: Gruppe. Definition: Monoid. Definition: Gruppenhomomorphismus. Definition: abelsche Gruppe 1 Gruppoid 2 Halbgruppe 3 Monoid 4 Gruppe 5 abelsche Gruppe 6 Gruppenhomomorphismus 7 Kern(ϕ) 8 Bild(ϕ) 9 Untergruppe 10 Untergruppenkriterium Es sei (G, ) ein Gruppoid. Ist die Verknüpfung zusätzlich

Mehr

Kap. II Ringe und Körper

Kap. II Ringe und Körper Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph

Mehr

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Aufgabe 4. (Die Gruppen der Ordnung 12) Beweisen Sie, dass jede Gruppe der Ordnung 12 sich als semidirektes Produkt einer 2-Sylowuntergruppe mit einer 3-Sylowuntergruppe

Mehr

LA 1 WS 08/09 Zettel 1

LA 1 WS 08/09 Zettel 1 LA 1 WS 08/09 Zettel 1 Nils Mahrt 31. Oktober 2008 1. Aufgabe Sei f : X Y eine Abbildung. (a) Für A X ist zu zeigen, dass A f 1 (f(a)) ist. Sei also x A, dann ist zu zeigen, dass x f 1 (f(a)). Es gilt,

Mehr

6.1 Präsentationen von Gruppen

6.1 Präsentationen von Gruppen 244 6.1 Präsentationen von Gruppen Es geht jetzt um die Beschreibung von Gruppen durch Erzeugende und Relationen, also z. B. um die genaue Beschreibung dessen, was Zeilen wie die folgende bedeuten: G :=

Mehr

4 Homomorphismen von Halbgruppen und Gruppen

4 Homomorphismen von Halbgruppen und Gruppen 4 Homomorphismen von Halbgruppen und Gruppen Bei der Betrachtung der Gruppe S 3 hatten wir auf die Ähnlichkeit im Verhalten der Permutationen von 1,2,3} mit dem der Symmetrien (Deckbewegungen) eines gleichseitigen

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösungen 9. Oktober 202 *Aufgabe. Ein Fischauge ist ein Objektiv in der Photographie, welches einen sehr großen Bildwinkel (gewöhnlich 80 ) abbilden kann. Hierfür muss das Bild

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra / Analytische Geometrie I

Lineare Algebra / Analytische Geometrie I Ralph-Hardo Schulz Lineare Algebra / Analytische Geometrie I Skriptum zur Vorlesung in der Lehrkräfteweiterbildung Berlin 2018 L A TEX Erstellung unter Mitarbeit von Tscho Heringlehner Alle Rechte vorbehalten.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler S n C n D n A n Automorphismengruppe Definition: Gruppe Definition: Nebenklasse Eigenschaften: Äquivalenzrelation Satz: Lagrange Definition: Normalteiler Einheitswurzelgruppe C n = {ζ C; ζ n = 1} Permutationsgruppe

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 07.02.2018 Name: Vorname:

Mehr

Lösungen zu den Aufgaben der zweiten Auflage. Sämtliche Verweise beziehen sich auf diese zweite Auflage. (d) (m, n) m + n + m n.

Lösungen zu den Aufgaben der zweiten Auflage. Sämtliche Verweise beziehen sich auf diese zweite Auflage. (d) (m, n) m + n + m n. 1 Lösungen zu den Aufgaben der zweiten Auflage. Sämtliche Verweise beziehen sich auf diese zweite Auflage. Aufgabe 1.1: Untersuchen Sie die folgenden inneren Verknüpfungen N N N auf Assoziativität, Kommutativität

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

Chinesischer Restsatz für Ringe

Chinesischer Restsatz für Ringe Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 9.10.2017 Inhalt des Moduls Einführung in die Mathematik für Informatiker Fachrichtung Mathematik, Institut für Algebra

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Algebraische Strukturen

Algebraische Strukturen Peter Hellekalek Algebraische Strukturen Skriptum 28. Jänner 2014 Inhaltsverzeichnis 1 Gruppen.................................................. 5 1.1 Definitionen...........................................

Mehr

Gruppentheorie Eine Zusammenfassung

Gruppentheorie Eine Zusammenfassung Gruppentheorie Eine Zusammenfassung Stephan Tornier ETH Zürich FS 09 21. Mai 2009 Zusammenfassung In diesem Skript sind grundlegende Definitionen und Aussagen der Gruppentheorie zusammengefasst. basierend

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 I Eine algebraische Struktur ist ein Paar A; (f i ) ; bestehend aus einer nichtleeren Menge A, der TrÄagermenge

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Skriptum EINFÜHRUNG IN DIE ALGEBRA

Skriptum EINFÜHRUNG IN DIE ALGEBRA Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf

Mehr

Matrikelnummer. Klausur 1

Matrikelnummer. Klausur 1 Klausur 1 Pro Aufgabe sind maximal vier Punkte zu erreichen. Auf jedem Klausurblatt sind mindestens der oder die anzugeben, auf dem obersten Blatt beides. Aufgabe 1. Richtig oder falsch? (1 Punkt pro richtige

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen und Prof. Dr. G. Kern-Isberner WS 11/12 Klausur 27. März 2012 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Kennwort (zur Veröffentlichung

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 12.04.2017 Name: Vorname:

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2, Lösungen 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information Prof. Dr. Bernhard Steffen Dawid Kopetzki Repetitorium zur Vorlesung Mathematik für Informatiker 1 Sommersemester 2015 Probeklausur Nr. 2 Information Diese Aufgaben dienen als Grundlage zur Wiederholung

Mehr

Musterlösung zur Probeklausur Lineare Algebra I

Musterlösung zur Probeklausur Lineare Algebra I Musterlösung zur Probeklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten Sie

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

14 Ideale und Ringhomomorphismen

14 Ideale und Ringhomomorphismen 14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

1.4 Gruppen, Ringe, Körper

1.4 Gruppen, Ringe, Körper 14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a,b) a b Die Verknüpfung heißt assoziativ falls a,b,c M gilt: a (b c) = (a b) c; kommutativ falls

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik 1 Übungsserie 3+4 ( )

Mathematik 1 Übungsserie 3+4 ( ) Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge

Mehr