s p f Σ p f S p f, also auch für jede Folge (p n ) n N0 von Partitionen, für die die Feinheit gegen 0 geht.

Größe: px
Ab Seite anzeigen:

Download "s p f Σ p f S p f, also auch für jede Folge (p n ) n N0 von Partitionen, für die die Feinheit gegen 0 geht."

Transkript

1 Satz: Äquivalenz von Riemann- und Darboux-Integral f : [a, b] R. Dann sind äquivalent: (a) f Riemann-integrierbar. (b) f beschränkt und Darbouxintegrierbar. Gilt (a) oder (b), so ist I(f) = Sf = sf. Beweis: einfacher ist (b) (a) : Für alle Partitionen p von [a, b] gilt: s p f Σ p f S p f, also auch für jede Folge (p n ) n N0 von Partitionen, für die die Feinheit gegen 0 geht. Damit gilt: lim n s p n f = lim Σ n pn f = lim S n pn f. Folglich ist f Riemann-integrierbar und I(f) = Sf = sf. (a) (b) : Vorab: f Riemannintegrierbar f beschränkt.

2 Es reicht, zu zeigen: S p f und s p f sind durch Riemann-Summen Σ p f beliebig genau approximierbar. Da f Riemannintegrierbar ist, ist dann Sf = sf. Wir zeigen: S p f ist durch Riemann- Summen Σ p f beliebig genau approximierbar. Sei ε > 0 vorgegeben. Zu zeigen ist: Zu der Partition p gibt es eine Riemann-Summe Σ p f mit S p f Σ p f < ε. Einfach wäre es, wenn für k n sup f(x) = x [x k,x k+1 ] Tafelskizze max f(x) x [x k,x k+1 ] Für jede Partition p von [a, b] gilt: Für jedes ϕ > 0 gibt es in [t k, t k+1 ] eine Stützstelle x k mit sup f(x) f(x k ) < ϕ. x [x k,x k+1 ] (Def. des Supremums)

3 Wähle ϕ so, dass ϕ (b a) < ε. Dann ist S p f Σ p f = = k n(t k+1 t k ) ( sup f(x) f(x k )) < x [x k,x k+1 ] < k n(t k+1 t k ) ϕ = (b a) ϕ < ε Bei Partitionen werden die Stützpunkte oft nicht gebraucht. Daher: Def.: Ist a = t 0 t 1... t n+1 = b, so heißt p := (t k ) k n eine (stützpunktfreie) Partition von [a, b]. Jordan-Inhalt ebener Flächenstücke: Für jedes δ > 0 kann man R 2 pflastern mit δ-quadraten, mit Mengen Q der Gestalt: Q = [mδ, (m + 1)δ] [nδ, (n + 1)δ] mit ganzen Zahlen m und n.

4 Ad-hoc-Sprechweise: Für jedes beschränkte P R 2 sei N(P ) die Anzahl aller δ-quadrate Q mit Q P und n(p ) die Anzahl aller δ-quadrate Q mit Q P. Dann ist n(p ) N(P ) N. Def.: Sei P R 2 beschränkt. J(P ) := inf δ>0 (δ2 N(P )) j(p ) := sup(δ 2 n(p )) δ>0 J(P )... äußerer Jordan-Inhalt von P j(p )... innerer Jordan-Inhalt von P Ist J(P ) = j(p ), so heißt P Jordanmessbar und J(P ) = j(p ) der Jordan- Inhalt von P. Ohne Beweis: Die Definition ist unabhängig vom kartesischen Koordinatensystem in der Ebene.

5 Satz: Sei f : [a, b] R beschränkt mit f(x) 0 für alle x [a, b]. Sei P := {(x, y) R 2 : a x b, 0 y f(x)}. Dann sind äquivalent: (a) f ist Riemann-integrierbar. (b) P ist Jordan-messbar. Gilt (a) oder (b), so ist I(f) = J(P ). Bew.: aus Zeitgründen ohne

6 2 Untersuchung des Integrals Integrierbare Funktionen Zu Treppenfunktionen: Aus Analysis 1 kennen wir Treppenfunktionen. Aus dem Satz über die Äquivalenz von Riemann- und Darboux-Integrierbarkeit entnehmen wir: Satz: Treppenfunktionen und Riemann-Integral Sei f : [a, b] R. Dann sind äquivalent: (a) f ist Riemann-integrierbar. (b) Für alle ε > 0 gibt es Treppenfunktionen g und h auf [a, b] mit g f h und I(h g) < ε. In Analysis 1 wurde das Integral für Regelfunktionen eingeführt. Regelfunktionen sind solche Funktionen, die durch Treppenfunktionen gleichmäßig approximiert werden können.

7 (Das ist eine Formulierung ohne Verwendung von Banachräumen.) Das führt auf die Fragen: (1) Ist jede Regelfunktion Riemannintegrierbar? (2) Ist jede Riemann-integrierbare Funktion eine Regelfunktion? Der letzte Satz beantwortet diese Fragen nicht. Er besagt: Jede Riemannintegrierbare Funktion f lässt sich durch Treppenfunktionen so annähern, dass das Integral über der Treppenfunktion das Integral über f beliebig genau annähert. Satz: Jede Regelfunktion ist Riemannintegrierbar. Bew.: Das ist Aufgabe H06 von Blatt 02.

8 Stetige Funktionen: Satz: (Integrierbarkeit stetiger Funktionen) Vor.: f : [a, b] R stetig. Beh.: f ist gleichmäßig durch Treppenfunktionen approximierbar, also Riemannintegrierbar. Bew.:... Def.: (stückweise stetig) f : [a, b] R heißt stückweise stetig, falls gilt: Es gibt eine Partition p von [a, b], so dass für k n gilt: (a) f ]t k, t k+1 [ ist stetig. (b) lim f(x) und x t k,x>t k existieren. lim f(x) x t k+1,x<t k+1 Korollar: (Integrierbarkeit stückweise stetiger Funktionen) Vor.: f : [a, b] R stückweise stetig. Beh.: f ist gleichmäßig durch Treppenfunktionen approximierbar, also Riemannintegrierbar.

Analysis II (FS 2015): MEHRFACHE INTEGRALE

Analysis II (FS 2015): MEHRFACHE INTEGRALE Analysis II (FS 2015): MEHRFACHE INTEGRALE Dietmar A. Salamon ETH-Zürich 27. April 2015 Zusammenfassung Das Ziel dieses Manuskriptes ist es, das Riemannsche Integral einer Funktion von mehreren Variablen

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Serie 5 Lösungsvorschläge

Serie 5 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 5 Lösungsvorschläge 1. Finden Sie eine stetige Funktion f : [, ) R, so dass f nicht Lebesgue-integrierbar T ist, jedoch der Grenzwert lim f(t)

Mehr

2 Allgemeine Integrationstheorie

2 Allgemeine Integrationstheorie 2 Allgemeine Integrationstheorie In diesem Abschnitt ist (,S,µ) ein Maßraum, und wir betrachten R immer mit der σ Algebra B(R). Ziel ist es, messbare Funktionen f : R zu integrieren. Das Maß µ wird uns

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

6 Räume integrierbarer Funktionen

6 Räume integrierbarer Funktionen $Id: L.tex,v 1.5 2012/01/19 15:07:43 hk Ex $ $Id: green.tex,v 1.3 2012/01/19 15:18:26 hk Ex hk $ 6 Räume integrierbarer Funktionen In der letzten Sitzung hatten wir die sogenannte L -Norm ( 1/ f := f(x)

Mehr

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von Blatt Nr. Markus Nöth Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS 1 Aufgabe 1 1 8 6 X w - 6 8 Abbildung 1: Cauchy-Schwarz-Ungl. A In der nebenstehenden Graphik sind

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Kapitel A. Konstruktion und Eigenschaften von Integralen

Kapitel A. Konstruktion und Eigenschaften von Integralen Kapitel A Konstruktion und Eigenschaften von Integralen Inhalt dieses Kapitels A000 Wie misst man Flächen- und Rauminhalt? Absolut integrierbare Funktionen Integration: Theorie und Anwendung A001 Bildquelle:

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

Das Lebesgue-Integral

Das Lebesgue-Integral Das Lebesgue-Integral Bei der Einführung des Integralbegriffs gehen wir schrittweise vor. Zunächst erklären wir das Integral von charakteristischen Funktionen, danach von positiven einfachen Funktionen

Mehr

A. Maß- und Integrationstheorie

A. Maß- und Integrationstheorie A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Analysis 2. Vorlesungsausarbeitung zum SS von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis

Analysis 2. Vorlesungsausarbeitung zum SS von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis Bergische Universität Gesamthochschule Wuppertal Fachbereich Mathematik Analysis 2 Kapitel 3 Integrationstheorie Vorlesungsausarbeitung zum SS 2001 von Prof Dr Klaus Fritzsche Inhaltsverzeichnis 1 Maßtheorie

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v 1.7 2012/11/20 16:08:44 hk Exp hk $ 4 Das Riemann-Integral im R n 4.1 Das n-dimensionale Riemann-Integral In der letzten Sitzung hatten wir die Definition des n-dimensionalen Riemann-Integrals

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

1. Übungsblatt zur Analysis 3

1. Übungsblatt zur Analysis 3 Hannover, den 2. Oktober 23 Aufgabe. Übungsblatt zur Analysis 3 Abgabe am 27./28. Oktober 23 vor den Stundenübungen (je 5 Punkte) Man zeige: a) Die Funktion f : N N N, f(m, n) := 2 (m + n)(m + n + ) +

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

1 Konvergenz im p ten Mittel

1 Konvergenz im p ten Mittel Konvergenz im p ten Mittel 1 1 Konvergenz im p ten Mittel In diesem Paragraphen werden zunächst in Abschnitt 1.1 die L p Räume eingeführt. Diese erweisen sich als vollständige, lineare Räume über R. In

Mehr

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Analysis 2 Torsten Wedhorn June 12, 2012 Notation Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Zahlen. Contents 12 Metrische Räume 2 (A) Definition metrischer Räume........................

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden Kapitel 5 Schwache Konvergenz von W-Verteilungen auf er Zahlengeraen 5.1 Schwache Konvergenz bzw. Verteilungskonvergenz Bezeichne W(, B 1 ie Menge aller W-Verteilungen auf (, B 1. Definition 5.1 (Schwache

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Analysis III. Vorlesungsskriptum WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis III. Vorlesungsskriptum WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis III Vorlesungsskriptum WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel IX. Integralrechnung mehrerer Veränderlicher 5 IX.1. Nullmengen 5 IX.2.

Mehr

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals Kapitel 6 Das Riemann-Integral In diesem Abschnitt wollen wir einen Integralbegriff einführen. Dieser Integralbegriff geht auf Riemann 1 zurück und beruht auf einer naheliegenden Anschauung. Es wird sich

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Der Satz von FEJÉR und die CESÀRO- Summation

Der Satz von FEJÉR und die CESÀRO- Summation Schriftliche Ausarbeitung im Rahmen des Seminars zur Fourieranalysis Der Satz von FEJÉR und die CESÀRO- Summation vorgelegt von SEBASIAN MESS dem Lehrstuhl A für Mathematik der RWH AACHEN Betreuer: PROF.

Mehr

Kapitel I. Maßtheorie

Kapitel I. Maßtheorie Aufgabenvorschläge für das Proseminar zur Maß- und Integrationstheorie (WS 10/11) Shantanu Dave & Günther Hörmann Kapitel I. Maßtheorie zu 1. Maße und σ-algebren 1 Sei Ω eine Menge. Zeige: (a) Ist A eine

Mehr

(Lebesgue - ) Integration

(Lebesgue - ) Integration 25 (Lebesgue - ) Integration ist ein allgemeines Konzept zur Definition von fdλ, wenn λ ein Maß auf X ist und f eine λ-messbare Funktion X R. Als,,Spezialfälle bekommen wir b a f(t) dt für Regelfunktionen

Mehr

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen 34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen R-Vektorräumen 34.1 Äquivalenz von Normen 34.3 Stetigkeit und Normen linearer Abbildungen 34.4 Äquivalente Normen sind gegeneinander

Mehr

Maß- und Integrationstheorie

Maß- und Integrationstheorie Prof. H.C. Grunau E. Sassone 1 15.10.2002 1.1 Aufgabe Maß- und Integrationstheorie WS 2002/03 Gegeben seien diese 4 Operationen über Mengen:,, \ und (symmetrische ifferenz) [A B = (A \ B) (B \ A)] 1 Wenn

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Faltung und Gute Kerne. 1 Faltung

Faltung und Gute Kerne. 1 Faltung Vortrag zum Proseminar zur Analysis, 9.07.200 Lars Grötschel, Elisa Friebel Im ersten Abschnitt Faltung definieren und beschäftigen wir uns mit der Faltung, die die grundliegende Operation des zweiten

Mehr

ANALYSIS 3. Carsten Schütt WS 2008/9

ANALYSIS 3. Carsten Schütt WS 2008/9 1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global

Mehr

Stochastische Prozesse

Stochastische Prozesse Albert-Ludwigs-Universität Freiburg Vorlesungsskript Stochastische Prozesse apl. Prof. Dr. Stefan Tappe Wintersemester 2017/18 Abteilung für Mathematische Stochastik Inhaltsverzeichnis 1 Grundlegende

Mehr

Lösungen zur Übungsserie 9

Lösungen zur Übungsserie 9 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.

Mehr

Integralrechnung und das Riemannintegral

Integralrechnung und das Riemannintegral Integralrechnung und das Riemannintegral Vorlesung zur Didaktik der Analysis Oliver Passon Oliver Passon Integralrechnung 1 Inhalt Historisches Archimedes (Parabel) Hippokrates ( Möndchen ) Cavalerie Aktuell

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Wir wünschen viel Erfolg!

Wir wünschen viel Erfolg! Dr. Felix Schwenninger WS 2018/2019 Bergische Universität Wuppertal Probeklausur Analysis II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Hinweise: Sofern nicht anders angegeben, müssen alle Rechnungen,

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Analysis III. Vorlesung 69. Integrierbare Funktionen

Analysis III. Vorlesung 69. Integrierbare Funktionen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis III Vorlesung 69 Integrierbare Funktionen Wir führen nun das Lebesgue-Integral für messbare Funktionen auf einem aßraum ein. Dieser Integralbegriff

Mehr

5 Die Transformationsformel

5 Die Transformationsformel $Id: transform.tex,v 1.6 1/1/11 15:47:59 hk Exp hk $ 5 Die Transformationsformel In der letzten Sitzung haben wir die Transformationsformel als n-dimensionale Erweiterung der bekannten Substitutionsregel

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Topologische Grundbegriffe II. 1 Begriffe auf Mengen

Topologische Grundbegriffe II. 1 Begriffe auf Mengen Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten der Vorlesung Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Serie 1 Lösungsvorschläge

Serie 1 Lösungsvorschläge D-Math Mass und Integral FS 2014 Prof. Dr. D. A. Salamon Serie 1 Lösungsvorschläge 1. a) Seien A, B X zwei Mengen, so dass keine der Mengen A \ B, B \ A, A B und X \ (A B) leer ist. Bestimmen Sie die Kardinalität

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Der Primzahlsatz, Teil 2

Der Primzahlsatz, Teil 2 Vortrag zum Seminar zur Funktionentheorie, 4.5.22 Maike Gerhard Ziel dieses Vortrags ist es den Primzahlsatz zu beweisen. Dieser besagt π() π(), d.h. lim ln /ln =, wobei π() die Anzahl der Primzahlen kleiner

Mehr

Kapitel 19. Das Lebesgue Maß σ Algebren und Maße

Kapitel 19. Das Lebesgue Maß σ Algebren und Maße Kapitel 19 Das Lebesgue Maß 19.1 σ Algebren und Maße 19.2 Das äußere Lebesgue Maß 19.3 Das Lebesgue Maß 19.4 Charakterisierungen des Lebesgue Maßes 19.5 Messbare Funktionen 19.1 σ Algebren und Maße Wir

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Proseminar: Normierte Vektorräume und Banachräume Vortrag: L und Maß-Räume

Proseminar: Normierte Vektorräume und Banachräume Vortrag: L und Maß-Räume Proseminar: Normierte Vektorräume und Banachräume Vortrag: L und Maß-Räume Dozent: Prof.Dr.Hans Crauel Student: Yassin El Karrouchi Goethe-Universität-Frankfurt am Main nhaltsverzeichnis 1 Einleitung 1.1

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr