Wichtige zeitdiskrete Folgen

Größe: px
Ab Seite anzeigen:

Download "Wichtige zeitdiskrete Folgen"

Transkript

1 Wichtige zeitdiskrete Folgen.8 Einheitsimpuls.6 δ(n) = {, n, n = δ(n) n

2 Wichtige zeitdiskrete Folgen Einheitssprung u(n) = u(n) = = {, n <, n δ(n k) k= n k= u(n) δ(k) n 2

3 Beispiele für die Verarbeitung zeitdiskreter Folgen. y(n) = x(n) + x(n ) { }, n {, } Impulsantwort: h(n) =, sonst = δ(n) + δ(n ) 2. y(n) = x(n) x(n ), n = Impulsantwort: h(n) =, n =, sonst = δ(n) δ(n ) 3

4 Diskrete Faltung Gegeben: System mit Impulsantwort h(n) Eingangssignal x(n) = x(i)δ(n i) Ausgangssignal y(n) = i= i= x(i)h(n i)! = x(n) h(n) Definition der Diskreten Faltung: a(n) b(n) = a(i)b(n i) = i= j= a(n j)b(j) mit j = n i 4

5 z-transformation Definition der einseitigen z-transformation X(z) = x(n)z n n= Definition der zweiseitigen z-transformation X(z) = Z{x(n)} = x(n)z n n= 5

6 z-transformation r =., ϕ =.4π.5 z n = ( r )n e jϕn Realteil Imaginärteil n 6

7 z-transformation r =., ϕ =.5π.5 z n = ( r )n e jϕn Realteil Imaginärteil n 7

8 z-transformation r =., ϕ =.π.5 z n = ( r )n e jϕn Realteil Imaginärteil n 8

9 z-transformation r =., ϕ =.97π.5 z n = ( r )n e jϕn Realteil Imaginärteil n 9

10 z-transformation r =.2, ϕ =.5π.5 z n = ( r )n e jϕn Realteil Imaginärteil n

11 z-transformation 2 r =.9, ϕ =.5π 5 z n = ( r )n e jϕn Realteil Imaginärteil n

12 Zweiseitige z-transformation 4 r =.5, ϕ =.7π 3 2 z n = ( r )n e jϕn Realteil Imaginärteil n 2

13 Zweiseitige z-transformation 4 r =.95, ϕ =.43π 3 2 z n = ( r )n e jϕn Realteil Imaginärteil n 3

14 Konvergenz der z-transformation Bedingung für Konvergenz: x(n)r n < Zerlegung von x(n) in rechtsseitige (kausale) Folge x + (n) = u(n)x(n) und linksseitige (akausale) Folge x (n) = u( n)x(n) Konvergenzbereich von x + (n): z > ρ + Konvergenzbereich von x (n): z < ρ X(z) = Z{x(n)} = x(n)z n existiert, falls ρ > ρ + n= im Konvergenzbereich ρ + < z < ρ 4

15 Konvergenz der z-transformation Im(z) ρ + ρ Re(z) G Konvergenzbereich G der z-transformation 5

16 Inverse z-transformation X(z) = Z{x(n)} ist eine Laurent-Reihe mit Kreismittelpunkt z = Potenzreihenentwicklung möglich: X(z) = c k z k mit c k = X(ζ)ζ k dζ 2πj k= C: geschlossener Integrationsweg in G entgegen Uhrzeigersinn C Substitution von x(n) = c n Inverse z-transformation: x(n) = 2πj C X(z)z n dz 6

17 z-transformierte spezieller Folgen x(n) X(z) Konvergenzbereich δ(n) z C u(n) = z z > z z u( n ) = z z < z z u(n)z n z = z z > z z z z u(n) cos ω n z 2 z cos ω z 2 2z cos ω + z > 7

18 Bedeutung Linearität Zeitverschiebung Eigenschaften der z-transformation Eigenschaft Z{ax(n) + by(n)} = ax(z) + by (z) Z{x(n n )} = z n X(z) Modulation Z{z n x(n)} = X(z/z ) Differentiation von X(z) Z{nx(n)} = z dx(z) dz Konjugiert komplexe Folge Z{x (n)} = X (z ) Zeitumkehr Faltung Z{x( n)} = X(/z) Z{x(n) y(n)} = X(z)Y (z) 8

19 Inverse z-transformation Für beliebige Funktionen: Anwendung des Residuensatzes k X(ζ)dζ = Res[X(z); a i ] 2πj C i= mit a i im Integrationsweg eingeschlossenen Singularitäten In der Praxis: häufig gebrochen rationale Funktionen M M b i z i z N b i z M i X(z) = i= = N a i z i i= N z M i= i= a i z N i 9

20 Inverse z-transformation Lösungsmöglichkeit für gebrochen rationale Funktionen: Partialbruchzerlegung Einfachster Fall: nur einfache Pole z i und M < N N A i X(z) = z i= i z ) mit A i = ( z i z X(z) z=zi x(n) = u(n) N i= A i z n i 2

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Laplace Transformation

Laplace Transformation Laplace Transformation A Die Laplace Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Formal kann die Laplace Transformation

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 B Signale und Systeme Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET

Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET Inhaltsverzeichnis Einteilung der Transformationen... 3 Zeitkontinuierliche Transformationen... 3 Zeitdiskrete Transformationen... 3

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Diskontinuierliche Signale und Systeme

Diskontinuierliche Signale und Systeme Diskontinuierliche Signale und Systeme Fourier-Transformation für diskontinuierliche Funktionen Eigenschaften und Sätze, Fourier-Paare Diskrete Fourier-Transformation (DFT) Zeitdiskrete LTI-Systeme, Faltung

Mehr

Kleine Formelsammlung zu Signale und Systeme 2

Kleine Formelsammlung zu Signale und Systeme 2 Kleine Formelsammlung zu Signale und Systeme 2 Florian Franzmann 6. März 2006 Inhaltsverzeichnis Elementare Grundlagen 3. Lösungsformel für quadratische Gleichungen................. 3.2 Definition einiger

Mehr

KOMMENTIERTE FORMELSAMMLUNG ZUR LEHRVERANSTALTUNG METHODEN DER QUALITÄTSSTEUERUNG IN TECHNISCHEN PROZESSEN

KOMMENTIERTE FORMELSAMMLUNG ZUR LEHRVERANSTALTUNG METHODEN DER QUALITÄTSSTEUERUNG IN TECHNISCHEN PROZESSEN Fakultät Informatik Institut für Angewandte Informatik, Professur Technische Informationssysteme KOMMENTIERTE FORMELSAMMLUNG ZUR LEHRVERANSTALTUNG METHODEN DER QUALITÄTSSTEUERUNG IN TECHNISCHEN PROZESSEN

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 2., korrigierte und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 7. November 2016 1 Laplacetransformation 2 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung der z-transformation

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert thowil@uni-koblenz.de 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen 56 Integralsätze im Raum 273 X. Funktionentheorie Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen 58. Cauchy-Formeln und Anwendungen 59. Laurent-Entwicklungen und Residuensatz 274 X.

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

Signale und Systeme Ergänzungen zu den Spektraltransformationen

Signale und Systeme Ergänzungen zu den Spektraltransformationen Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Faltung, Bildbereich und Stabilität

Faltung, Bildbereich und Stabilität Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Faltung, Bildbereich und Stabilität Dresden, den 03.08.2011 Gliederung Vorbemerkungen Faltung Bildbereich

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Signale und Systeme. Christoph Becker

Signale und Systeme. Christoph Becker Signale und Systeme Christoph Becker 18102012 Signale Definition 1 Ein Signal ist eine Folge von Zahlen {xn)} welche die Bedingung xn) < erfüllt Definition 2 Der Frequenzgang / frequency domain representation

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

1 Fourierreihen zeitkontinuierlicher period. Signale

1 Fourierreihen zeitkontinuierlicher period. Signale Formelsammlung erlaubtes Klausurhilfsmittel) 389.055 Signale und Systeme 2 Institute of Telecommunications Technische Universität Wien G. Doblinger,. Goert -206 Fourierreihen eitkontinuierlicher period.

Mehr

Konvergenzverbesserung und komplexe Integrale

Konvergenzverbesserung und komplexe Integrale Konvergenzverbesserung und komplee Integrale Konvergenzverbesserung und komplee Integrale von Friedhelm Götze, Jena Vor kurzem erschien ein Artikel über den Residuensatz [] in der, in dem schon einige

Mehr

Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinzierl

Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinzierl Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinierl WS11/12 Musterlösung 6. Aufgabenblatt Analyse von LTI-Systemen. 1. Betrachten Sie ein stabiles lineares eitinvariantes System mit der Eingangsfolge

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

Komplexe Funktionen. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg

Komplexe Funktionen. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg Komplexe Funktionen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 12. Juni 2009 Reihenentwicklung komplexer Funktionen

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2 Diffrnznglichung (Bispil DSV, 5/, Rur, LTD-Systm, Diffrnznglichung DSV, 5/, Rur, LTD-Systm, Linar, zitinvariant, analog Systm => Diffrntialglichungn R τ = RC = b x[n ] a y[n ] x(t C y(t τ dy(t/dt + y(t

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:... VORNAME:... MAT. NR.:.... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications TU-Wien.06.06 Bitte beachten Sie: Bitte legen Sie Ihren Studierendenausweis auf Ihrem Tisch

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 B Signale und Systeme Institute of Telecommunications

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.0 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3)

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung

Mehr

In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.

In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter. Kapitel IIR-Filter In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.. Vom FIR- zum IIR-Filter FIR Filter verwenden zur Berechnung

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur WS 016/017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Differenzengleichungen, Z - Transformation

Differenzengleichungen, Z - Transformation Differenengleichungen, Z - Transformation In diesem Kapitel wollen wir eine weitere Transformation, die Z-Transformation behandeln. Mit Hilfe der Z-Transformation können lineare Differenengleichungen (DFG

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen Übung Signale und Systeme Sommersemester Übung : Charakterisierung von Signalen 5.April Übung : Charakterisierung von Signalen. Zeichnen Sie die folgenden Signale und diskutieren Sie deren Eigenschaften:

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und 29. Oktober 2018 1 / 45 1 Moodle-Test 2 Definition Konvergenz Anwendungen 3 Ziel: Reverse-Engineering für Digitale Filter Einführung der 4 2 / 45

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 30. Oktober 2017 1 Moodle-Test 2 Laplacetransformation 3 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Frühjahr 009 Diskrete und kontin. Signale 5 Pkt.. Summierer und Differenzierer (a) Falls beide

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

System- und Signaltheorie

System- und Signaltheorie Otto Mildenberger System- und Signaltheorie Grundlagen für das informationstechnische Studium 3., überarbeitete und erweiterte Auflage Mit 166 Bildern vieweg 1 Einleitung 1 1.1 Aufgaben der Systemtheorie

Mehr

Regelungs- und Systemtechnik 1 Sommer 10

Regelungs- und Systemtechnik 1 Sommer 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 Sommer 1 Wiederholung zur Laplacetransformation 1 1 Definitionen Definition 1 (Integraltransformation)

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr