Klassische Ruintheorie

Größe: px
Ab Seite anzeigen:

Download "Klassische Ruintheorie"

Transkript

1 Seminar Versiherngsrisiko n Rin Prof. Dr. H. Shmili 3.6 Ying Zho Klassishe Rintheorie 7.8 Die Laplae Transformation er Überlebenswahrshein lihkeit In iesem Abshnitt sehen wir, wie φ rh ie Laplae Transformation bestimmt ist. Def: Sei h(y) eine Fnktion für alle y. Die Laplae Transformation ist efiniert als h (s) e h( y) y Eigentshaft von Laplae Transformation: h h () Seien, zwei Fnktionen, eren Laplae Transformationen existieren, n seinen n zwei Konstanten. Dann gilt: e ( h( y) + h( y)) y h () s + h () s () Laplae Transformation eines Integrals: Sei h eine Fnktion,eren Laplae Transformation existiert n sei H(x) x hyy ( ). Dann gilt: H () s h ()/ s s (3) Laplae Transformation einer Ableitng: Sei h eine ifferentierbare Fnktion, eren Laplae Transformation existiert. Dann gilt: e ( h( y)) y y sh () s h() (4) Laplae Transformation einer Faltng : Seien, h wie oben, efiniere, h h(x) x h( y) h ( x y) y. Dann gilt: h () s h () s h () s (5) Laplae Transformation einer ZV : sei X H, wobei H(). Dann gilt: sx E[ e ] e H( y).

2 Falls ie Verteilng stetig ist n mit Dihte h, gilt es : sx E[ e ] h () s Wir können ie Eigenshaft er Laplae Transformation bentzen m φ wie folgen z bestimmen: As (7.6) haben wir λ λ φ( ) φ( ) f( x) φ( x) x Eig.3 sφ () s φ() s λ λ e ( φ( ) f ( x) φ( x) x) λ s λ s e φ( ) e f( x) φ( x) x) λ λ φ () s f () s φ () s sφ () s φ() λφ () s λf () s φ () s φ () s φ () s λ f s ( ( )) (7.) Falls f eine rationale Fnktion ist, können wir φ bestimmen rh Invertieren von φ

3 3 7.9 Rekrsive Berehng In iesem Abshnitt beshreiben wir zwei rekrsive Methoen, ie zr Grenze n Approximation er Rin/Überlebenswahrsheinlihkeit führen Die Verteilng es maximalen Gesamtverlsts Um ie rekrsive Formel (4.) z bentzen müssen wir zerst zeigen ass Φ ie Verteilngsfnktion von einer zsammengesetzten geometrishen ZV ist. Def. & Bez.: Der Gesamtverlst Prozess { ()} s.. Ut () Lt () L: er maximale Gesamtverlstprozess Bem : Φ ist VF von L. Beweis. Wir wissen Ψ ( ) PU [ ( t) < ] > Φ ( ) PU [ ( t) t > ] PLt [ ( ) t > ] PL [ ] Lt ist efiniert als Lt () St () t t >. wir wissen L (), L ist eine niht negative ZV > Φ () PL [ ]. Bem : λm Ψ () Beweis. Wir wissen L~ Φ ( ), Φ () PL [ ] nah Eigenshaft 5 er Laplae-Transformation sl s L s E e e Φ X i () [ ] () s Φ () + e Φ( )

4 4 Φ + Φ Φ () s ( s) () sφ () s (7.) sφ() ( ( )) s λ f s sl ( ) [ ] L s s E e s E (7.6) (). Un rh l Hopital haben wir as (7.6) L () s s Φ() + s λ f () s s NR: Def f () s e f( y) y > s f () s e f( y) y s e s f ( y ) y ye f ( y) y > s f () s s ye f( y) y s yf( y) y m Φ() L () s s λm () Φ() λm > λm Φ () > λm Ψ () Bem 3: L ist zsammengesetze geometrishe ZV. Beweis. wir wissen S(t) ist ein zsammengesetzeter Poisson.-Prozess, n besitzt nabhängige n stationäre Zwähse. L(t)S(t)-t besitzt ah nabhängigen n stationären Zwähse. Definiere : Betrag vom i-ten Zwahs (z em neen Nivea es Gesamtshaens) L i Wir wissen er maximale Gesamtverlst ist größer als Nll, wenn er Übershss nter em Anfangskapital fällt, n mit er Wahrsheinlihkeit Ψ ().

5 5 P(Nn) P( L >, L >,... L >, L für t>n) n P( L > )P( L > )...P( L > )P( L für t>) n Ψ() Φ().h N hat eine geometrishe Verteilng n t t wir wissen ass L i nabhängig n ientish n nabhägig von N ist. L ist zsammengesetzt geometrish verteilt. Jetzt betrahten wir ie Verteilng von L. Setze K( x) P[ L x] k: ie zgehörige Dihte k E sl [exp{ }]

6 6 m Bem. kx ( ) ( Fx ( )) Beweis: Wir wissen 4. sl sl E[ e ] E[ E( e N) ] E k N [ ( s) ] n k () s P( N n) n n n k s Ψ Φ n ( ) ( ()) () () ( k ( s) ()) n Φ Ψ n Φ() ihe k ( s) Ψ () geom. Re (7.8) as (7.6) haben wir sl sφ() Ee [ ] s λ f s ( ( )) sφ() Φ() > s λ f ( s) Ψ () k ( s ) ( ) λm Ψ () > k s f s ( ) () () ms m > k( x) ( F( x) ) ie Verteilng von L ist stetig,.h. falls wir (4.) bentzen m Φ z approximieren, müssen wir zerst iese Verteilng iskretisieren. Nah Abshnitt 4.7. mahen wir folgenes: N Definiere L L, i, N : zsammengesetzt geometrish verteilt, { L, i } i ii. i L hat ie Verteilngsfnktion (entsprehen er iskretisierten Verteilng) K,i n ie Wahrsheinlihkeitsfnktion k, x K( x+ ) K( x) für x,,... für x : K ( x) K( x),.h. K ist eine obere shranke von K.

7 7 Analog können wir eine iskretisierte Verteilng K erstellen, ie ntere Shranke von K ist. N Definiere L L, i, N wie oben, { L, i } i ii mit VF K n Wahrsheinlihkeitsfnktion i k, x K( x) K( x ) für x,,3... für x : K ( x) K( x) K ( ) K( ) K ( ) für (5.7) > K K K ( ) ( ) ( ) Φ ( ) P[ L ] P[ L ] + P[ < L ] Φ () + PL [ n n N n] Φ () + PL [ N n] PN [ n] n n n () () () K ( ) Φ + Ψ Φ (7.9) n > PL [ ] PL [ ] PL [ ] (7.) n PL [ < ] PL [ < ] PL [ < ] für > : PL [ < ] < PL [ ] n PL [ < ] < PL [ ] a L, L iskret sin. Wir finen ie Grenze von Φ : PL [ ] Φ( ) PL [ <. ] L, n L, sin iskrete ZV, Φ ( ) P[ L ], Φ ( ) P[ L ] nah 4. > Φ() Φ () Ψ ()k, für,,3,... Φ ( ) Φ () +Ψ() k, jφ( j) Ψ() k, j n Φ () Φ() für,,3,... Φ () Φ () +Ψ() k, Φ( j) j j

8 Rekrsive Berehnng in einem iskreten Zeitmoell In iesem Abshnitt wir erklärt wie ie Rinwahrsheinlihkeit in nenliher Zeit n in enliher Zeit von einem iskreten Zeit-Risikomoell approximiert wir. Def.: Im klassishen Risikomoell efinieren wir ie Rinwahrsheinlihkeit in enliher Zeit als N( s) Ψ ( t, ) P [ + s xi < für s mit < s t] wobei N(s) ~Poisson ( λ s) i setze ( + θ ) λm, λ m Die Approximation wir in 3 Shritten konstriert. Shritt: Diskretisieren. Für i,,3,... ersetze x i rh x,i, wobei x,i iskrete ZV verteilt af,,,..., für >. Die Verteilng von X,i soll so gewählt ass sie eine gte Approximation z er Verteilng von Definiere X i ist. } N( s) Ψ ( t, ) P [ + ( + θ ) s x, i < für ein s, mit < s t] i Dann ist Ψ ( t, ) eine gte Approximation z Ψ ( t, ). Shritt: Die monetäre Einheit änern. Für i,,3... efiniere X, X, i i efiniere N( s) Ψ( wt, ) Pw [ + ( + θ) s X < für s, mit < s t], i i Beh.: Ψ (, t) Ψ ( t, ) N( s) θ, i i Beweis: Ψ ( t, ) P[ + ( + ) s X < ] N( s) P { + ( + θ) s X, i < > i

9 9 N( s) P + ( + θ ) s X, i < i Ψ ( t, ) 3. Shritt: Zeiteinheit änern. Setze λ ( + θ ),.h. as Prämieneinkommen pro Zeiteinheit ist. N ( s) Def. 3Ψ ( wt, ) Pw [ + s x, i < für s, mit < s< t] (7.) i Wobei N () s hat Poisson Verteilng mit m s ( + ) θ Ψ ( w,( + θ ) t) Ψ ( w, t) > 3 > Ψ( t, ) 3Ψ (,( + θ ) t).h. 3 Ψ( t, ) gibt ie Rinwahrsheinlihkeit in stetiger Zeit. Wir können 3 Ψ( t, ) approximieren rh n Ψ ( t, ) P [ + n Zi für ein n mit i n,,3,...t] Wobei Zi hat eine zsammengesetzte Poisson Verteilng mit Shaenzahlng wie X,i λ ( + θ ) n inivieller > Ψ( t, ) Ψ (,( + θ) t) Nmerishe Illstration In iesem Abshnitt betrahten wir ie nmerishe Illstration von en Approximationsmethoen.. Illstration F( x) e x, x wir wissen fr, θ Ψ ( ) exp + θ (+ θ ) m ie Methoe er Grenze in 7.9. z bentzen setzen wir

10 m kx ( ) f( x) e x θ, 7. zeigt ie Werte er Grenzen von Ψ ( ). Mit wahsenem κ weren ie nteren Grenzen wahsen n ie oberen Grenzen fallen, n zm Beispiel mit 3 erhalten wir af zwei Nahkommenstellen gernete Grenzen.6, ann ist af zwei Nahkommenstellen Ψ( ).6 κ n mit wahsenem ist es möglih noh mehr übereinstimmene Nahkommastellen z erhalten. 7.3 zeigt wie man ie Approximation rh Mittelwertbilng er Grenze erhält. Dies gibt eine sehr gte Approximation, besoners wenn κ ist.

11 7.4 zeigt ie Approximation nter Anwenng er rekrsiven Berehnng von Illstration Inivielle Shaenforerng hat Verteilng Pa(4, 3) es gibt keine explizite Lösng für Ψ aber man kann Ψ gt approximieren 7.5 zeigt mit Methoen von 7.9. für k ist er Wert sehr nahe vom ehten Ψ. 7. Approximative Berehnng er Rinwahrsheinlihkeit Iee von De Vylershe Methoe: Wir approximieren ie Wahrsheinlihkeit vom abslten Rin von einem klassishen Risikoprozess {U(t)} t rh einen klassishen Risikoprozess {U(t)} % t mit folgene Eigenshaften: U() % Poisson Parameter ist λ%

12 Das Prämieneinkommen pro Zeiteinheit ist % Die Verteilng er iniviellen Shaenzahlng ist F % ( x ) exp{ % x } λ λ As (7.) φ( ) exp{ ( ) } für F(x) e x x % λ % λ foglt φ( % ) exp{ ( % ) } % % % n rh Momentvergleih können wir % λ, %, % bestimmen.. setze E[U(t)] E[U % (t)] + t + λ m + % t + % λ t/% % + λ m + % λ /%. setze E[( U( t) E[ U( t)]) ] E U% t % [( ( ) E[ U( t)]) ] wir wissen U(t)-E[U(t)] -S(t) + λ mt V[S(t)] V[ St %()] λm % λ/ % setze E[( U( t) E[ U( t)]) ] E[( U% ( t) E[ U% ( t)]) ] Sk[S(t)] Sk[ S % (t)] 3 λm 3 6 % λ/ % % 3 m/ m 3 λ % 9 λm /m 3 3 % 3 λm /m 3 n ie Vorassetzng für ie Anwenng er De Vylershen Approximation ist ie Existenz von en ersten 3 Momenten er iniviellen Shaenzahlng.

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Analysis II für M, LaG/M, Ph

Analysis II für M, LaG/M, Ph Fachbereich Mathematik Prof Dr M Hieber Robert Haller-Dintelmann Horst Heck TECHNISCHE UNIVERSITÄT DARMSTADT ASS 008 195008 Analysis II für M, LaG/M, Ph 7 Übng mit Lösngshinweisen G 1 Grppenübngen Af der

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 9 UNIVERSITÄT KARLSRUHE Blatt 5 Priv-Doz Dr D Kaelka Dipl-Math W Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe : Wir betrachten eine Markovkette in

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretishe Physik 2 Theoretishe Mehanik) Prof. Dr. Th. Felmann 11. Februar 2014 Kurzzusammenfassung Vorlesung 28 vom 7.2.2014 Vierergeshwinigkeit un Viererimpuls Zur Beshreibung er relativistishen Bewegungsgleihungen

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9 Prof. Rolan Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 9 Aufgabe 1: Eine Isometrie eines metrischen Raums X ist eine Abbilung f :

Mehr

DIE ABLEITUNG FRANZ LEMMERMEYER

DIE ABLEITUNG FRANZ LEMMERMEYER DIE ABLEITUNG FRANZ LEMMERMEYER Eine Gerae y mx+b hat in jeem Punkt ieselbe Steigung m. Bei einer Parabel y x 2 agegen änert sich ie Steigung von Punkt zu Punkt. Sin zwei Punkte P (x f(x)) un Q(u f(u))

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie Ereignisse, Zufallsvariablen und Wahrscheinlichkeiten 1/43 Statistik für Informatiker, SS 2018 1 Grundlagen aus der Wahrscheinlichkeitstheorie 1.1 Ereignisse, Zufallsvariablen und Wahrscheinlichkeiten

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Der Poissonprozess. Kapitel 5

Der Poissonprozess. Kapitel 5 spielt in der stochastischen Modellierung eine fundamentale Rolle Grund ist seine verteilungsfreie Charakterisierung durch wenige qualitative Eigenschaften, die in zahlreichen Anwendungsbeispielen plausibel

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

So lösen Sie die Differentialgleichung für eine komplexe Kurve (für eine komplexe Funktion)

So lösen Sie die Differentialgleichung für eine komplexe Kurve (für eine komplexe Funktion) Prof. Dr. Sebastian Hensel Sommersemester 208 Argmente der GTF Was ist dieses Dokment? (nd was ist es nicht?) Dieser Text fasst einige der wichtigsten Standardargmente zsammen, die im Stdim von Flächen

Mehr

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v Die Kalorishe Zstandsgleihng hermishe Zstandsgleihng : hermodynamishe Zstandsgrößen als Fnktion weiterer Zstandsgrößen berehenbar, z.b.: (,) R/ Kalorishe Zstandsgleihng: Kalorishe Zstandsgrößen als Fnktion

Mehr

HAW Hamburg, Dept.: M+P VKA Prof. Dr.-Ing. Victor Gheorghiu

HAW Hamburg, Dept.: M+P VKA Prof. Dr.-Ing. Victor Gheorghiu Brennverlauf mit einer einzigen Vibe-Funktion ( ) m V+ Die Vibe-Funktion hat folgenen Ausruck ξ e a V χ ( ) Hierin beeuten: ξ exp a V ( χ ) m V+ Q B ξ ( 2) ie relative Brennfunktion, ie als Verhältnis

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe 1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe Nachdem eine Stichprobe X 1,..., X n gezogen wurde berechnen wir gewöhnlich irgendwelchen Wert damit. Sei dies T = T (X 1,..., X n, wobei T auch

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung.

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. 1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. Sei N eine zufällige Variable, ist ein Poisson-Verteilung mit Parameter λ definiert

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

Die Quark-Lepton-Familien

Die Quark-Lepton-Familien Kapitel 6 Die Qark-Lepton-Familien 6.1 Charm 6.1.1 Der Cabibbo-inkel n er GIM-Mehanisms Obwohl as Qarkmoell er 3 leihten Qarks,, s sehr erfolgreih war, hatte man bal vermtet, aß es noh nvollstänig ist.

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Analysis I. 2. Beispielklausur mit Lösungen

Analysis I. 2. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Die Produktmenge aus zwei Mengen L und M.

Mehr

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium!

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium! Integralrechnng Integrationsmethoden für gebrochen rationale Fnktionen Übersicht über die wichtigsten Methoden Vor allem für das Stdim! Tet 800 Stand 8. Febrar 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Mathematik für Sicherheitsingenieure I B (BScS 2011)

Mathematik für Sicherheitsingenieure I B (BScS 2011) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Mathematik für Sicherheitsingenieure I B (BScS Aufgabe. (5+8+7 Punkte a eben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist. Eine Begründung

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

17. Die Wellengleichung Die Transportgleichung. t u(t, x) +c x u(t, x) =0mit t, x R, 0 c R. Wegen

17. Die Wellengleichung Die Transportgleichung. t u(t, x) +c x u(t, x) =0mit t, x R, 0 c R. Wegen 98 7. Die Wellengleichung 7.. Die Tanspotgleichung. t u(t, x +c x u(t, x =0mit t, x R, 0 c R. Wegen v u = u, v besagt ie Diffeentialgleichung, ass ie Richtungsableitung von u in Richtung (,c Null ist.

Mehr

s p f Σ p f S p f, also auch für jede Folge (p n ) n N0 von Partitionen, für die die Feinheit gegen 0 geht.

s p f Σ p f S p f, also auch für jede Folge (p n ) n N0 von Partitionen, für die die Feinheit gegen 0 geht. Satz: Äquivalenz von Riemann- und Darboux-Integral f : [a, b] R. Dann sind äquivalent: (a) f Riemann-integrierbar. (b) f beschränkt und Darbouxintegrierbar. Gilt (a) oder (b), so ist I(f) = Sf = sf. Beweis:

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Blatt 02.4: Vektorräume, Euklidischer Räume

Blatt 02.4: Vektorräume, Euklidischer Räume Fakultät für Physik R: Rechenmethoen für Physiker, WiSe 15/16 Dozent: Jan von Delft Übungen: Beneikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weiinger http://homepages.physik.uni-muenchen.e/~vonelft/lehre/15r/

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Der Taschenrechner CAS: TI Inspire (Texas Instruments)

Der Taschenrechner CAS: TI Inspire (Texas Instruments) Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Aufgaben zu Karnaugh-Diagrammen und Quine-McCluskey

Aufgaben zu Karnaugh-Diagrammen und Quine-McCluskey Weissenher Wintersteiger Digitltehnik Aufgen zu Krnugh-Digrmmen un Quine-MCluskey Für ie nhfolgenen Aufgen können Sie iese niht usgefüllten Krnugh-Digrmme ls Vorlge verwenen: 0 1 5 4 2 3 7 6 0 1 5 4 2

Mehr

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion F. Für n 1 definiere S n := n i=1 X i, M n := max{x i :1 i n} Frage: Welche sind die möglichen (nicht

Mehr

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften.

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8 Begleitendes Dreibein Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8.1 W-Punkte Geg.: regul. C 2 -Kurve c : x(s), s I x(s) heißt W-Punkt von c : x (s) = o. 3.8.2 Begleitendes

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a Abschlssprüfng Berfliche Oberschle 00 Mathematik Technik - A I - Lösng Teilafgabe.0 Gegeben sind die reellen Fnktionen f a ( x) von a nabhängigen Definitionsmenge D x ax a = x mit a IR in der maximalen,

Mehr

Mathematische Modelle und numerische Methoden in der Biologie

Mathematische Modelle und numerische Methoden in der Biologie Institut für Angewante un Numerische Mathematik Prof. Dr. Tobias Jahnke, Dipl.-Biol. Michael Kreim Mathematische Moelle un numerische Methoen in er Biologie Sommersemester 2012 5. Übungsblatt Gruppenübung

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale

8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale 8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale 8.1 Der quadratische Variationsprozess eines stetigen, lokalen Martingals 8.3 Die quadratische Variation einer reellen Brownschen

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert.

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014 Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 24 Dr. Sebastian ieel 2. Juli 24 Klausur Mathematik II für Wirtschaftswissenschaftler Name:.......................................

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 24. November 2010 1 Stetige Verteilungen Normalapproximation Gleichverteilung Exponentialverteilung Normalapproximation

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

6.3. Iterative Lösung linearer Gleichungssysteme. Großes lineares dünnbesetztes Gleichungssystem A x = b

6.3. Iterative Lösung linearer Gleichungssysteme. Großes lineares dünnbesetztes Gleichungssystem A x = b 6.3. Iterative Lösung linearer Gleichungssysteme Großes lineares ünnesetztes Gleichungssystem A Gauss-Elimination nutzt in er Regel ie Dünnesetztheit nicht aus un führt meist auf Kosten On 3 ; Im Gegensatz

Mehr

Integration (handgestrickt)

Integration (handgestrickt) Integration (handgestrickt) C c (R n ) :={f : R n R; f stetig, Träger(f) beschränkt}. B + b (Rn ) := { f : R n R; abei bedeutet f m konvergiert. J (R n ) := {f; a) f beschränkt, b) Träger(f) beschränkt,

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

Zum Begriff der Paare: ab ordinalem Messniveau

Zum Begriff der Paare: ab ordinalem Messniveau Zum Begriff er Paare: ab orinalem Messniveau Begriffsefinition von Paaren: gleihe bzw. untershielihe Rangornung zwishen Untersuhungsobjekten (z. B. Personen) Paare können konkorant oer iskorant sein 1)

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010 Prof. Dr. O. Junge, P. Koltai, K. Tichmann Zentrum Mathematik - M3 Technische Universität München EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2 Tutorübungen T6 (Schur-Komplement) (a) Es sei

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

6.3. Iterative Lösung linearer Gleichungssysteme

6.3. Iterative Lösung linearer Gleichungssysteme 6.3. terative ösung linearer Gleichungssysteme Großes lineares ünnesetztes Gleichungssystem = Gauss-Elimination nutzt in er Regel ie ünnesetztheit nicht aus un führt meist auf Kosten On 3 ; m Gegensatz

Mehr

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten,

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten, .. Der Konensator.. Flächenlaungsichte Versuch : Gegeben: wir konstant gehalten, elektrisches Fel E ie Fläche i er Plättchen wir variiert. Fläche er Konensatorplatten ist gegeben, er Betrag er Laung auf

Mehr

1. EINFÜHRUNG INS STATE-PRICING 1

1. EINFÜHRUNG INS STATE-PRICING 1 1. EINFÜHRUNG INS STATE-PRICING 1 1. Einführung ins State-Pricing In diesem Kapitel betrachten wir eine Periode. Das heisst, wir können nur zu den Zeitpunkten 0 und 1 handeln. Im weiteren arbeiten wir

Mehr

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollstänige Inuktion Folgen Reihen Grenzwerte Funktionseigenschaften Differentialrechnung Integralrechnung Mathe-Party Fula Wintersemester

Mehr

Mathematische Modelle und numerische Methoden in der Biologie

Mathematische Modelle und numerische Methoden in der Biologie Institut für Angewante un Numerishe Mathematik Prof. Dr. Tobias Jahnke, Dipl.-Biol. Mihael Kreim Mathematishe Moelle un numerishe Methoen in er Biologie Sommersemester 2012 3. Übungsblatt Gruppenübung

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Mihael Höding Modulprüfung Mathematik III Fahrihtung: Computer Siene in Engineering, Computervisualistik, Informatik,

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2 Vorlesung 8b Zweistufige Zufallsexperimente Teil 2 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen: P(X 1 = a 1,X 2 = a 2 ) = P(X 1 = a 1 )P a1 (X

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr