3.7 Der AKS-Primzahltest

Größe: px
Ab Seite anzeigen:

Download "3.7 Der AKS-Primzahltest"

Transkript

1 3.7 Der AKS-Primzahltet Die Frage, ob e einen eterminitichen Primzahltet gibt, er mit polynomialem Aufwan aukommt, war biher nur urch Miller auf ie erweiterte Riemannche Vermutung zurückgeführt woren. Alle aneren bekannten Primzahltet benötigten einen höheren Aufwan oer waren probabilitich. Im Augut 2002 überrachten rei Iner, Maninra Agrawal, Neeraj Kayal un Nitin Saxena, ie Fachwelt mit einem volltänigen Bewei, er auf einem überrachen einfachen Algorithmu beruht. Dieer erhielt ofort en Namen AKS-Primzahltet. Er benötigt in er chnellten biher bekannten Verion einen Aufwan von O(log(n) 6 ). Satz 5 (Grunkriterium) Seien a, n Z teilerfrem, n 2. Dann in äquivalent: (i) n it prim. (ii) (X + a) n X n + a (mo n) im Polynomring Z[X]. Bewei. Au em binomichen Lehratz folgt n ( ) n (X + a) n = a n i X i i i=0 in Z[X]. (i) It n prim, o n ( ) n i für i = 1,..., n 1, alo (X + a) n X n + a n (mo n), un nach em Satz von Fermat it a n a (mo n). (ii) It n agegen zuammengeetzt, o wählt man einen Primfaktor q n un k mit q k n un q k+1 n. Dann it q n un ( ) n q k n (n q + 1) =. q 1 q Alo hat (X + a) n bei X q einen Koeffizienten 0 in Z/nZ. Bemerkungen 1. Der Blick auf a abolute Glie in (ii) zeigt, a a Grunkriterium eine Verallgemeinerung e Satze von Fermat it. 2. Sei q := (n, X r 1) Z[X] (Ieal im Polynomring) für r N. It n prim, o (X + a) n X n + a (mo q). Alo it gezeigt: Korollar 1 It n prim, o gilt im Polynomring Z[X] (X + a) n X n + a (mo q) für alle a Z mit ggt(a, n) = 1 un alle r N. 43

2 Die naive Anwenung e Grunkriterium al Primzahltet würe mit em binären Potenzalgorithmu etwa 2 log n Multiplikationen von Polynomen in Z/nZ[X] erforern, ie aber immer aufweniger weren: Im letzten Schritt in zwei Polynome vom Gra etwa n 2 zu multiplizieren, wa einen Aufwan er Größenornung n erforert. Da Korollar bechränkt en Gra urch r 1, it aber nicht hinreichen. Der Kernpunkt e AKS-Algorithmu it, a man a Korollar im weentlichen umkehren kann, wenn man genügen viele, aber ingeamt nur wenige a bei einem geeigneten feten r urchprobiert: Satz 6 (AKS-Kriterium, Verion von H. W. Lentra) Sei n eine natürliche Zahl 2. Gegeben ei eine zu n teilerfreme Zahl r N. Sei q := Or r n ie Ornung von n in er multiplikativen Gruppe M r = (Z/rZ). Ferner ei gegeben eine natürliche Zahl 1 mit ggt(n, a) = 1 für alle a = 1,..., un ( ) ϕ(r) + 1 n 2 ϕ(r) für jeen Teiler ϕ(r) q. Für a Ieal q = (n, Xr 1) Z[X] gelte (X + a) n X n + a (mo q) für alle a = 1,.... Dann it n eine Primzahlpotenz. Der Bewei (nach D. Berntein) wir in einige Hilfätze zerlegt. Hilfatz 1 Für alle a = 1,... un alle i N gilt: (X + a) ni X ni + a (mo q). Bewei. Da folgt urch Inuktion über i, wenn man in (X + a) n = X n + a + n f(x) + (X r 1) g(x) in Z[X] ie Subtitution X X ni auführt: (X + a) ni+1 (X ni + a) n = X ni n + a + n f(x ni ) + (X ni r 1) g(x ni ) X ni+1 + a (mo q), a X nir 1 = (X r ) ni 1 = (X r 1)(X r (ni 1) + + X r + 1) Vielfache von X r 1 it. Sei jetzt p n ein Primteiler. Ziel it zu zeigen, a n eine Potenz von p it. Da Ieal q = (n, X r 1) Z[X] wir vergrößert zu ˆq := (p, X r 1) Z[X]. Die Ientität au Hilfatz 1 gilt ann auch mo ˆq, un e gilt ogar, a jetzt ja mo p gerechnet wir: 44

3 Korollar 2 Für alle a = 1,... un alle i, j N gilt (X + a) ni p j X ni p j + a (mo ˆq). Sei H := n, p M r ie von en Retklaen n mo r un p mo r erzeugte Untergruppe. Sei := #(M r /H) = ϕ(r) #H. Da q = Or r n #H, it ϕ(r) q ; alo erfüllt ie Vorauetzung von Satz 6. Ein volltänige Repräentantenytem {m 1,..., m } M r von M r /H ei für en Ret e Beweie fet gewählt. Korollar 2 wir ann erweitert zu Korollar 3 Für alle a = 1,..., alle k = 1,..., un alle i, j N gilt + a) ni p j X m kn i p j + a (mo ˆq). Bewei. Nach em gleichen Trick wie in Hilfatz 1 wir X X m k ubtituiert: in Z[X] (X + a) ni p j = X ni p j + a + p f(x) + (X r 1) g(x) in Z[X], + a) ni p j = X m kn i p j + a + p f ) + r 1) g ), un arau folgt ie Behauptung. Für ie Proukte n i p j ϕ(r) N mit 0 i, j gilt 1 n i p j n 2 ϕ(r). ϕ(r) E gibt ( + 1)2 > ϕ(r) olcher Paare (i, j) N 2, un alle n i p j mo r liegen in er Untergruppe H mit #H = ϕ(r) ; alo gibt e verchieene (i, j) (h, l) mit n i p j n h p l (mo r), un afür mu ogar i h ein ont wäre p j p l (mo r), alo p r. Damit it auch chon er erte Teil e folgenen Hilfatze gezeigt: ϕ(r) Hilfatz 2 E gibt i, j, h, l mit 0 i, j, h, l un i h, o a für t := n i p j, u := n h p l ie Kongruenz t u (mo r) erfüllt it, un t u n 2 ϕ(r) 1. Damit gilt + a) t + a) u (mo ˆq) für alle a = 1,..., un alle k = 1,

4 Bewei. Die letzte Kongruenz folgt au X t = X u+cr X u (mo X r 1), alo + a) t X m kt + a X m ku + a + a) u (mo ˆq), für alle a un k. Da r zu n teilerfrem un p ein Primteiler von n it, hat X r 1 im algebraichen Abchlu von F p keine mehrfachen Nultellen, alo r verchieene Nulltellen, ie r-ten Einheitwurzeln mo p. Diee bilen (al enliche multiplikative Untergruppe eine Körper) eine zykliche Gruppe. Sei ζ ein erzeugene Element avon, alo eine primitive r-te Einheitwurzel. E gibt einen irreuziblen Teiler h F p [X] von X r 1 mit h(ζ) = 0. Sei K = F p [ζ] = F p [X]/hF p [X] = Z[X]/ˆq mit em Ieal ˆq = (p, h) Z[X]. Wir haben alo ie aufteigene Kette von Iealen q = (n, X r 1) ˆq = (p, X r 1) ˆq = (p, h) Z[X] un umgekehrt ie Kette von Surjektionen Z[X] Z[X]/q F p [X]/(X r 1) K = F p [ζ] = F p [X]/hF p [X]. Hilfatz 3 In K gilt: (i) (ζ m k + a) t = (ζ m k + a) u für alle a = 1,..., un alle k = 1,.... (ii) It G K ie von en ζ m k + a 0 erzeugte Untergruppe, o gilt g t = g u für alle g Ḡ := G {0}. Bewei. (i) folgt au Hilfatz 2 mit em Homomorphimu Z[X] K, X ζ, er en Kern ˆq ˆq hat. (ii) folgt irekt au (i). Die X +a F p [X] für a = 1,... in paarweie verchieene irreuzible Polynome, a p > nach er Vorauetzung von Satz 6. Alo in auch alle Proukte f e := (X + a) ea für e = (e 1,..., e ) N in F p [X] verchieen. Wa paiert bei er Abbilung mit en Polynomen f e? Φ: F p [X] K, f (f(ζ m 1 ),..., f(ζ m )), 46

5 Hilfatz 4 Für ie f e mit Gra f e = e a ϕ(r) 1 in ie Biler Φ(f e ) K paarweie verchieen. Bewei. Angenommen, Φ(f c ) = Φ(f e ). Nach Korollar 3 gilt für k = 1,..., f c ) ni p j = + a) ni p j c a n i p j + a) ca un ebeno = f c n i p j ) (mo ˆq) f e ) ni p j f e n i p j ) (mo ˆq). ert recht mo ˆq. Anwenung von Φ auf ie linken Seiten ergibt f c n i p j ) f e n i p j ) (mo ˆq). Für ie Differenz g := f c f e F p [X] gilt alo gn i p j ) hf p [X] für alle k = 1,...,. Sei b [1... r 1] zu r teilerfrem alo Repräentant eine Element von M r. Dann it b in einer er Nebenklaen m k H von M r /H enthalten. E gibt alo k, i un j mit b m k n i p j (mo r). Alo it g(x b ) gn i p j ) (X r 1)F p [X] hf p [X], alo g(x b ) hf p [X], alo g(ζ b ) = 0. Daher hat g in K ie ϕ(r) verchieenen Nulltellen ζ b. Der Gra von g it aber < ϕ(r). Alo it g = 0, alo f c = f e. Korollar 4 ( ) ϕ(r) + 1 1/ #Ḡ t u + 1. Bewei. E gibt ( ) ϕ(r)+ 1 Möglichkeiten, ie Exponenten (e1,..., e ) wie in Hilfatz 4 zu wählen. Da alle Φ(f e ) Ḡ, folgt ( ) ϕ(r) + 1 #Ḡ n 2 ϕ(r), nach er Vorauetzung von Satz 6, alo nach Hilfatz 2. #Ḡ n2 ϕ(r) t u + 1 Damit it er Bewei von Satz 6 leicht fertigzutellen: Da g t = g u für alle g Ḡ K, hat a Polynom X t u in K mehr al t u Nulltellen. Da geht nur, wenn t = u. Nach er Definition von t un u in Hilfatz 2 it alo n eine Potenz von p. Damit it Satz 6 bewieen. 47

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt.

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt. 3 Primzahltests Eine Frage ist zur Durchführbarkeit des RSA-Verfahrens noch zu klären: Gibt es überhaupt Möglichkeiten, die für die Schlüsselerzeugung nötigen Primzahlen zu finden? Die Antwort wird lauten:

Mehr

Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S.

Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S. Primes ist in P Der AKS-Primzahltest Notizen zum Vortrag auf dem MCAT-6 in Halle/S. Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 Anfang August 2002 verbreitete sich die

Mehr

Primes ist in P Der AKS-Primzahltest

Primes ist in P Der AKS-Primzahltest Primes ist in P Der AKS-Primzahltest Hans-Gert Gräbe Institut für Informatik, Universität Leipzig 10. Oktober 2003 1 Anfang August 2002 verbreitete sich die Nachricht, dass einige bis dahin unbekannte

Mehr

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

7. Arithmetische Funktionen. Möbiussche Umkehrformel

7. Arithmetische Funktionen. Möbiussche Umkehrformel O. Forster: Einführung in ie Zahlentheorie 7. Arithmetische Funktionen. Möbiussche Umkehrformel 7.1. Definition. Unter einer arithmetischen Funktion versteht man eine Abbilung α : N 1 C. Die arithmetische

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 10 Endliche Untergruppen der Einheitengruppe eines Körpers Wir wollen zeigen, dass die Einheitengruppe Z/(p), p Primzahl, zyklisch

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

PRIMES is in P. Ein Vortrag von Holger Szillat.

PRIMES is in P. Ein Vortrag von Holger Szillat. PRIMES is in P Ein Vortrag von Holger Szillat szillat@informatik.uni-tuebingen.de Übersicht Geschichte Notationen und Definitionen Der Agrawal-Kayal-Saxena-Algorithmus Korrektheit und Aufwand Fazit Geschichte

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

7. Teile, und beherrsche den Rest

7. Teile, und beherrsche den Rest 7. Teile, un beherrsche en Rest 7.1. Division mit Rest Nicht alle natürlichen Zahlen sin urch 3 teilbar: Es lässt 17 en Rest 2 [17 = 5 3+2] 18 geht auf 1 lässt Rest 1 20 lässt Rest 2 21 geht auf 22 lässt

Mehr

DIE ABLEITUNG FRANZ LEMMERMEYER

DIE ABLEITUNG FRANZ LEMMERMEYER DIE ABLEITUNG FRANZ LEMMERMEYER Eine Gerae y mx+b hat in jeem Punkt ieselbe Steigung m. Bei einer Parabel y x 2 agegen änert sich ie Steigung von Punkt zu Punkt. Sin zwei Punkte P (x f(x)) un Q(u f(u))

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

Elliptische Kurven in der Kryptographie, Teil III. 1 Supersingularität

Elliptische Kurven in der Kryptographie, Teil III. 1 Supersingularität Elliptische Kurven in der Kryptographie, Teil III Vortrag zum Seminar zur Funktionentheorie, 03.1.007 Julia Baumgartner In diesem Vortrag wollen wir supersinguläre elliptische Kurven betrachten und dann

Mehr

Übungsklausur Regelungstechnik SS 2014

Übungsklausur Regelungstechnik SS 2014 Übungklauur egelungtechnik SS 04 Aufgabe : Für ein Sytem mit er Übertragungfunktion G S () 5 ( )( 5) oll ein egler imenioniert weren. Die Führungprungantwort arf maximal 8,5% Überchwingen, e oll abei keine

Mehr

3.5 Faktorzerlegung von Polynomen

3.5 Faktorzerlegung von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche

7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche 7.3. EUKLIDISCHE BEREICHE, HAUPTIDEAL- UND GAUSSBEREICHE301 7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche Wir wissen bereits, daß in Integritätsbereichen R eine Division mit Rest möglich ist,

Mehr

Solution Hints to Exercise Sheet 11

Solution Hints to Exercise Sheet 11 Avance algebra Homological algebra an representation theory Wintersemester 24/5 Prof. C. Schweigert Algebra an Number Theory Department of Mathematics University Hamburg Aufgabe Solution Hints to Exercise

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 27 Konstruierbare Einheitswurzeln Definition 27.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Konstruierbarkeit des n-ecks

Konstruierbarkeit des n-ecks Proseminar Körpertheorie Vortrag 9 Konstruierbarkeit des n-ecks Dennis Petersen-Endrulat 27.06.2013 Prof. Dr. K. Wingberg, K. Hübner 9.1 2-Gruppen Proposition 9.1.1 Sei konstruierbar. z C konstruierbar

Mehr

9.2 Kreisteilungskörper

9.2 Kreisteilungskörper 9.2. KREISTEILUNGSKÖRER 341 9.2 Kreisteilungskörper Hier geht es um eine weitere wichtige Klasse von Körpern, die sogenannten Kreisteilungskörper. Mit ihrer Hilfe kann man in vielen Fällen exakt rechnen,

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

Musterlösung 14. = 1+ζ 5 +ζ 5 +ζ 2 5 +ζ 2 5. = 1+2Re(ζ 5 )+2Re(ζ 2 5) = 1+2cos72 +2cos144 = 1+2cos72 +2(2cos ).

Musterlösung 14. = 1+ζ 5 +ζ 5 +ζ 2 5 +ζ 2 5. = 1+2Re(ζ 5 )+2Re(ζ 2 5) = 1+2cos72 +2cos144 = 1+2cos72 +2(2cos ). D-MATH Algebra II FS 013 Prof. Richard Pink Musterlösung 14 1. (a) Das Polynom X 5 1 hat die Nullstellen 1,ζ 5,ζ 5,ζ 3 5,ζ 4 5, wobei ζ 5 die primitive fünfte Einheitswurzel cos7 +isin7 bezeichnet. Da

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

= 1. Falls ( a n. ) r i. i=1 ( b p i

= 1. Falls ( a n. ) r i. i=1 ( b p i Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest

Mehr

Algebra I, WS 04/05. α 3 = = 1 2 (α3 1 3α α )

Algebra I, WS 04/05. α 3 = = 1 2 (α3 1 3α α ) G. Nebe, M. Künzer Algebra I, WS 04/05 Lösung 13 Aufgabe 53. (1) Sei K = Q und E = Q( 3 + 5). Es ist Gal(E K) = [E : K] = 4. (i) Wir behalten die Notation der Lösung von 49 (2) bei, und numerieren die

Mehr

3-9 Elementare Zahlentheorie

3-9 Elementare Zahlentheorie 3-9 Elementare Zahlentheorie 332 Satz (Charakterisierung zyklischer Gruppen) Sei G eine Gruppe der Ordnung n Die folgenden Aussagen sind äquivalent: (1) G ist zyklisch (2) Die Anzahl der Elemente der Ordnung

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph Fluüberquerung (Miionare und Kannibalen). Kürzete Wege Problem: Drei Kannibalen und drei Miionare tehen an einem Ufer eine Flue. Ein dort bereittehende Boot fat maimal zwei Peronen. Zu keiner Zeit dürfen

Mehr

Der (7, 4)-Hamming-Code

Der (7, 4)-Hamming-Code Polynomcodes p. 1 Der (7, 4)-Hamming-Code Der 1-Fehler-korrigierende Hamming-Code der Länge 7 besteht aus 16 binären 7-Tupeln: 0000000 1111111 1101000 0010111 0110100 1001011 0011010 1100101 0001101 1110010

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den 1. Übungsblatt für den 11. 3. 2010 1. Es seien a, b Z. Beweisen Sie: a) a b T (a) T (b) b) Für jedes k Z gilt: T (a) T (b) = T (a) T (b + ka) c) Für jedes k Z gilt: ggt(a, b) = ggt(a, b + ka). 2. Für n

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Gruppentheorie und ihre Anwendungen in der Physik Ü5

Gruppentheorie und ihre Anwendungen in der Physik Ü5 Frank Essenberger, Max Hoffmann 8. Juni 2007 Gruppentheorie un ihre Anwenungen in er Physik Ü5 Aufgabe 8 a) Als erstes müssen ie Gruppen bestimmt weren. Das Element E einer Gruppe G bilet immer einen Klasse

Mehr

Übungsblatt 7. Hausübungen

Übungsblatt 7. Hausübungen Übungsblatt 7 Hausübungen Die Hausübungen müssen bis Mittwoch, den 06.1.17, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9 Prof r Holger ette Muterlöung Statitik I Sommeremeter 009 r Melanie Birke Blatt 9 Aufgabe : 4 Punkte E eien X,, X n unabhängig identich N µ, -verteilt a Man berechne die Fiher-Information I µ für µ b E

Mehr

Definition. Wichtige Beziehungen. Geometrische Konstruktion

Definition. Wichtige Beziehungen. Geometrische Konstruktion Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Grundlagen der Elektrotechnik l Lösungsvorschläge zu Übungsblatt 1

Grundlagen der Elektrotechnik l Lösungsvorschläge zu Übungsblatt 1 Grunlagen er Elektrotechnik l Löungvorchläge zu Übungblatt Dr nrea M Seifert (Übungblatt Verion 66) ufgabe : V C E CE V D C 6 V CD D V E D V, E V, C V, CD V, CE V ufgabe : m artellten Schaltungauchnitt

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9 Prof. Rolan Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 9 Aufgabe 1: Eine Isometrie eines metrischen Raums X ist eine Abbilung f :

Mehr

1 Das RSA-Verfahren und seine algorithmischen Grundlagen

1 Das RSA-Verfahren und seine algorithmischen Grundlagen 1 Das RSA-Verfahren und seine algorithmischen Grundlagen Das wichtigste d. h., am weitesten verbreitete und am meisten analysierte asymmetrische Verfahren ist das RSA-Verfahren, benannt nach seinen Erfindern

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Kreisteilungskörper und die Erzeugung ihrer Teilkörper. Bachelorarbeit

Kreisteilungskörper und die Erzeugung ihrer Teilkörper. Bachelorarbeit Kreisteilungskörper und die Erzeugung ihrer Teilkörper Bachelorarbeit Anne Wald 7. Juli 009 Erklärung Hiermit versichere ich, die Arbeit eigenständig und nur unter Verwendung der angegebenen Hilfsmittel

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Von den ganzen Zahlen zu GF(p)

Von den ganzen Zahlen zu GF(p) Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Quadratische Erweiterung

Quadratische Erweiterung Quadratische Erweiterung Ziel: F 2 p besitzt Ordnung F 2 p = p 2 1 = (p+1)(p 1). Wir konstruieren eine Untergruppe von F 2 p mit Ordnung p+1. Unsere Hoffnung ist, dass p + 1 in kleine Primfaktoren zerfällt.

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 Nun kommen wir zur Teilbarkeitstheorie in Integritätsbereichen. Es wird ganz elementar in dem Sinne, dass wir wieder mehr von Elementen als von

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

Primzahltest in Polynomialzeit Der Algorithmus von Agrawal, Kayal und Saxena

Primzahltest in Polynomialzeit Der Algorithmus von Agrawal, Kayal und Saxena Primzahltest in Polynomialzeit Der Algorithmus von Agrawal, Kayal und Saxena 1. Worum geht es? Das Problem, um das es geht, heißt PRIMES. Es entscheidet für eine vorgegebene Zahl n > 2 die Frage, ob n

Mehr

9.3 Normale und separable Erweiterungen

9.3 Normale und separable Erweiterungen 9.3. NORMALE UND SEPARABLE ERWEITERUNGEN 345 9.3 Normale und separable Erweiterungen Wir betrachten jetzt noch algebraische Erweiterungen der folgenden Form: 9.3.1 Definition (normale Erweiterung) Algebraische

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261

Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261 Grundkur Codierung Löungvorchläge zu den Fragen in den Unterkapiteln Wa blieb? Stand 22.04.2007 Unterkapitel 4.4 Seite 261 Zu Frage 1: Nein, damit bleibt da one time pad-verfahren nicht perfekt. Man kann

Mehr

Blatt 02.4: Vektorräume, Euklidischer Räume

Blatt 02.4: Vektorräume, Euklidischer Räume Fakultät für Physik R: Rechenmethoen für Physiker, WiSe 15/16 Dozent: Jan von Delft Übungen: Beneikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weiinger http://homepages.physik.uni-muenchen.e/~vonelft/lehre/15r/

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 8. sin(x) sin (x) = cos(x) dx x + log x e x log x = (1 + log x)x x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 8. sin(x) sin (x) = cos(x) dx x + log x e x log x = (1 + log x)x x. D-ITET Analysis I HS 08 Prof Alessanra Iozzi Musterlösung 8 a) Der Ausruck log(sin x) ist für x (0, π) wolefiniert, a ann sin(x) > 0 gilt Anwenung er Kettenregel ergibt x (log(sin(x))) sin(x) sin (x) cos(x)

Mehr

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100)

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) #1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) Name, Vorname: Matrikelnr.: Übungsgruppe: Hinweis: Es ist Ihnen erlaubt, Ergebnisse aus vorherigen Aufgaben dieser Klausur in den nachfolgenden Aufgaben

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr