1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}.

Größe: px
Ab Seite anzeigen:

Download "1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}."

Transkript

1 . Graphen 8 Bespel: f 5 5 d e 7 7 a 4 b 6 c Für den obenstehenden zusammenhängenden Graphen soll en Mnmalgerüst konstruert werden. Wr ordnen zunächst de Kanten des Graphen nach wachsender Bewertung, d.h. {d,e},{b,d},{b,e},{a,b},{d,f},{e,f},{b,c},{c,e},{a,d} Be Durchführung des Algorthmus erhalten wr folgende Zwschenresultate: Komponentensystem M {{a},{b},{c},{d},{e},{f}} {{a},{b},{c},{d,e},{f}} {{a},{b,d,e},{c},{f}} {{a,b,d,e},{c},{f}} {{a,b,d,e,f},{c}} {{a,b,c,d,e,f}} - Ausgewählte Kante {d,e} {b,d} {a,b} {d,f} {b,c} De Menge der n deser Wese ausgewählten Kanten, nämlch blden dann en Mnmalgerüst. B={{d,e},{b,d},{a,b},{d,f},{b,c}}. ) Algorthmus für kürzeste Wege Ist G en (gerchteter oder ungerchteter) Graph mt ener reellen Bewertungsfunkton w, so kann man allgemen eder (gerchten oder ungerchteten) Kantenfolge ene Bewertung zuwesen, ndem man de Bewertungen aller darn vorkommenden Kanten aufaddert. In deser Wese kann man dann auch e zwe Knoten a und b des Graphen enen Abstand d(a,b) zuwesen, nämlch als de klenste Bewertung aller Kantenfolgen, welche a und b verbnden. (Falls es kene Kantenfolge gbt, welche a und b verbndet, wrd d(a,b)= gesetzt.) Algorthmus von Dkstra: Se G=(V,E) en (gerchteter oder ungerchteter) Graph mt ener nchtnegatven Bewertung w. Ist dann v V en festgewählter Knoten, so kann dann für eden Knoten v V n folgender Wese der Abstand d(v):=d(v, v ), sowe ene Menge p(v) aller unmttelbaren Vorgänger (auf enem kürzesten Weg von v nach ) berechnet werden: () Setze d(v ), d(v) v V \{ v }, p(v):= v V, sowe U V. v

2 . Graphen 9 () Falls U=, dann STOP, sonst weter mt (). () Fnde en u U für das d(u) mnmal st. Ist d(u)=, dann ebenfalls STOP. (4) Für alle v U mt uv E se d(v) mn{d(v),d(u)+w(uv)}. Zusätzlch wrd, falls der neue Wert von d(v) klener als der alte st, auch p(v) aktualsert: p(v) {u}. (Ist man dabe ncht nur an enem, sondern an allen kürzesten Wegen von v nach v nteressert, so hätte man m Fall der Glechhet des alten und neuen Wertes de Ersetzung p(v) p(v) {u} vorzunehmen.) (5) Setze U:=U\{u} und mache weter mt (). Nach Beendgung des Algorthmus kann man zu edem v V, welches von v überhaupt über enen Weg errechbar st, was sch n d(v)< ausdrückt, auch sofort enen kürzesten Weg v v... v k von v nach v = v k n der Wese angeben, ndem man ewels en v p(v ) n der Rehenfolge = k,k-,, auswählt. Ist n de Anzahl der Knoten des betrachteten Graphen, so kann man zegen, dass de Komplextät des Dkstra-Algorthmus O(n ) beträgt, was bedeutet, dass der Rechenaufwand (gemessen an der Anzahl von gewssen Elementaroperatonen oder auch enfach an der Rechenzet) ncht stärker anwächst als de Funkton Cn für ene gewsse reelle Konstante C>. Insbesondere handelt es sch dabe also um enen sog. Polynomalzetalgorthmus (d.h. k de Komplextät st von der Form O(n ) für ene gewsse relle Konstante k), welche allgmen als gut angesehen werden. Mt dem glechem Auwand kann nsbesondere auch überprüfen, ob en Knoten v von überhaupt errechbar st, da nur n desem Fall d(v) enen endlchen Wert hat. Bespel: v Für den durch das nachstehende Dagramm gegebenen bewerteten gerchteten Graphen sollen alle Abstände zum Knoten a berechnet werden. v = a 6 b 6 c 7 5 d 8 4 e f g In nachfolgender Tabelle st de laufende Wertetabelle für de Abstandsfunkton d und de ewelgen Vorgänger (wr wählen m Fall von Glechhet mmer nur enen und lassen daher de Klammern {} weg) bem Durchlaufen der enzelnen Iteratonen angegeben.

3 . Graphen Iteraton d(a) / p(a) d(b) / p(b) d(c) / p(c) d(d) / p(d) d(e) / p(e) d(f ) / p(f ) d(g) / p(g) / 6 / a / a 6 / a 7 / d 4 / d / f 6 / f 6 / f 4 / f 6 / f 5 / f 6 / g 6 / c De ewels n () getroffene Wahl wurde n obger Tabelle besonders hervorgehoben. (De zugehörgen Knoten n der Indexspalte müssen dann n (5) aus U entfernt werden! ) De endgültge Belegung der Werte von d wrd dann durch de fettgedruckten Zahlen n obger Tabelle angegeben, also v a b c d e f g d(v) De n der Tabelle ebenfalls erfassten unmttelbaren Vorgänger auf enem kürzesten Weg zum ewelgen Knoten kann nun dazu verwendet werden, um dese kürzesten Wege auf enfache Wese zu rekonstrueren. Lässt man nämlch m obgen Graphen alle Kanten uv weg, wo u (nach der letzten Iteraton) ncht Vorgänger von v st, so erhält man folgendes Gerüst für unseren Graphen, aus welchen man de kürzesten Wege vom Knoten a zu enem belebgen anderen Knoten unmttelbar ablesen kann: a b 5 c d e f g ) Algorthmen aus der Netzplantechnk En weterer wchtger Algorthmus, welcher von Ford stammt, befasst sch mt der Berechnung von längsten Wegen n Netzplänen. (Vgl. Bespel.) Unter enem Netzplan versteht man dabe enen azyklschen gerchteten Graphen G mt ener reellen Bewertungsfunkton w, wobe darüberhnaus gefordert wrd, dass en Knoten Q mt + d (Q) = (ene sog. Quelle) und en Knoten S mt d (S) = (ene sog. Senke) vorlegt, und dass er darüberhnaus schwach zusammenhängend st, d.h. ohne Berückschtgung der Orenterung der Kanten gbt es stets enen (dann ungerchteten) Weg zwschen zwe verschedenen Knoten des Graphen.

4 . Graphen In der sog. Netzplatztechnk geht es dann darum, für eden Knoten des Netzplans den längsten Weg (weder m Snne der Bewertung) enes eden Knotens sowohl zur Quelle als auch zur Senke zu bestmmen. In den Anwendungen snd dann de Knoten des Netzplans gewsse Eregnsse (we etwa be enem Bauvorhaben das Errechen von gewssen Staden der Fertgstellung), de Quelle st das Starteregns (z.b. Baubegnn) und de Senke das Zeleregns. Durch technologsche Vorgaben können gewsse Eregnsse oft erst nach anderen entreten, was sch m Graphen so ausdrückt, dass es von enem früheren Eregns E zu enem späteren Eregns F enen gerchteten Weg gbt, dessen Bögen alles Vorgänge snd, welche noch ablaufen müssen, bevor das Eregns F entreten kann, wenn E schon engetreten st. Wr denken uns de Knoten enes Netzplans so von bs n durchnummerert, dass für eden Bogen der Anfangsknoten stets ene nedere Nummer als der Endknoten hat, was stets möglch st. Ene solche Nummererung heßt auch monoton oder aufstegend und mndestens ene solche exstert genau dann, wenn der Graph azyklsch st Gewchtet man alle Kanten enes Netzplans mt (unabhängg von ener schon bestehenden Gewchtung), so heßt de größte Länge enes Wegs von der Quelle Q bs zu enem Knoten K der Rang von K, n Zechen: rg(k). Um dann ene monotone Nummererung der Knoten zu errechen, nummerert man de Knoten nach aufstegendem Rang durch, wobe es für Knoten mt glechem Rang de Rehenfolge bedeutungslos st. De Bestmmung der Ränge gescheht mt nachfolgendem Algorthmus. Algorthmus von Ford: Se G en Netzplan mt der Knotenmenge V, der Bögenmenge E und der Quelle Q. Für alle Knoten v V können dann de Ränge rg(v) folgendermaßen gefunden werden. () Man setze am Anfang rg(v)= für alle v V. () Für alle Knoten v V mt enem postvem Hngrad ersetzte man n ener festen Rehenfolge rg(v) durch max { rg(u) (u, v) E} +. Ändert sch dabe kene der vorläufgen Rangzahlen, so hat man damt de endgültgen Rangzahlen gefunden. Ansonsten wrd () solange wederholt, bs sch de Rangzahlen ncht mehr ändern. Wr dürfen also nach ener eventuellen Durchführung des Fordschen Algorthmus voraussetzen, dass de Knoten des Netzplans mt den Zahlen,,,..,n monoton duchnummerert snd. Wenn de Bewertung der gerchteten Kante von nach de Zetdauer darstellt, welche für den Vorgang, der durch den Bogen von nach dargestellt wrd, benötgt wrd, so snd dann für =,,,,n de Größen FT (=Frühestmöglcher Termn für das Entreten des Eregnsses ), ST (=Spätestmöglcher Termn für das Entreten des Eregnsses ) von großer Wchtgket. Graphentheoretsch st dabe FT nchts anderes als de Länge enes m Snne deser Bewertung längsten Weges von nach und ST de Dfferenz FT -(Länge enes längsten Wegs von nach n). Se können mt der sog. Crtcal Path Method (abg. CPM) folgendermaßen rekursv berechnet werden: d n

5 . Graphen Algorthmus (CPM): bzw. (mt dem dann bekannten FT n ) FT =, FT = max { FT + d (, ) E}, =,,,n STn = FTn, ST = mn { ST d (, ) E}, =n-,n-,,. Bespel: Durch das folgende Dagramm E/ F/4 4 6 Q/ 4 4 S/5 G/ 4 7 H/ werde en Netzplan mt Quelle Q und Senke S dargestellt und den angeschrebenen Bewertungen dargestellt. De Rangzahlen der Knoten ergeben sch dann aufgrund von we n der letzten Zele angegeben, d.h. es st etwa Q E F Q, E, H, G, F 4, S 5 ene monotone Nummererung. Indem man eden Knoten mt deser Nummer dentfzert, erhält man nach obgem Algorthmus de Tabelle FT ST / Q / / E / E / Q / G / H 4 / Q 7 / S G H / G 6 / E 6 / F S / F / G / S 5/S 4 / F 4 / Her snd ähnlch we bem Dkstra-Algorthmus zu allen Enträgen auch glech de Vorgänger bzw. Nachfolger mtvermerkt worden, welchen zu den entsprechenden Maxma bzw. Mnma gemäß CPM-Algorthmus geführt hatten.

6 . Graphen In desem Bespel fallen FT und ST für alle Punkte mt Ausnahme von H zusammen, d.h. für dese sog. krtschen Eregnsse gbt es kenen Puffer (= zetlchen Spelraum), wll man de Mndestgesamtdauer des Proekts, nämlch FT 5 =4 (auch krt. Dauer genannt), ncht gefährden. Aus graphentheoretscher Scht müssen alle dese Knoten auf Wegen von maxmaler Länge von der Quelle bs zur Senke, auch krtsche Pfade (engl. crtcal paths) genannt, legen. In obgem Bespel gbt es nur enen krtschen Pfad, nämlch de Kantenfolge QEGFS, welche daher auch alle krtschen Eregnsse enthält. Zur Rekonstrukton müssen enfach nur de nvolverten Knoten, nämlch Q,E,G,F,S, welche den krtschen Erregnssen entsprechen, mt hren Vorgängerknoten (oder alternatv Nachfolgerknoten) verbunden werden, welche n der Tabelle egens für desen Zweck vermerkt wurden.

Graphen, Algorithmen und Diskrete Optimierung

Graphen, Algorithmen und Diskrete Optimierung Graphen, Algorthmen und Dsrete Optmerung. Relatonen und Graphen De Graphentheore st en wchtges Telgebet der dsreten Mathemat. Ihr Geburtsahr lässt sch zemlch genau mt 76 dateren, als Euler en Problem aus

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

2. Klausur zur Vorlesung Algorithmen II Wintersemester 2012/2013

2. Klausur zur Vorlesung Algorithmen II Wintersemester 2012/2013 2. Klausur zur Vorlesung Algorthmen II Wntersemester 202/203 Her Aufkleber mt Name und Matrkelnummer anbrngen Vorname: Nachname: Matrkelnummer: Beachten Se: Brngen Se den Aufkleber mt Ihrem Namen und Matrkelnummer

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

1 Der Uncovering-by-bases-Algorithmus

1 Der Uncovering-by-bases-Algorithmus De Komplextät des Uncoverng-y-ases-Algorthmus Peer Hlderandt 1 Der Uncoverng-y-ases-Algorthmus 1.1 Defnton (Der Algorthmus) Se G ene Gruppe, U en Uncoverng durch Basen und w = w 1... w n en empfangenes

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Manhattan-Metrik anhand des Beispiels

Manhattan-Metrik anhand des Beispiels Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 1. 10. 01 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 4 errechte

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Algorithmen und ihre Programmierung -Teil 3-

Algorithmen und ihre Programmierung -Teil 3- Veranstaltung Pr.-Nr.: Algorthmen und hre Programmerung -Tel - Veronka Waue WS / Veronka Waue: Grundstudum Wrtschaftsnformatk WS/ Übung Ersetzen Se n folgendem Bespel de For schlefe durch ene WhleWend-Schlefe

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Bldverarbetung 3. Morphologsche Operatonen 4. Bldsegmenterung 5. Merkmale von Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen

Mehr

Kapitel 7. Netzplantechnik CPM/PERT. - Bezeichnung der Aktivitäten und ihre Beschreibung - Festlegung der Vorgänger - Dauer der Aktivitäten

Kapitel 7. Netzplantechnik CPM/PERT. - Bezeichnung der Aktivitäten und ihre Beschreibung - Festlegung der Vorgänger - Dauer der Aktivitäten Kaptel 7 Netzplantechnk CPM/PER ALG. 7. 1 (CPM) Schrtt 1 (Aulten der Aktvtäten): Stelle ene abelle au mt olgenden Inormatonen: - Bezechnung der Aktvtäten und hre Bechrebung - Fetlegung der Vorgänger -

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ).

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ). 5 Interpolaton 5.1 De Lagrangesche Interpolatonsaufgabe Mt È n bezechnen wr den Raum der reellen Polynome vom Grad n. Gegeben seen n+1 verschedene Stützstellen x j Ê, j = 0,...,n, und n + 1 ncht notwendg

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik und hre Datenstrukturen 9-9....2 9. Zetplanung...2 9.. CPM... 3 9..2 PERT... 9..3 MPM... 5 9..4 Verglech zwschen CPM und MPM... 22 9.2 Ausblck: Kosten- und Kapaztätsplanung...23 9.3 Entschedungsnetzpläne...24

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Insttut für Informatk Unverstät Osnabrück, 06.12.2016 Prof. Dr. Olver Vornberger http://www-lehre.nf.uos.de/~anf Lukas Kalbertodt, B.Sc. Testat bs 14.12.2016, 14:00 Uhr Nls Haldenwang, M.Sc. Übungen zu

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Versuch : Messung von Glechspannung und Glechstrom mt Multmetern 1. Aufgabenstellung Messung von Glechspannung u. Glechstrom mt analogen und dgtalen Messgeräten Verglech verschedener Messgeräte, Messgenaugket

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

BA_T3Classic_IPO_v1.0 (Draft_B)_050719

BA_T3Classic_IPO_v1.0 (Draft_B)_050719 BA_T3Classc_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Classc auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln für

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Contents blog.stromhaltig.de

Contents blog.stromhaltig.de Contents We hoch st egentlch Ihre Grundlast? Ene ncht ganz unwchtge Frage, wenn es um de Dmensonerung ener senannten Plug&Play Solar-Anlage geht. Solarsteckdosensystem für jermann, auch für Meter lautete

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Folensatz Mchael Brnkmeer Technsche Unverstät Ilmenau Insttut für Theoretsche Informatk Sommersemester 009 TU Ilmenau Sete / Sorteren TU Ilmenau Sete / Das Sorterproblem Das Sorterproblem Daten: ene total

Mehr

Seminar über Numerische Mathematik

Seminar über Numerische Mathematik Andreas Mester Semnar über Numersche Mathematk Semnar m Wntersemester 008/009 Unverstät Kassel Fachberech Mathematk Inhaltsverzechns Bezer-Kurven 1 1 Enletung 1 Der Algorthmus von de-castelau.1 Parabeln....................................

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr