Die Fouriertransformation und ihre Eigenschaften

Größe: px
Ab Seite anzeigen:

Download "Die Fouriertransformation und ihre Eigenschaften"

Transkript

1 De Fourerransormaon und hre Egenschaen Klene Formelsammlung zusammengesell von Pro. Dr. ajana Lange Fachberech Elekroechnk Fachhochschule Merseburg Inhal: Fourerrehe und Fourernegral ransormaon enger wchger Elemenarunkonen Wchge Egenschaen der Fourer-ransormaon 995

2 De Fourerransormaon und hre Egenschaen Fourerrehe und Fourernegral Perodsche Zeunkonen können durch de Fourerrehe dargesell werden: m () = cos( π + ϕ ) u A = = ; -Perode des Orgnalsgnals d.h. als Summe von unendlch velen Cosnus-Funkonen unerschedlcher Amlude A, Frequenz = und Phasenverschebung ϕ : (F-) u () A cos( π ) A 3 cos( π 3 ) A 5 cos( π 5 ) er: u () A cos( π ) A cos( π3 ) A cos( π5 ) = M ( π + ϕ ) ( π + ϕ ) A ( ) A e j e j + cos π + ϕ = jϕ jϕ Ae j π Ae = e + e!! C jπ erhäl man de äquvalene komlexe Form der Fourer-Rehe: m C () cos( π ϕ) u = A + = Ce = A e j = ϕ und C sowe C = A cos( ϕ ) = C A e j = ϕ ür jπ (F-) Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

3 De erodsche Funkon u () wrd also endeug durch de komlexen Fourerkoezenen C beschreben und kann olglch durch dese ersez werden: u () =/ C = A / -5 5 C = A / C -3 = A 3 / C = A / C 5 = A / C 3 = A / 3 Zeberech Bld-/bzw- Frequenzberech De Darsellung m Frequenzberech wrd auch Sekrum bzw. her dskrees Lnensekrum genann. Au Grund der Egenschaen der Fourer-ransormaon (nsbesondere Derenaonssaz (F-5) und Inegraonssaz (F-5)) gesale sch de mahemasche Behandlung von Prozessen be hrer Darsellung m Bldberech o bedeuend enacher als m Zeberech. De komlexen Fourer-Koezenen C werden aus der erodschen Orgnalunkon u () we olg besmm: C = + / / () jπ u e d; = (F-3) Im allgemenen sez sch ene erodsche Funkon aus unendlch velen Cosnus-Funkonen zusammen. Das bedeue, daß das Sekrum unendlch vele Lnen enhäl: u () U Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

4 Da =, wrd der Absand zwschen den Frequenzen = deser Cosnus-Funkonen um so gernger, je größer de Perode der Orgnalunkon m Zeberech s. u () U u () U M erhäl man schleßlch ene aerodsche Funkon m Zeberech und en konnuerlches Sekrum m Bldberech: u() aerodsche U() Funkon U M bzw. = erhäl man som ür aerodsche Zeunkonen das Fourernegral: C u () ( ) e jπ U e jπ = lm = d = ( ) U In Analoge zu (F-3) läß sch de Sekralunkon U( ) aus der Orgnalunkon u () we olg besmmen: ( ) = ( ) jπ U u e d (F-4) (F-5) Der Zusammenhang zwschen der Zeunkon (Orgnalunkon) u () und der Frequenzunkon (Bldunkon) U( ) soll durch olgende Symbolk ausgedrück werden: u U () ( ) Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

5 ransormaon enger wchger Elemenarunkonen Recheckunkon: S-Funkon: u() U U() U 3 U, / u () =, sons ( ) U = U ( π ) ( π ) sn " "! s ( π ) Dreeckunkon: S -Funkon: u() U() U U U 3 U u () = +, sons ( + ), U ( ) ( ) ( ) U U sn π, = ( π ) " "! s ( π ) Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

6 Gaußunkon: Gaußunkon: u() U() U U U U B π () ( ) u = Ue U = Ue π ; B Drac-Funkon (Soß-Funkon): Konsane: u() U() U. δ() U () δ () ( ) u = U U = U Beache Denon der Drac-Funkon: () ür ; δ() δ d = Doelsoß: Cosnus-Funkon: u() U() U U U.δ(+ ).δ(- ) - + ( δ δ ) U( ) Ucos ( π ) () ( ) ( ) u U = + + = ; = Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

7 Soßolge: Soßolge: u() Fläche der Söße = A U() Fläche der Söße = A + () = δ( ν ) ( ) = δ( ν ) + u A U A ν =- µ =- ; = Anmerkung: Augrund der Symmereegenschaen der Fourer-ransormaon n hrer Denon nach (F-4) und (F-5) gelen de ransormaonsbezehungen ür gerade Funkonen auch dann, wenn deren Argumene ausgeausch werden. Besel: S-Funkon: Recheckunkon: u() U B U() U B 3 B B B Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

8 Wchge Egenschaen der Fourer-ransormaon: (a) Wenn u () U ( ) und k ene ze- und requenzunabhängge Konsane s, dann gl: () ( ) k u k U (F-6) (b) Wenn u () U ( ) und u () U ( ), dann gl: () () ( ) ( ) u + u U + U (F-7) (c) De Fläche uner der Frequenzunkon U( ) s glech dem Wer der Zeunkon u () be = : ( = ) = ( ) = ( ) u u U d (F-8) (d) De Fläche uner der Zeunkon u () s glech dem Wer der U be = : Frequenzunkon ( ) ( = ) = ( ) = ( ) U U u d (F-9) (e) Ähnlchkessaz: Wenn u () U( ) u() ua ( ),5 - -, so gl: a U, m a >, reell a U(),5 - - B (F-) u(a) a=,5 - - U(/a) a,5 - - B Beache: Wenn a >, so Sauchung m Zeberech und Sreckung m Bldberech. Wenn a <, so Sreckung m Zeberech und Sauchung m Bldberech. Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

9 () Wenn u () U ( ) und u () U ( ), dann gl ür de Falungen: () () = () () = ( ) ( ) ( ) ( ) u u u u u τ u τ dτ U U ( ) ( ) = ( ) ( ) = ( ) ( ) ( ) ( ) U U U U U ς U ς dς u u (g) Verschebungssaz: Wenn u () U( ) ( ) ( ), so gl: u U e j π + () j π ( ) u e U (F-) (F-) (F-3) (h) Derenaonssaz: Wenn u () U( ), so gl: () du d ( jπ ) u( ) ( jπ ) U( ) ( ) du d () Inegraonssaz: Wenn u () U( ), so gl: (F-4) (F-5) u d U + jπ ( τ) τ ( ) δ( ) (j) Abasung und Perodzerung: De Perodzerung ener Funkon se we olg dener: Zeberech: () () aerodsche Funkon u() { } ( ) u = P u = u m m= erodzere Funkon u () (F-6) Bldberech: U ( ) = P{ U} = u( ν ) ν= (F-7) Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

10 De Abasung ener Funkon se we olg dener: Zeberech: () () { } () δ( ) u = A u = u n a n= (F-8) ursrünglche Funkon abgeasee Funkon u() U u a() U Bldberech: ( ) ( ) { } ( ) δ ( µ ) Ua = A U = U µ = (F-9) Wenn u () U( ), so gl: () () { } { ( )} ( ) u = P u A U = U m = a (F-) u() U() U / u () U () a U =/ d.h. de Perodzerung ener Funkon m Zeberech ühr zur Abasung hrer Fourerransormeren m Bldberech. Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

11 Wenn u () U( ), so gl: () () { } { ( )} ( ) u = A u P U = U m = a (F-) u() U U() U / u a() U U () U / =/ d.h. de Abasung ener Funkon m Zeberech ühr zur Perodzerung hrer Fourerransormeren m Bldberech. Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

12 Aus (F-) und (F-) olg aber auch, daß de Abasung und Perodzerung ener Funkon m Zeberech zur Perodzerung und Abasung hrer Fourerransormeren m Bldberech ühr: () { ()} { ( )} ( ) m { ()} { ()} { } { } u = A u P U = U = a { } { ( ) } ( ) Pu = PAu APU = AU m = a (F-) Orgnalunkon m Zeberech: u() U Sekrale Dche der Orgnalunkon U() U / Abasung er Orgnalunkon m Zeberech: u a() U Perodzerung der sekralen Dche m Bldberech: U () U / =/ Perodzerung der abgeasen Funkon m Zeberech: Abasung der erodzeren sekralen Dche m Bldberech: P{u a()} U A{U ()} U =/ =/ / Pro. Dr. ajana Lange Formelsammlung Fourerransormaon Fourerransormaon.DOC

Gewöhnliche Differentialgleichungen, erste Ordnung

Gewöhnliche Differentialgleichungen, erste Ordnung Gewöhnlche Derenalglechungen erse Ordnung wr haben beres gesehen daß sch ele Probleme n der Phsk durch gewöhnlche Derenalglechungen beschreben lassen besmme Varable als Funkon der Ze d d M den Anangsbedngung

Mehr

Verweilzeitspektren. Gruppe III-2: Tillmann Kleine Marius Strunk

Verweilzeitspektren. Gruppe III-2: Tillmann Kleine Marius Strunk Verwelzespekren Gruppe III-: Tllmann Klene Marus Srunk Verwelzespekren Was snd Verwelzespekren? Darsellungen Messechnk Bespel Was snd Verwelzespekren? Chemscher Reakor Reakonsgefäß Dskonnuerlche Reakonsführung

Mehr

6.3.1 Allgemeiner Bayes-Filter

6.3.1 Allgemeiner Bayes-Filter 6.3 Baes Fler 6.3. Allgemener Baes-Fler Sa von Baes ' ' ' η Sa über de oale Wahrschenlchke Besel oen oen oen Beobachung lecher u ermeln Besel oen.6 oen. 3 oen.5 oen. 5 oen oen oen oen oen oen oen.6.5 oen.6.5.3.5

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Hittorfsche Überführungszahl

Hittorfsche Überführungszahl Insu für Physkalsche Cheme Forgeschrenenprakkum 4. Horfsche Überführungszahl Sand 06/04/05 Horfsche Überführungszahl Grundlagen zum Versuch Komponenen - Glechspannungsquelle - Elekrolyse-Apparaur - P-Elekroden.

Mehr

Lösungen der Übungsaufgaben zu Kapitel 7

Lösungen der Übungsaufgaben zu Kapitel 7 Kapel 7: Prmzahlen Lösungen der Übungsaufgaben zu Kapel 7 Ü: Se p IP belebg gewähl. IA: n = : Zu zegen s p a a p a p a, des s aber genau de Aussage von Saz 7. und dam beres bewesen. IS: Se IN m belebg

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

6 Die Berechnung von Wechselstromkreisen bei sinusförmiger Erregung

6 Die Berechnung von Wechselstromkreisen bei sinusförmiger Erregung 6 De Berechnng von Wechselsromkresen be snsförmger Erregng Zfällge (sochassche Wechselgröße (aschsgnal ( 3 - n s.5..5. - -3 ( Deermnere Wechselgröße (Implsfolge Perodsche deermnere Wechselgröße (Sägezahnspannng

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnlche Dfferenalglechungen (von Mchael Ddas, Wnersemeser 2001/2002) 1. Exsenz- und Endeugke von Lösungen 2. Trennung der Varablen 3. Syseme lnearer Dfferenalglechungen 1. Ordnung 4. Syseme m konsanen

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Experimentalphysik III TU Dortmund WS2013/14 Shaukat TU - Dortmund. de Kapitel 1

Experimentalphysik III TU Dortmund WS2013/14 Shaukat TU - Dortmund. de Kapitel 1 ermenalhysk III TU Dormund WS03/4 Shauka Khan @ TU - Dormund. de Kael d d s Paul. M. Drac 90-984 Wederholung Wellenfunkonen Vekoren m "Hlber-Raum" n desem Raum s en Skalarroduk defner zu jeder Observablen

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke Induktve Strombegrenung für AC-gespeste SGTC mt netsynchroner roterender Funkenstrecke Es wrd von ener SGTC ausgegangen, welche mt ener 5 H-netfrequen-synchron roterenden prmären Funkenstrecke ausgestattet

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

(4) NURBS. Vorlesung Computergraphik III S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(4) NURBS. Vorlesung Computergraphik III S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU URS Vorlesung Compuergraph III S. Müller U I V E R S I T Ä T KOLEZ LADAU U I V E R S I T Ä T KOLEZ LADAU S. Müller - - Wederholung I -Splnes ass-splnes Reursve Defnon der assfunonen ähnlch e be ézer durch

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Prakkm Grndlagen der Elekroechnk 1. Versch GET 3: Schalverhalen an C nd Faklä für Elekroechnk nd Informaonsechnk Ins für Informaonsechnk ehrgrppe Grndlagen der Elekroechnk. Sandor In nseren aboren m Helmholzba

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

2. Periodische nichtsinusförmige Größen

2. Periodische nichtsinusförmige Größen . Perodsche nchsnusförge Größen n der Eleroechn haben neben den Snusgrößen auch nchsnusförge Größen erheblche Bedeuung. Generaoren lefern n eleronschen Schalungen Rechec-, puls- oder Sägezahnspannungen;

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echze-Schedulng Grundlagen 3.1. Grundbegrffe, Klassfkaon und Bewerung Grundbegrffe Job Planungsenhe für Schedulng e wce r d Ausführungsze, Bearbeungsze (execuon me) maxmale Ausführungsze Fregabeze,

Mehr

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier Elekoechk Fomel 3. 4. Semese vo Gel Mee lyse vo Eschwgvogäge. Nezwekelemee.. Wes ( ( ( (.. Ikvä..3 Kzä..4 Übege ( ( ( mß seg se ( + τ τ ( + τ τ ( mß seg se..4. lose gekoele Übege ( ( ( M ( ( + ( M + müsse

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π dn d σ : gb de nzahl de Telchen an, de o Zeenhe und o Flächenenhe n gemessen weden ([ dσ ] m, gebäuchlche Enhe: ban 00 (m) 0-8 m ). d σ : dn n πρdρ πρ( dρ ρ( dρ snχ W ühen den Raumwnel d Ω : π sn χ 3 {

Mehr

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung Applcaon Noe DK9221-1109-0007 Messechnk Keywords Energemessung Lesungsfakor Energeanalyse EherCAT-Klemme Busklemme KL3403 EL3403 Energeeffzenz-Berachung ener Anlage durch Energemessung Deses Applcaon Example

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echze-Schedulng Grundlagen 3.1. Grundbegrffe, Klassfkaon und Bewerung Grundbegrffe Job Planungsenhe für Schedulng e wce r d Ausführungsze, Bearbeungsze (execuon me) maxmale Ausführungsze Fregabeze,

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Cayleys Formel. Drei Beweise durch geschicktes. Zahlen. Marc Wagner. Ferienakademie, September 1999

Cayleys Formel. Drei Beweise durch geschicktes. Zahlen. Marc Wagner. Ferienakademie, September 1999 Cayleys Formel Dre Bewese durch geschces Zahlen Marc Wagner mcwagnersud.nforma.un-erlangen.de Ferenaademe, Sepember 999 Vorberachungen Labeled Trees (nummerere Baume) En Labeled Tree s en zusammenhangender,

Mehr

Physik im Studiengang Elektrotechnik

Physik im Studiengang Elektrotechnik Physk m Suengang Elekroechnk - Dynamk von Drehbewegungen - Prof. Dr. Ulrch Hahn WS 015/016 Bewegung ausgeehner Objeke Sysem aus (velen) Massenpunken sarrer Körper: Fese Posonen er Massenpunke unerenaner

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

2 Anwendung der Laplace- Transformation auf gewöhnliche Differenzialgleichungen

2 Anwendung der Laplace- Transformation auf gewöhnliche Differenzialgleichungen nwendng der aplace- Transformaon af gewöhnlche Dfferenzalglechngen. Häfg afreender Typ von Dfferenzalglechngen Das dynamsche Verhalen echnscher Syseme wrd häfg, zmndes näherngswese, drch lneare Dfferenzalglechngen

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSAENASSUNG) Baustatk (aster) Arbetsblatt. ALLGEEINES. Sstem und Belastung Längsanscht: q( x) z, w x, u Begestefgket EI h Bettung c l Querschnttsdarstellung: q( x) q ( x) ( verschmert) z h Bettung c

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Branch Nachrag Nr. 72 a gemäß 10 Verkaufsprospekgesez (n der vor dem 1. Jul 2005 gelenden Fassung) vom 6. November 2006 zum Unvollsändgen Verkaufsprospek vom 31. März 2005 über Zerfkae auf * über

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

4. Wechsel- und Drehstromschalter und -steller 4.1. Wechsel- und Drehstromschalter

4. Wechsel- und Drehstromschalter und -steller 4.1. Wechsel- und Drehstromschalter 4. Wechsel- und Drehstromschalter und -steller 4.1. Wechsel- und Drehstromschalter Zel: Verstellen der Lestungsaufnahme enes Verbrauchers be Wechsel- bzw. Drehstromspesung (-steller) bzw. En- und Ausschalten

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

Frequenzverhalten passiver Netzwerke: Tiefpass, Hochpass und Bandpass

Frequenzverhalten passiver Netzwerke: Tiefpass, Hochpass und Bandpass Gruppe Maxmlan Kauert Hendrk Heßelmann 8.06.00 Frequenzverhalten passver Netzwerke: Tefpass, Hochpass und Bandpass Inhalt Enletung. Tef- und Hochpass. Der Bandpass 3. Zetkonstanten von Hoch- und Tefpass

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

Die gedämpfte Schwingung

Die gedämpfte Schwingung De gedämpfe Schwngung Bsher wurde de harmonsche Schwngung ohne dsspave Prozesse, d.h. Rebungsverluse, behandel. In der Regel reen allerdngs Rebungsverluse auf und de m Oszllaor gespechere Energe nmm m

Mehr

Ein Skript der Vorlesung. Höhere Mathematik für Physiker Kapitel Jordan-Normalform

Ein Skript der Vorlesung. Höhere Mathematik für Physiker Kapitel Jordan-Normalform En Skrp der orlesung Höhere Mahemak für Physker Kapel Jordan-Normalform Dr. Peer Gesl TU München 4. Semeser SS Daum: 6.6. von Mchael Wack Chrsoph Moder Manuel Saebel ( ) hp://www.skrpweb.de Hnwese (z.b.

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2, Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Selbstinduktion. 1. Versuch: RSp. 2. Versuch: (a) Einschaltvorgang: Der Schalter S wird zum Zeitpunkt t o 0 geschlossen. R S p I R.

Selbstinduktion. 1. Versuch: RSp. 2. Versuch: (a) Einschaltvorgang: Der Schalter S wird zum Zeitpunkt t o 0 geschlossen. R S p I R. elbsndukn Versuch: ule m geschlssenem Wechesenkern chalzechen für ene ule m geschlssenen Wechesenkern p p x G x G G und G snd zwe glecharge Glühlampen De hmschen Wdersände und snd glech grß Der chaler

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Berechnung des next-arrays

Berechnung des next-arrays Berechnung des nex-arrays Ernnerung: nex[] Länge des längsen Präfxes von P, das eches Suffx von P 1.. s Inalserung: nex[1] 0 Annahme: se nex[-1] j: P 1 P 2 P -1 P? Berache zwe Fälle: 1. P P j+1 nex[] j

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Elektrizitätslehre. tslehre 3. Strom im Vakuum: Elektrische Energie => mechanische Energie. a = 2. Elektrischer Strom. Strom = Bewegung der Ladungen

Elektrizitätslehre. tslehre 3. Strom im Vakuum: Elektrische Energie => mechanische Energie. a = 2. Elektrischer Strom. Strom = Bewegung der Ladungen Elekrzäslehre slehre 3 Elekrscher Srom Srom Bewegng der adngen Srom m Vakm Srom m Gas Srom n Flüssgke (ösng Srom m Feskörper Srom m Vakm: Free adngsräger werden m elekrschen Feld beschleng : q m F F a

Mehr

Experimentalphysik II TU Dortmund SS2012 Shaukat. TU - Dortmund. de Kapitel 2

Experimentalphysik II TU Dortmund SS2012 Shaukat. TU - Dortmund. de Kapitel 2 Expermenalphysk T Dormund SS Shauka. Khan @ T - Dormund. de Kapel Drfgeschwndgke der Elekronen n enem Drah Elekronen bewegen sch uner dem Enfluss enes elekrschen Felds durch en Meall, wobe se of Söße m

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttut egelungs- und Automatserungstechnk Schrftlche Prüfung aus Systemtechnk am 4.. 5 Name / Vorname(n): Kenn-Matr.Nr.: Bonuspunkte: 4 errechbare Punkte 4 5 7 5 errechte Punkte U Graz, Insttut

Mehr

1 EINLEITUNG. Leitstation. Automatisierungstechnik. Sensor- System. Aktor- System. Antriebstechnik. Messtechnik. Anlage (Prozess) Energie, Produkt

1 EINLEITUNG. Leitstation. Automatisierungstechnik. Sensor- System. Aktor- System. Antriebstechnik. Messtechnik. Anlage (Prozess) Energie, Produkt Prof. r. U. Schwellenberg, Vorlesung Messechnk - INLITUNG Lernzel: Vermlung von grundlegenden Kennnssen n a den wchgsen Messprnzpen für de elekrsche Messung nchelekrscher Größen, b Aufbau von Messenrchungen

Mehr

6. Elektrische Wechselgrössen

6. Elektrische Wechselgrössen Grundlagen der Elektrotechnk GE 2 [Buch GE 2: Seten 72-14] Grundbegrffe Wechselgrössen Perodsche Wechselgrössen Lnearer und quadratscher Mttelwert Der Effektvwert Bezugspfele Verallgemenerte Zetfunktonen

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

2. Periodische nichtsinusförmige Größen

2. Periodische nichtsinusförmige Größen . erodsche nchtsnusförge Größen n der Eletrotechn haben neben den Snusgrößen auch nchtsnusförge Größen erheblche Bedeutung. Generatoren lefern n eletronschen Schaltungen Rechtec-, puls- oder Sägezahnspannungen;

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

8. Elementare Zeitreihenanalyse

8. Elementare Zeitreihenanalyse 8 Elemenare Zerehenanalse De Komponenen ener Zerehe: Suaon: De Schprobenwere enes Merkmals Y werden m Zeablauf, also zu besmmen Zepunken, =,, n, beobache Zerehe In wrschaflchen Anwendungen wrd häufg unersell,

Mehr

Vorlesung II. Schwingungsbewegung und Chaos

Vorlesung II. Schwingungsbewegung und Chaos Vorlesun II. Schwnunsbeweun und Chaos Bespele des Schwnunsverhalens können n velen Gebeen der Physk efunden werden: De Beweun von Elekronen n Aomen Das Verhalen von Srömen und Spannunen n elekrschen Sromkresen

Mehr

- Theorie - 3. Dynamik

- Theorie - 3. Dynamik K.Bräuer: Phlosophsche Aspeke der modernen Physk, SS 5 - Theore -. Dynamk Wel erschen n sändger Veränderung Veränderung wrd beschreben durch Kräfe Impuls=Kraf*Ze 'sammel' Krafwrkungen Klassschen Mechank:

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Die cos-funktion lässt sich in zwei Exponentialfunktionen umformen: [ ] (2.7) k = 1

Die cos-funktion lässt sich in zwei Exponentialfunktionen umformen: [ ] (2.7) k = 1 . erodsche nchtsnusförge Größen n der Eletrotechn haben neben den Snusgrößen auch nchtsnusförge Größen erheblche Bedeutung. Generatoren lefern n eletronschen Schaltungen Rechtec-, puls- oder Sägezahnspannungen;

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Wechselstromlehre. Betrachtung der cos-funktion: Phasenwinkel (Argument): ω t + ϕ u Nullphasenwinkel: ϕ u. wobei: -π ϕ u π

Wechselstromlehre. Betrachtung der cos-funktion: Phasenwinkel (Argument): ω t + ϕ u Nullphasenwinkel: ϕ u. wobei: -π ϕ u π Fakultät mwelt und Technk Elektrotechnk : Bachelor-Modul Wechselstromlehre nusförmge chwngungen nter den perodschen, zetabhänggen elektrschen rößen kommt den snusförmgen schwngenden rößen besondere Bedeutung

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Tutorium Makroökonomik I:

Tutorium Makroökonomik I: UNIVERITÄTKOLLEG Unverstätskolleg: #tdm+ Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen Dr. Krstn aetz Tobas Fscher Kostenlose satzangebote nd Lehrmateralen für alle tderenden Ttorm Makroökonomk

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 14 10 011 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 5 errechte

Mehr

Controlling (Nebenfach) Wintersemester 2012/2013

Controlling (Nebenfach) Wintersemester 2012/2013 echnsche Unversä München Conrollng (Nebenfach) Wnersemeser 22/23 Mschrf der orlesung vom 3..22 Dr. Markus Brunner Lehrsuhl für Berebswrschafslehre Conrollng echnsche Unversä München Conrollng WS 22/3 2

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Prof. Dr.-Ing. Herzig Vorlesung " Elektrotechnik 1" 1etv Wechselstromkreise

Prof. Dr.-Ing. Herzig Vorlesung  Elektrotechnik 1 1etv Wechselstromkreise Prof. Dr.-Ing. Herzg Vorlesng " Elekroechnk " 5 Wechselsromkrese ev5-87 Be der Berechnng von Glechsromkresen waren de dargelegen Sachverhale dadrch gekennzechne, dass de beracheen elekrschen Größen Srom

Mehr

Denavit-Hartenberg-Notation

Denavit-Hartenberg-Notation DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R

Mehr

8. Elementare Zeitreihenanalyse

8. Elementare Zeitreihenanalyse 8 Elemenare Zerehenanalse Suaon: v De Schprobenwere enes Merkmals Y werden m Zeablauf, also zu besmmen Zepunken,,, n, beobache Zerehe v In wrschaflchen Anwendungen wrd häufg unersell, dass sch de Beobachungswere

Mehr