Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Größe: px
Ab Seite anzeigen:

Download "Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie"

Transkript

1 FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie Name: Vorname: Matrikel-Nr.: Studiengang: Besuchte Übungsgruppe (bitte ankreuzen): Herr Habeck (Di., 14-16) Herr Habeck (Do., 10-12) Frau Starck (Di., 12-14) Frau Starck (Do., 10-12) Herr Steinhauer (Di., 16-18) keine Übungsgruppe Aufgabe Punkte Erz. Punkte Erreichte Punktzahl: von max. 50 Punkten Die Modulprüfung ist bestanden ja / nein Note: Technische Hinweise: 1. Taschenrechner sind nicht zugelassen! 2. Handys bitte ausschalten. 3. Eigenes Papier ist nicht zugelassen, bitte verwenden Sie zum Ausprobieren das Blatt am Ende der Arbeit oder die Rückseiten. 4. Steht eine Lösung nicht unmittelbar unter der Aufgabe, ist ein Querverweis unbedingt erforderlich. 5. Die Heftklammer darf nicht entfernt werden, auch das Notizblatt darf nicht von der Arbeit getrennt werden. 6. Nicht mit Bleistift schreiben!

2 Aufgabe 1: a) Berechnen Sie ϕ(20 ϕ(7) 15). Lösung: ϕ(20 ϕ(7) 15) =... = 480. b) Geben Sie eine gerade Zahl n 1 N und eine ungerade Zahl n 2 N an, so dass ϕ(3 n 1 ) = 32 und ϕ(3 n 2 ) = 32. Lösung: n 1 = 32 und n 2 = 17 c) Sei p eine Primzahl. Zeigen Sie, dass ϕ(2p) + ϕ(4p) stets ein Vielfaches von 6 ist. Lösung: Man führt eine Fallunterscheidung bzgl. p durch, wobei man die beiden Fälle p = 2 und p > 2 betrachtet. Für p = 2 erhält man ϕ(2p) + ϕ(4p) = ϕ(4) + ϕ(8) = = 6, d.h. in diesem Fall ist die Behauptung wahr. Im anderen Fall, also p > 2, ist p 1 eine gerade Zahl und kann geschrieben werden in der Form p 1 = 2k mit einem k N. Es ergibt sich ϕ(2p)+ϕ(4p) = ϕ(2) ϕ(p)+ϕ(4) ϕ(p) = 1 (p 1)+2 (p 1) = 3(p 1) = 3 2 k = 6k. Aufgabe 2: a) Bestimmen Sie alle m N, m > 1, mit [11] m [7] m + [13] m = [35] m. Lösung: m {5, 11, 55} b) Beweisen oder widerlegen Sie: Ist a N nicht durch 3 teilbar, so ist 2a durch 3 teilbar. Beweis: Es gilt: a 1 mod 3 = 2a mod 3 a 2 mod 3 = 2a mod 3 c) Berechnen Sie mit Hilfe des Satzes von Euler-Fermat die letzten beiden Ziffern von Lösung: Die letzten beiden Ziffern von sind 21. Nebenrechnungen: Der aus der VL bekannte Satz von Fermat-Euler liefert (da ggt(17,100)=1) mit ϕ(100) = ϕ( ) = = 40 die Kongruenz 17 ϕ(100) mod 100. Damit findet man die gesuchten letzten beiden Ziffern durch ( 17 40) ( 17 2) 2 ( 11) mod

3 Aufgabe 3: Für alle a, b Z sei a b := b 2a + 3. a) Beweisen oder widerlegen Sie: (1) (Z, ) ist kommutativ. Beweis: 0 1 = 3, aber 1 0 = 0. (2) (Z, ) besitzt mindestens ein linksneutrales Element.. Beweis: e l = 1 ist linksneutral, denn für alle a R gilt e l a = 2e l + 3 a = 2 ( 1) + 3 a = a. (3) (Z, ) besitzt mindestens ein rechtsneutrales Element. Beweis: Angenommen, e r ist rechtsneutrales Element, d.h. a e r = a für alle a R. Dann folgt aber für a = 3 2 a e r = 2a + 3 e r = e r = 0 e r = 0 a, was einen Widerspruch zur Annahme darstellt. b) Gegeben seien die Abbildungen f, g : Z Z, definiert durch f(x) = 2x für alle x Z und { x falls x gerade g(x) = 2 x + 2 falls x ungerade. Beweisen oder widerlegen Sie: (1) f ist linksinvers zu g. Beweis: Für x = 1 gilt f(g(1)) = f(3) = 6 3. (2) g ist linksinvers zu f. Beweis: Für alle x Z gilt g(f(x)) = g(2x) = 2x 2 = x, d.h. g f = id. c) Sei h : (R 4, +) (R 10, ) eine verknüpfungstreue und bijektive Abbildung mit h([1] 4 ) = [3] 10. Berechnen Sie h([2] 4 ) und h 1 ([7] 10 ). Lösung: h([2] 4 ) = [9] 10 und h 1 ([7] 10 ) = [3] 4 Nebenrechnungen: Man berechnet h([2] 4 ) = h([1] 4 + [1] 4 ) = h([1] 4 ) h([1] 4 ) = [3] 10 [3] 10 = [9] 10, h([3] 4 ) = h([2] 4 + [1] 4 ) = h([2] 4 ) h([1] 4 ) = [9] 10 [3] 10 = [7] 10, und somit h 1 ([7] 10 ) = [3] 4. 3

4 Aufgabe 4: Sei (M, +, ) der Ring der reellen Matrizen. a) Definieren Sie den Begriff Einheit. Lösung: Eine Einheit x M in (M, +, ) ist ein invertierbares Element, d.h. es gibt ein x 1 M mit x x 1 = x 1 x = b) Berechnen Sie die Matrix A = Lösung: A = c) Beweisen oder widerlegen Sie: 1 3 (1) ist ein Nullteiler Beweis : = (2) In (M, +, ) gilt die Kürzungsregel A B = A C,. Beweis: Gegenbeispiel A = A 0 1, B = 1 0, C = = B = C. 0 1 Aufgabe 5: a) Geben Sie jeweils für das gegebene Element a G der jeweiligen Gruppe G das inverse Element a 1 an. (1) G = (R10, ), a = [7] 10 : a 1 = [3] (2) G = (S 4, ), a = : a = ( ) (3) G = (K 2, ), a = σ g σ h (für Geraden g und h): a 1 = σ h σ g b) Beweisen oder widerlegen Sie: Es gibt keine Untergruppe von (S 4, ) der Ordnung 5. Beweis: Es gilt S 4 = 4! = 24. Nach dem Satz von Lagrange kommen als UG-Ordnung somit nur Teiler von 24 in Frage. Da aber 5 kein Teiler von 24 ist, gibt es keine UG U mit U = 5. c) Sei (G, ) eine Gruppe und a G. Zeigen Sie: Gilt a 3 = a, so ist a selbstinvers, d.h. a 1 = a. Lösung: Man berechnet a 3 = a a 3 a 1 a 1 = a a 1 a 1... a = a 1 4

5 d) Prüfen Sie, ob die Gruppe (U, ) mit U = {1, 1, i, i} zyklisch ist und bestimmen Sie gegebenenfalls alle erzeugenden Elemente. (Dabei bezeichnet i C die imaginäre Einheit.) Die Gruppe ist zyklisch. Erzeugende Elemente: i, i Begründung/Nebenrechnungen: i 2 = i i = 1, i 3 = 1 i = i und i 4 = i 2 i 2 = 1 (analog für i). Die Elemente 1 und 1 sind nicht erzeugend. Aufgabe 6: a) Sei f : C C gegeben durch f(z) = z 2i. Begründen Sie, dass f eine Kongruenzabbildung ist. Bestimmen Sie alle Fixpunkte z = a+b i (mit a, b R) von f. Folgern Sie, um welchen Typ Kongruenzabbildung es sich handelt und charakterisieren Sie diese, z.b. durch Angabe von Drehzentrum und Drehwinkel bei einer Drehung. (1) Begründung, dass f Kongruenzabbildung ist: f ist als Verkettung der Verschiebung g(z) = z 2i und der Spiegelung h(z) = z eine Kongruenzabbildung. (2) Fixpunkte: z = a + i mit a R. (3) Kongruenzabbildung: Aus (1) folgt, dass f orientierungserhaltend ist. Da wegen (2) eine Fixpunktgerade existiert, ist f die Spiegelung an der Geraden durch z 0 = i parallel zu Re-Achse. b) Zeichnen Sie in die Vorlage einen Ausschnitt eines Bandornamentes X, für welches die zugehörige Symmetriegruppe S X neben der Identität nur Verschiebungen und Schubspiegelungen enthält. Lösung: Vergleiche entsprechende Übungsaufgabe. c) Beweisen oder widerlegen Sie: Es gibt keine Figur X R 2 mit endlicher Symmetriegruppe S X, die zudem zwei Spiegelsymmetrien mit (echt) parallelen Spiegelachsen besitzt. Beweis: X besitzt zwei parallele Spiegelachsen, somit ist σ g σ h eine Symmetrie von X. Somit enthält die Symmetriegruppe S X eine Verschiebung. Da die von σ g σ h erzeugte Untergruppe σ g σ h unendliche Ordnung hat, hat auch S X unendliche Ordnung. 5

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.02.2013 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 15.02.2017 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 07.02.2018 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 10.02.2016 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.04.2016 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 08.0.01

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 20.04.2011

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

Ich benötige einen Schein. Ich habe bereits genug Scheine.

Ich benötige einen Schein. Ich habe bereits genug Scheine. 1 Klausur 20.01.2003 Algebra I WS 2002/03 Dr. Elsholtz Name, Vorname Matr.nummer Fachrichtung Fachsemester Ich benötige einen Schein. Ich habe bereits genug Scheine. Die folgende Klausur hat mehr Aufgaben

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: 5.6 Satz von Fermat Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 mod p : b p 1 1 mod p) (gemeint ist: die Gleichung b p = b gilt modulo p) Diskrete Strukturen 5.6 Satz von

Mehr

WS 2003/04. Diskrete Strukturen I

WS 2003/04. Diskrete Strukturen I WS 2003/04 Ernst W. Mayr mayr@in.tum.de Institut für Informatik Technische Universität München 11-07-2004 Satz Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 : b p 1 1 mod p) (gemeint

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Klausur zur Linearen Algebra I

Klausur zur Linearen Algebra I Technische Universität Dortmund Wintersemester 2011/2012 Fakultät für Mathematik 23.03.2012 Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Algebra und Geometrie 06. September 011 Klausur zur Vorlesung Aufgabe 1 (5 Punkte) Sei G eine Gruppe und X G eine beliebige Teilmenge von G. X := X N G a) Zeigen Sie, dass X der kleinste Normalteiler

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Semestralklausur zur Vorlesung Mathematische Strukturen

Semestralklausur zur Vorlesung Mathematische Strukturen Name: Vorname: Matr.Nr: Universität Duisburg-Essen WS 2010/2011 Ingenieurwissenschaften / Informatik 14. Februar 2010 Dozentin: Prof. Dr. B. König Klausur Semestralklausur zur Vorlesung Mathematische Strukturen

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 3 (7

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

4 Homomorphismen von Halbgruppen und Gruppen

4 Homomorphismen von Halbgruppen und Gruppen 4 Homomorphismen von Halbgruppen und Gruppen Bei der Betrachtung der Gruppe S 3 hatten wir auf die Ähnlichkeit im Verhalten der Permutationen von 1,2,3} mit dem der Symmetrien (Deckbewegungen) eines gleichseitigen

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 7 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

1.4 Gruppen, Ringe, Körper

1.4 Gruppen, Ringe, Körper 14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

LA 1 WS 08/09 Zettel 1

LA 1 WS 08/09 Zettel 1 LA 1 WS 08/09 Zettel 1 Nils Mahrt 31. Oktober 2008 1. Aufgabe Sei f : X Y eine Abbildung. (a) Für A X ist zu zeigen, dass A f 1 (f(a)) ist. Sei also x A, dann ist zu zeigen, dass x f 1 (f(a)). Es gilt,

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3.1 Gruppen Vergleicht man die Gesetze (A1 (A4 und (M1 (M4, so stellt man eine grosse Ähnlichkeit in den Strukturen fest. Man kann das zugrundeliegende

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 17. April 2015 Algebra I Klausur 2 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 6 7 6 6

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2, Lösungen 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Zwischenklausur zur Linearen Algebra I HS 2010, 23.10.2010 Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Name: Emil Mustermann Sitzplatznummer: 2 Die Bearbeitungszeit für diese Klausur beträgt

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Fakultät für Mathematik Institute IAG und IMO Prof. Dr. H. Bräsel/Dr. M. Höding Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Bitte in Druckschrift ausfüllen! Name

Mehr

Musterlösung zur Nachklausur Lineare Algebra I

Musterlösung zur Nachklausur Lineare Algebra I Musterlösung zur Nachklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw falsch? Setzen Sie in jeder Zeile genau ein Kreuz Für jede korrekte Antwort erhalten Sie 0,5

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

Gruppen, Ringe, Körper

Gruppen, Ringe, Körper Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

3. Algebra und Begriffsverbände. Algebraische Strukturen

3. Algebra und Begriffsverbände. Algebraische Strukturen 3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 11 Das Gruppenaxiom (G3) ist nicht erfüllt Es gibt zwar zu jedem x M eine Linksinverse (dh ein Element x mit x x = 1 ) und eine Rechtsinverse (dh ein Element x mit xx = 1 ), die beiden stimmen jedcoh nicht

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Symmetrie von Ornamenten

Symmetrie von Ornamenten Symmetrie von Ornamenten Teilnehmer: Theresa Lechner Alexey Loutchko Dennis Menge Simon Reinke Fynn Strohecker Thimo Wellner Gruppenleiter: Jürg Kramer Anna v. Pippich Gymnasium Ernestinum, Coburg Heinrich-Hertz-Oberschule,

Mehr

WS 2005/06. Diskrete Strukturen. Ernst W. Mayr. Fakultät für Informatik TU München.

WS 2005/06. Diskrete Strukturen. Ernst W. Mayr. Fakultät für Informatik TU München. WS 2005/06 Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2005ws/ds/index.html.de 15. November 2005 Ernst W. Mayr 5.4 Untergruppen Satz 85 Sei G = S,, 1, b G und sei S b

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

1.4 Gruppen, Ringe, Körper

1.4 Gruppen, Ringe, Körper 14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a,b) a b Die Verknüpfung heißt assoziativ falls a,b,c M gilt: a (b c) = (a b) c; kommutativ falls

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Der Algorithmus von Schoof

Der Algorithmus von Schoof Der Algorithmus von Schoof Simone Deppert Technische Universität Kaiserslautern Sommersemester 2011 29. Juli 2011 Simone Deppert Der Algorithmus von Schoof 29. Juli 2011 1 / 29 Inhaltsverzeichnis 1 Der

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr