PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II

Größe: px
Ab Seite anzeigen:

Download "PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II"

Transkript

1 Fachbereich Mathematik und Informatik Philipps-Universität Marburg PROTOKOLLE U DEN ÜBUNGEN DER FUNKTIONALANALYSIS II Claude Portenier Marburg Sommersemester 004 Fassung vom 4. August 004

2 Fachbereich Mathematik und Informatik Philipps-Universität Marburg Sommersemester 004 Funktionalanalysis II Lösungsblatt 4 Aufgabe 1 u berechnen ist die Fouriertransformierte von e πa für a>0,dazuleitenwir eine zugehörige Diffgleichung her: /F ³e πa F ³ πa e i ³ /e πa a F i a F ³ e πa, somit erfüllt f Fe πa die Diffgleichung Die Lösung ist /f i f. a f const e π a. Die Konstante kann aus der Anfangsbedingung berechnet werden, denn es gilt: f (0) const ³Fe πa (0) e πa x dx y πax d.h. e y dy 1, πa a Fe πa 1 a e π a. Aufgabe Es ist sinc S(R) 0,dasinc L (R) ist oder da sinc L 1 langsam (R) ist wegen hi k sinc < für k 0. Nun gilt und somit Fδ 1 e πi x dδ 1 (x) e πi µ sin(π ) /F sinc F( sinc) F π 1 µ e πi π F e πi 1 ³ δ i πi 1 δ 1, 1

3 Funktionalanalysis II Lösungsblatt 4 d.h. F sinc δ 1 δ 1. Nach Aufgabe 3 von Blatt 3 sind die Lösungen dieser Differentialgleichung durch h 1 h 1 + c 1 1 [, 1 ] + c mit c C gegeben. ur Bestimmung der Konstanten c kann man F sinc L (R) benutzen, woraus c 0folgt. Alternativ (dies ist die gute Idee!) kann man rechnen für λ 6 0und 1 F 1 1 [, 1 ] (λ) 1 e πiλx dx 1 e πiλ e πiλ sincλ πiλ 1 F 1 [ 1, 1 ] (0) 1 1 dx , d.h. F 1 [ 1, 1 ] sinc. Aufgabe 3 Wir zeigen zunächst den Hinweis: Sei dazu ψ D (R),mitψ (0) 0. Für x 0ist die Aussage des Hinweises trivial. Wir können also o.e. x 6 0annehmen. Es gilt: x ψ 0 (xs) ds xst x ψ 0 (t) 1 [0,1] [0,x] t dt [0,x] Also die Beh. im Hinweis. Sei nun µ D (R) 0, c C. u zeigen: ψ 0 (t) dt HDI ψ (x) µ löst die Gleichung µ c α C : µ αδ + c HW Beweis: :Esseiα C, so dass RHS erfüllt ist und ϕ D (R) : µ À hϕ µi h ϕ µi ϕ 1 αδ + c HW µ À h ϕ αδi + c ϕ 1 HW 0+c lim ε 0 Rr] ε,ε[ ϕ 1 dλ.

4 Funktionalanalysis II Lösungsblatt 4 c ϕ dλ hϕ ci. Und daraus folgt die Behauptung. : Esgelte: µ c in D (R) 0. Es genügt zu zeigen: α C so dass µ αδ + c HW 1. In der Tat: Aus dem Hinweis folgt: ½ Ker δ ψ D ψ [0,1] ¾ ψ 0 ( s) ds und somit die erlegung: D (R) Kerδ K χ für ein χ D so dass χ (0) 1,alsofür ϕ D (R) ϕ [ϕ ϕ (0) χ]+ϕ (0) χ. Wir deþnieren nun eϕ(x) : R [0,1] [ϕ ϕ (0) χ]0 (sx) ds. Da R [0,1] [ϕ ϕ (0) χ]0 (sx) ds nach Lebesgue unter dem Integral beliebig oft diffbar ist, gilt eϕ C ( ) (R) und aus ϕ ϕ (0) χ eϕ folgt offenbar eϕ D (R). Daraus folgt ϕ eϕ + ϕ (0) χ und damit: also die Beh. hϕ µi h eϕ µi + hϕ (0) χ µi h eϕ µi + hϕ δi hχ µi c lim ε 0 eϕ(x) dx + hϕ δi hχ µi c lim ε 0 Rr] ε,ε[ Rr] ε,ε[ ϕ ϕ (0) χ (x) dx + hϕ δi hχ µi µ À µ À c ϕ 1 HW + hϕ δi hχ µi c χ 1 HW, {z } :α 3

5 Fachbereich Mathematik und Informatik Philipps-Universität Marburg Sommersemester 004 Funktionalanalysis II Lösungsblatt 5 Aufgabe 1 (a) Wir schreiben im Folgenden k statt λ. unächst müssen wir zeigen, dass e λ n -integrierbar in S (R n ) 0 ist (im Sinne von Pettis). Betrachte dazu: he ϕi S 0 e π x ϕ (x) dx Fϕ und da Fϕ dλ Fϕ hi dλ hi 6 khi Fϕk khi Fϕk kf ( /ϕ)k 6 k /ϕk 1 6 khi /ϕk 1 π p 1 (ϕ) dλ hi. dλ hi 6 1 µ dλ π p 1 (ϕ), hi dλ hi Dies zeigt, dass ϕ 7 R he ϕi dλ stetig ist, also e λ n -integrierbar in S (R n ). Als nächstes betrachten wir (e ) y : D(e ) y ϕ E ht y e ϕi he T y ϕi FT y ϕ M ey Fϕ e y Fϕ Mit e y Fϕ Fϕ folgt (e ) y ist λ n -integrierbar in S (R n ) 0. Alternativ lässt sich auch über HS 3.1.ii argumentieren: (e ) y : R n S (R n ) ist stetig, E S (R n ) ist tonneliert, (e ) y ist skalar λ n -integrierbar (da D(e ) y ϕ e y Fϕ S (R n ) S 0 L 1 (R n ) )unde B(0,k) istbeschränkt(dae B(0,k) kompakt ist). Es gilt: Fδ y FT y δ M e y Fδ e y Daraus folgt F e y δ y.esbleibtnoch R (e k ) y dk δ y zu zeigen. Beweis: Sei ϕ S D E D E ϕ (e k ) y dk ϕ (e k ) y dk ϕ(x) e πik(x y) dx dk e πiky ϕ(x) e πikx dx dk F F ϕ (y) hϕ δ y i. 4

6 Funktionalanalysis II Lösungsblatt 5 Alternativ lässt sich die Gleichung F ν R e k dν(k) verwenden (Satz 4.10): δ y F (e y λ R n) e k e y dλ. Nunbetrachtenwir: sin (πy ) e k 1 i (e y e y ) e k 1 i h(e k ) i y (e k ) y Daraus folgt: 1 1 i sin (πy ) e k dλ i (e y e y ) e k dλ h(e k ) i y (e k ) y dλ 1 i [δ y δ y ] (b) Entweder argumentieren wir über: hx α e x ϕi dx x α he x ϕi dx 6 x α hex ϕi dx 6 hi α he x ϕi dx und schließen wie in (a). Oder wir betrachten die stetige Abbildung / α : S 0 S 0 : µ / α δ / α e λ dλ / α e λ dλ λ α Satz 4.10 e λ dλ F ( α ). (c) Es gilt HW 1 1. Daraus folgt: µ µ 1 δ F1 F HW FHW Mit der Übungsaufgabe 4.3 folgt FHW 1 πi h + cst und da µ À µ À ϕ 1 DHW D ϕ 1 HW lim ε 0 woraus D HW 1 HW 1 Damit gilt Rr] ε,ε[ ϕ ( x) 1 µ À x dx ϕ 1 HW folgt, bekommen wir D ( πi h + cst) D FHW FD HW FHW πi h cst. cst πi (h + D h)πi, und die Konstante ist gleich πi. Daraus folgt FHW πi h + πi πi signum,. 5

7 Funktionalanalysis II Lösungsblatt 5 also sowie F signum 1 πi HW F h 1 µ πi 1 FFHW + 1 F 1 1 πi HW + 1 δ. Da 1 R signum +1 R+ signum +h gilt: uletzt betrachten wir: F 1 R F signum + F h 1 πi HW F 1 R+ λ + 1 δ e d 1 R+ λ e k dk. R + Analog gilt R R e k dk F 1 R,sowie F sgn F 1 R + F 1 R+ sgn k e k dk, e k + e k cos (πk ) dk dk 1 R + R + e k dk + e k dk 1 R + R δ und e k e k sin (πk ) dk R + R + i Damit ist alles gezeigt! 1 i e k dk e k dk R + R 1 π HW. Aufgabe (a) In jedem Fall ist ( ) hermitesch positiv. Die Frage ist also, wann diese Form deþnit ist, d.h. wann die induzierte Halbnorm k k eine Norm ist. Nun ist genau dann 0kξk X f µj + n f, j n J wenn f µj 0, j n und n ξ 0 λ J -fast überall. Mit anderen Worten ist {k k 0} \ j n Ker µ j Ker ³ n BL (n) (J) KerB P n (J), da ξ AC (n) (J) genau dann eine Polynomfunktion ³ vom Grade höchstens n 1 ist, wenn n ξ 0(vgl. FA I, Blatt 4, Aufgabe.d : Ker n BL (n) (J) P n (J) ). 6

8 Funktionalanalysis II Lösungsblatt 5 Damit ist k k genau dann eine Norm, wenn der oben angegebene Schnitt nur aus 0 besteht, und dies ist genau dann der Fall, wenn B Pn (J) injektiv ist (vgl. FA I, Blatt 4, Aufgabe.b), d.h. wenn die Semilinearformen µ j Pn (J) linear unabhängig sind. 06j6n (b) Da B Pn (J) : P n (J) K n injektiv ist, ist sie auch surjektiv, also bijektiv. Nach FA I, Blatt 4, Aufgabe.b folgt BL (n) (J) P n (J) Ker B. Somit ist die Abbildung ³ f (B, n ):BL (n) (J) K n L (J) :f 7 µj, j n n f eine surjektive Isometrie, d.h BL (n) (J) ist ein Hilbert-Raum. Trivialerweise gilt P n (J) Ker B, d.h. BL (n) (J) P n (J) Ker B. (c) Die Identität Id : BL (n) (J) B BL (n) (J) C ist stetig. In der Tat: n kfk C k n fk,j + X n hν j f i 6 k n fk,j + X kν j k kfk B 6 j0 Ã! Xn 6 1+ kν j k kfk B. j0 Da Id bijektiv ist, ist sie ein Isomorphismus nach dem Isomorphiesatz. Somit sind die Normen äquivalent. j0 7

9 Fachbereich Mathematik und Informatik Philipps-Universität Marburg Sommersemester 004 Funktionalanalysis II Lösungsblatt 6 Aufgabe 1 Sei H ein Hilbertraum und G, H ein hilbertscher Unterraum von H mit Kern g. Wir zeigen, dass ein positiver Operator T L (H) existiert, so dass G das Bild von H unter T ist, d.h. G T (H). In der Tat: Nach Satz (5.1) gilt g L + (H). Wir verwenden nun [ohne Beweis] die Tatsache, dass es zu jedem positiven Operator S einen positiven Operator T gibt, so dass T S,schreibenalso: T g Da T positiv ist, ist der Operator selbstadjungiert. Wir betrachten: Es gilt nach Satz 5.4: G, H T H T (H), H ist HUR mit Kern : T H T T g Da die uordnung zwischen Kernen und Hilbertschen Unterräumen eineindeutig ist, folgt T (H) G und damit die Behauptung. Aufgabe (a) d.h. es gilt unächst ist zu zeigen, dass Φ stetig ist. Sei dazu ϕ F, ξ H und η G. Dann gilt hϕ Φ (ξ, η)i hϕ ξi + hϕ ηi (hϕ ξ) H +(gϕ η) G ((hϕ,gϕ) (ξ, η)) H G, ( ) Also ist Φ stetig. Nach dem Bildsatz ist ein HUR mit Kern Aus ( ) folgt, dass hϕ i Φ 6 ((hϕ,gϕ) )H G. {z } stetige HN auf H σ G σ Φ (H G), F Φ (Kern von H G, H G) Φ ΦΦ. Φ (h, g) :F (H G) H σ G σ. Also ist h + g der Kern von H + G, F. Aus dem Bildsatz folgt weiterhin, dass (hϕ,gϕ) Φ ϕ der Parsevalrepräsentant für ΦΦ ϕ hϕ + gϕ ist. Das ist die zweite Behauptung. 8

10 Funktionalanalysis II Lösungsblatt 6 (b) Es ist zu zeigen, dass p H der Kern von H, H + G ist. Für γ H + G ist (p H γ,p G γ) Parsevalrepräsentant von γ, also folgt γ Φ (p H γ,p G γ)p H γ + p G γ, d.h. p H + p G H+G. Damit ist klar, dass p H und p G kommutieren. Für ξ H gilt dann (γ ξ) H+G (γ ξ) Φ(H G) (Φ (p H γ,p G γ) ξ) Φ(H G) ((p H γ,p G γ) (ξ, 0)) H G (p H γ ξ) H. Also ist nach Korollar 5.1 p H der Kern von H, H + G. ur Beschränktheit: Es gilt kp H γk H 6 kp Hγk H + kp Gγk G (p Hγ p H γ) H +(p G γ p G γ) G ((p H γ,p G γ) (p H γ,p G γ)) H G kγk H G. Also ist p H beschränkt. Weiter gilt 0 6 (γ p H γ ) H+G kp H γk H 6 kγk H+G (γ Id H+G γ) H+G, d.h. 0 6 p H 6 Id H+G. (c) Für p H : H + G H + G gilt p H p H (Satz 5.1). Nach Korollar 3.10 folgt dann Ker p H (Imp H ) (H+G) (p H (H + G)) (H+G) H (H+G), da p H (H + G) dichtes Bild in H hat (Satz 5.3.i). Aufgabe 3 Dass nx (p q) Pn j p(τ) j q(τ) j0 sesquilinear, hermitesch und positiv ist, sieht man sofort. Es ist also noch die DeÞnitheit zu zeigen. Dazu rechnet man nx (p p) Pn j p(τ) j0 und stellt fest, dass diese Summe nur verschwinden kann, wenn alle Koeffizienten bis zu n- ter Ordnung in der Taylor-Entwicklung von p um den Punkt τ verschwinden. Da aber p ein Polynom vom Grad 6 n ist, muss dann p 0sein. Damit ist ( ) Pn ein Skalarprodukt. Mit diesem Skalarprodukt wird P n (J) zu einem Hilbert-Raum, da die Abbildung P n (J) K n+1 : p 7 j p(τ) j n+1 eine bijektive Isometrie ist. 9

11 Funktionalanalysis II Lösungsblatt 6 um Beweis der zweiten Behauptung muss man hψ pi D (p n ψ p) für alle p P n (J) und ψ D(J) zeigen. unächst ist κ n (,t) P n (J), und aufgrund von n+1 p n ψ n+1 κ n (,t)ψ(t) dt 0 gilt auch p n ψ P n (J). Wegen j p n ψ ist und somit (p n ψ p) nx ( j p n ψ)(τ) j p(τ) j0 wie behauptet. nx lj ( τ) l j (l j)! (t τ) l ψ(t) dt l! (t τ) ( j j p n ψ)(τ) ψ(t) dt j! nx (t τ) j ψ(t) dt j p(τ) j! j0 ψ(t)p(t) dt hψ pi 10

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Fachbereich Mathemati und Informati Philipps-Universität Marburg Lösungen der Übungen zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Prof. Dr. C. Portenier Wintersemester 24/25 Fassung vom 6. Januar

Mehr

PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II

PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II Fachbereich Mathematik und Informatik Philipps-Universität Marburg PROTOKOLLE U DEN ÜBUNGEN DER FUNKTIONALANALYSIS II Claude Portenier Marburg Sommersemester 24 Fassung vom 4. August 24 Fachbereich Mathematik

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Übungen zur Vorlesung FUNKTIONALANALYSIS I

Übungen zur Vorlesung FUNKTIONALANALYSIS I Fachbereich Mathematik und Informatik Philipps-Universität Marburg Übungen zur Vorlesung FUNKTIONALANALYSIS I Prof. Dr. C. Portenier unter Mitarbeit von Alexander Alldridge Wintersemester 2003/2004 Fassung

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Klausuren zur Vorlesung ANALYSIS II

Klausuren zur Vorlesung ANALYSIS II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Klausuren zur Vorlesung ANALYSIS II Prof. Dr. C. Portenier R. Jäger und R. Knevel Marburg, Sommersemester 00 Fassung vom 8. Oktober

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

(1+x 2 )x α D β f C 0 ( α,β (f)+ α+2,β (f)).

(1+x 2 )x α D β f C 0 ( α,β (f)+ α+2,β (f)). 5 Entwicklungen nach Hermite-Funktionen Wir zeigen in diesem Paragraphen zunächst, daß der Raum S(R m ) topologisch isomorph zum Folgenraum s m ist Zu diesem Zwecke definieren wir auf S eine äquivalente

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

Normierte Vektorräume und lineare Abbildungen 71. kanonische Einbettung (von E in E ).

Normierte Vektorräume und lineare Abbildungen 71. kanonische Einbettung (von E in E ). Normierte Vektorräume und lineare Abbildungen 71 Zunächst ist κx: E K linear. κxx = x x x x zeigt κx x. Mit 20.5 b dann κx = x. Damit : 21.1 Bemerkung κ : E E ist linear mit κx = x für x E. Somit ist κ

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

2. Dirichlet-Reihen. Arithmetische Funktionen

2. Dirichlet-Reihen. Arithmetische Funktionen 2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

Die von Neumannsche Ungleichung

Die von Neumannsche Ungleichung Die von Neumannsche Ungleichung Dominik Schillo 12. November 2012 Satz (Die von Neumannsche Ungleichung) Seien p C[z] ein Polynom in einer Variablen und T L(H) eine Kontraktion (d.h. T 1). Dann gilt: p(t

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. SS 6 9.4.6 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion)

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion) 4.4.8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Spektraltheorie. Übungsblatt - Lösungsvorschläge Aufgabe Elementare Aussagen über Spektrum & Resolventenfunktion Seien X, X, Y, Y Banachräume und S, T

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Harmonische Analysis

Harmonische Analysis Seminar Harmonische Analysis Vortrag von Reidar Janssen 2. & 27. Oktober 211 Diese Übersetzung des ersten Kapitels von Anton Deitmars A First Course in Harmonical Analysis [] dient als Grundlage für meinen

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

1 Endlich additive Volumen auf R n

1 Endlich additive Volumen auf R n Endlich additive Volumen auf R n In Satz. im Skript haben wir gezeigt, dass kein σ-additives Volumen auf der Potenzmenge P (R n ) definiert werden kann. Man könnte sich vorstellen, das Problem ist aus

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

Kapitel I. Hilberträume.

Kapitel I. Hilberträume. Kapitel I. Hilberträume. 1. Grundbegriffe. Ein Prä-Hilbertraum ist ein Vektorraum über C mit einem inneren Produkt (=Skalarprodukt, positive Form). Wir beginnen daher mit (Sesquilinear-) Formen. 1.1. Definition.

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Übungen zur Vorlesung FUNKTIONALANALYSIS II. Lösungen

Übungen zur Vorlesung FUNKTIONALANALYSIS II. Lösungen Fchbereich Mthemtik und Informtik Philipps-Universität Mrburg Übungen zur Vorlesung FUNKTIONALANALYSIS II Lösungen Prof. Dr. C. Portenier Sommersemester 24 Fssung vom 6. Juli 24 Fchbereich Mthemtik und

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein Zentralübung 5. Dirac-Folgen TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik Analysis 3 Sei δ k k N eine Dirac-Folge und f L n. Zeigen Sie, dass

Mehr

Lösungsvorschläge zum 7. Übungsblatt.

Lösungsvorschläge zum 7. Übungsblatt. Übung zur Analysis II SS Lösungsvorschläge zum 7 Übungsblatt Aufgabe 5 a) f : R R definiert durch fx, y) : x, y) und D : U, ) und D : U 4, ) \ U, ) b) f : R R definiert durch fx, y) : x ) cost) c) γ :

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1,

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1, Aufgabe I1 (4 Punkte) Es seien (G, ) und (H, ) Gruppen a) Wann heißt eine Abbildung Φ : G H ein Gruppenhomomorphismus? b) Es seien Φ, Ψ : G H zwei Gruppenhomomorphismen Zeigen Sie, dass eine Untergruppe

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ 1 2 3 4 5 Σ Aufgabe 1 (i) X Menge, Äquivalenzrelation auf X, x, y X x y [x] = [y] [x] [y], X ist disjunkte Vereinigung aller Äquivalenzklassen (Letzte Aussage) Paarweise verschiedene Äquivalenzklassen

Mehr

6 Der Fixpunktsatz von Banach

6 Der Fixpunktsatz von Banach 6 Der Fixpunktsatz von Banach Es sei (V, ) ein vollständiger NLR Satz 24 (Fixpunktsatz von Banach) Ist A V abg und nicht leer, und g : A A eine Abbildung mit g(x) g(y) q x y (x, y V ) für ein 0 q < 1 Dann

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

45 Hilberträume. v = 2 <v, v>.

45 Hilberträume. v = 2 <v, v>. 45 Hilberträume Zusammenfassung Unter dem Begriff Hilbertraum werden solche euklidische oder unitäre Vektorräume zusammengefasst, die auch noch vollständig sind. Damit werden die in 41, 42 und in 43, 44

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H.

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H. 11 Hilberträume Sei H ein Vektorraum über K = R oder K = C. Definition 11.1. (a) Eine sesquilineare Form auf H ist eine Abbildung, : H H K so, dass für alle x, x, y, y H und α, β K gilt αx + βx, y = α

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr