Anhang: Einführung in die Vektorrechnung

Größe: px
Ab Seite anzeigen:

Download "Anhang: Einführung in die Vektorrechnung"

Transkript

1 Anhang: Einführung in die Vektorrechnung Physikalische Größen, die durch ihren Betrag und ihre Richtung festgelegt sind, heißen Vektoren. Geometrisch wird ein Vektor durch einen Pfeil dargestellt, dessen Länge ein Maß für den Betrag ist (Bild All). Als Symbole für Vektoren verwenden wir fette Buchstaben, zum Beispiel A. Der Betrag des Vektors A wird durch IA! oder kurz durch A angegeben. Ein Vektor mit dem Betrag Eins heißt Einheitsvektor e. / B' '' A '\ > 0 Bild 12 Multipliziert man einen Vektor A mit einer skalaren Größe A, so erhält man den Vektor B = A A (Bild AI2) mit 1 B 1 = 1 ).11 A I. Demnach läßt sich jeder Vektor als Produkt aus seinem Betrag und einem gleichgerichteten Einheitsvektor schreiben (Bild All): A =Ae. (A.l) Die Addition zweier Vektoren A und B ergibt den Summenvektor C=A+B. (A.2) Er kann zeichnerisch durch BlIden eines Parallelogramms ermittelt werden (Bild A/3). Dieses Parallelogramm kann auch folgendermaßen gedeutet werden: ein gegebener Vektor C wird in zwei Vektoren A und B mit den vorgegebenen Wirkungslinien a und b zerlegt. Die Vektoren A und B heißen dann Komponenten des Vektors C bezüglich der Richtungen a und b. In der Ebene ist die Zerlegung eines Vektors nach zwei verschiedenen Richtungen mit Hilfe des Parallelogramms eindeutig möglich. Entsprechend läßt sich im Raum die Zerlegung nach drei nicht in einer Ebene liegenden Richtungen eindeutig durchführen.

2 Komponenten und Koordmaten 195 Bild A/3 A 0 Des bequemeren Rechnens wegen stellen wir Vektoren häufig in einem kartesischen Koordinatensystem dar (Bild A/4). Die jeweils aufeinander senkrecht stehenden Achsrichtungen (orthogonale Achsen) x, y und z des Koordinatensystems werden durch die Einheitsvektoren e" ey und ez gekennzeichnet. Der Vektor A kann in seine Komponenten A x, A y und A z bezüglich der drei Achsrichtungen zerlegt werden: Nach (A.l) gilt für die Komponenten ;l-a,------", I I I I (A.3) (AA) AI , y BIld A/4 x

3 196 Anhang: Einfuhrung in die Vektorrechnung Damit wird aus (A3) (A5) Die Maßzahlen A" A y und Az heißen Koordinaten des Vektors A. Sie werden oft auch Komponenten des Vektors genannt, obwohl die Komponenten ja die Vektoren AI(j = X, y, z) sind. Ordnet man die Koordinaten in einer Spalte (A.6) an, so nennt man diese Darstellung von A einen Spaltenvektor. Durch die Angaben seiner drei Koordinaten ist em Vektor eindeutig bestimmt. Der Betrag des Vektors folgt aus dem Satz des Pythagoras zu IA: =A = VA~+A;+A~. (A7) Die Richtung von A wird durch die Winkel :x, ß und y charaktensiert (Bild A/4). Wir lesen ab: A, cos :X=-, A A y cos ß=-, A A z cos y=-. A (A.8) Mit (A 7) ist (A9) und es gilt daher cos 2 :x + cos 2 ß + cos 2 I' = I. (AIO) Die drei Winkel :x, ß und y sind also nicht unabhängig voneinander. Die Vektorgleichung A =B (All) ist gleichwertig mit den drei skalaren Gleichungen (A.12)

4 AddItion und Subtraktion von Vektoren 197 Zwei Vektoren sind somit gleich, wenn sie in den drei Koordinaten übereinstimmen. Im folgenden werden einige Rechenregeln unter Verwendung der Komponentenschreibweise zusammengestellt. 1. Multiplikation eines Vektors mit einem Skalar Die Multiplikation eines Vektors A mit einem Skalar A (Bild A/2) liefert mit (A3) und (AA) den Vektor B=AA =A A=A(Ax+Ay+A z) = ),A, e x +}, Ayey + AA z e z. (AI3) Ein Vektor wird demnach mit einer Zahl multipliziert, indem jede Koordmate des Vektors mit dieser Zahl multipliziert wird. Für ), > 0 bleibt dabei der Richtungssinn erhalten, während er sich für ;, < 0 umkehrt. Im Sonderfall }, = - 1 erhält man den Vektor B = - A, der aus dem Vektor A unter Beibehaltung des Betrages durch Umkehr des Richtungssinns entsteht. Für A = 0 erhält man den Nullvektor. 2. Addition und Subtraktion von Vektoren Für die Summe zweier VektorenA und B erhält man Daraus folgt C=A + B = (A,ex + Ayey+ Az ez) + (B x ex + Byey + B z ez) = (A,+ B x) ex+ (A y+ By) ey+ (A z + B z) ez (AI4) = C,e,+ Cyey + Czez. (AI5) Zwei Vektoren werden also addiert, indem man jeweils die entsprechenden Koordinaten addiert. Bei der SubtraktIOn zweier Vektoren folgt mit C=A -B=A + (-B) (A.l6)

5 198 Anhang: Einftihrung III die Vektorrechnung für die Koordinaten (A I 7) 3. Skalarprodukt Das skalare Produkt (inneres Produkt) zweier Vektoren A und B, die nach Bild AIS a den WInkel rp einschließen, ist definiert durch A. B = A B cos rp. (AI8) Das Ergebllls der Multiplikation ist ein Skalar (kein Vektor!). Das skalare Produkt läßt sich auf verschiedene Weise deuten (Bild A/Sb): a) Betrag VOn A mal Betrag VOn B mal Kosinus des eingeschlossenen Winkels, b) Betrag vona mal senkrechter Projektion von B auf A, c) Betrag VOn B mal senkrechter Projektion von A auf B. Bild A/5 a (1, ~A b Das Skalarprodukt ist positiv, wenn die beiden Vektoren einen spitzen Winkel einschließen, während es bei einem stumpfen WInkel negativ 1St. Im Sonderfall orthogonaler Vektoren (rp = rrl2) ist das Skalarprodukt Null. Aus der DefinitIOn (A18) folgt A B=B A. (A19) Die Reihenfolge der Vektoren darf beim skalaren Produkt vertauscht werden (KommutatIvgesetz). In Komponentendarstellung wird das Skalarprodukt

6 Vektorprodukt Unter Beachtung von e x ex = ey ey = ez e z = 1, e x ey = ey. e z = e z. ex = (A21) finden wir (A22) Für den Sonderfall B = A erhalten wir wegen ({J = 0 aus (AI8) A. A = A 2 oder A = ~. (A.23) 4. Vektorprodukt Beim Vektorprodukt (äußeres Produkt oder Kreuzprodukt) zweier Vektoren A und B verwenden wir "x" als Multiplikationszeichen: C=A xb. (A24) Das Produkt ist folgendermaßen definiert: a) Der Vektor C steht auf A und auf B senkrecht (Bild A/6) b) Der Betrag von C ist gleich der von A und B aufgespannten Fläche: i CI = C = A B sin ({J (A25) Dabei ist ({J der von A und B eingeschlossene Winkel. c) Die Vektoren A, Bund C bilden in dieser Reihenfolge ein Rechtssystem (man kann Daumen, Zeigefinger und Mittelfinger der rechten Hand in dieser Reihenfolge mit den Richtungen von A, Bund C zur Deckung bringen). Bild A/6

7 200 Anhang: Emflihrung m die Vektorrechnung Daraus folgt AxB=-BxA. (A26) Das Kommutativgesetz gilt für das Vektorprodukt mcht. Sind zwei Vektoren parallel (rp = 0), so verschwindet nach b) ihr Vektorprodukt. Unter Beachtung von (A27) wird C=A x B = (Ar e x + Ayey+ A z ej x (B x er + Byey + B: e:) = (AyB: - A: By) e, + (A:B, - A,Bz) e,. (A2S) +(A,By-AyB,)e:. Damit folgen die Koordinaten des Vektors C zu C\=AyB:-A:By, Cy=A:B\-A\B:, C:=ArBy-AyB,. (A29) Das Vektorprodukt kann auch m Form einer Determmante e, ey e: C=AxB= Ar Ay A: B, By B_ (A.30) geschneben werden. In der ersten Zeile stehen dabei die EinheItsvektoren er. ey und ez, während die Koordinaten der Vektoren A und B die zweite und die dritte Zeile bilden.

8 Sachverzeichnis Arbeit 150 ft. -, virtuelle 155 Arbeitssatz 155 ft. Archimedes 34 Balken 78, 118 -, Gelenk- 95 Bertihrungsebene 23 Bezugspunkt 38 Biegemoment 117 Bogen 78, 118, 142 -, Dreigelenk- 93 Coulombsche Reibungsgesetze 180fT. Cremona-Plan 105 Dreigelenkbogen 93 Einspannung 81 Energie, potentielle 154 Euler 190 Eytelwein 190 Fachwerk 98 ft., 166 Faser, gestrichelte 118, 142 Feder-konstante potential 154 Flächenmoment 68 Flächenschwerpunkt 67 Föppl-Symbol 135 ft. Freiheitsgrad 41,79, 85, 159 Freikörperbild 9 Freimachen 9 Freischneiden 9 Gelenk balken kraft 90 Gerber-Träger 96, 163, 164 Gestrichelte Faser 118, 142 Gleichgewicht 21 ft., 30, 33 ft., 167 ft. Gleichgewich ts-bedingungen 21, 30,37, 41fT., 57fT., gruppe 21 Gleichgewichtslage, Stabilität einer 167fT. Grafoanalytische Lösung 24 Gleitreibung 179 ft. Haftbedingung 181 Haftung 179 ft. -, Seil- 189fT. Haftungs-kegel keil koeffizient winkel 181 Hebelarm 38 Hebelgesetz 34, 156 Hennebergsches Stabtauschverfahren 112 ft. Joule 151 Kinematische Bestimmtheit 82, 100 Klammer-Symbol 135 Knoten 98 Knotenpunktverfahren 102 ft. Kraft 4fT. -, AngrifTspunkt einer 5 -, äußere 9 -, Betrag einer 5, 6 - -eck 15 -, eingeprägte 8 -, Einzel- 8 -, Feder , Flächen- 8

9 202 Kraft, Gleitreibungs , Haftreibungs , innere 9 - -komponenten 17 -, konservative 154 -, Linien- 8 -, Normal- 23, 117 -, Potentlal , Quer , Reaktions- 9, 163 -, Richtung einer 5, 6 -, Schnitt , Schwer- 4 -, Stab- 99 tt. - -systeme, zentrale 14 -, Tangential vektor 6 -, Volumen- 8 -, Wirkungslinie der 5 -, Zwangs- 9 Kräfte-dreieck gruppen, ebene gruppen, räumliche gruppen, zentrale mittelpunkt paar 34 -, parallele 33, parallelogramm plan 15,50tT. - -polygon zerlegung zusammensetzung 14 Kritische Last 175 Lageplan 15,50tT. Lager 78tT. -, einwertige 79 -, dreiwertige 81 -, gelenkiges 80 -, gleit reaktionen 78 tt. -, Rollen- 79 -, zweiwertige 80 Linienschwerpunkt 76 Massenmittelpunkt 66 Massenpunkt 2 Moment, Betrag 35 - des Kräftepaares 35 - einer Kraft 37 -, statisches 68 Momenten-bezugspunkt linie 120tT. - -vektor 53 Newton 5,12 - -sches Axiom 11 Normalkraft 23, 117 Nullstab 102 Ortsvektor 55, 150 Sachverzeichllis Parallelftihrung 88, 126, 131 Parallelogramm der Kräfte 14 Pendel-stab stütze 79 Platte 78 Pol des Kraftecks 50 Potential des Gewichts der Federkraft 154 Pnnzip der virtuellen Vernickungen 157 Querkraft 117 tt. - -gelenk linie 120tT. Rahmen 78, 118, 142tT. Randbedingungen 126 ReaktIOnskraft 9 Raumliche Statik 28, 53 Reduktion 15 ReIbung 179tT. -, Seil- 189 tt. Reibungs-gesetz koeffizient 180, 183. Resultierende 14 Rlttersches Schnittverfahren 110 tt. Schale 78 ScheIbe 78 Schneiden 9 Schnitt-größen kraftlinien PrinZIp 10

10 Sach verzelchms -, Ritterscher ufer 117 Schwerachsen 68 Schwerpunkt 63 ti Seil eck 49ff, - -haftung 189 ff. - -polygon reibung 189ff. Skalarprodukt 198 Stab 23,78 -, Null tauschverfahren 112 ff. - -werk 98 ff. Stabilität 167 ff. Starrer Körper 7 Statik 2,4 Statische Bestimmtheit 22, 81 ff., 86, 88 ff., 98 ff. Statisches Moment 68 Strecken last 8 Superposition 113 Torsionsmoment 147 Tragwerke, ebene 78 -, mehrteilige 88 -, räumliche 85, 146 Träger, Gerber- 96 -, Krag- 123 Übergangsbedingungen 129 ff. 203 Vektor 6, 194ff. - -addition 197 -, Betrag 194 -, Einheits- 6, 194 -, freier 6 -, gebundener 6 - -komponenten koordinaten 196 -,Iinienflüchtiger 7 -, Orts- 55, ISO - -produkt 199 Virtuelle Verrückung 155 Verzweigungspunkt 175 Volumenmittelpunkt 67 Vorzeichenkonvention für Schnittgrößen 117, für Stabkräfte 28, 102 Wechselwirkungsgesetz 10 Wirkungslinie 5 Zweigelenkbogen 93

11 Taschenbuch für den Maschinenbau Herausgeber: W.Beitz, K.-H.Küttner 17. Aufl Etwa 1600 S. Etwa 2500 Abb. Geb. DM 118,- ISBN Die vorliegende Neuauflage vollzieht durch vollständige Überarbeitung und Aufnahme weiterer, für den Maschinenbau wichtigen Fachgebiete, den Schritt in die neunziger Jahre. Neben den klassischen natur- und ingenieurwissenschaftlichten Fächern mit Konstruktions- und Fertigungsorientierung sollen Kapitel über Elektronische Komponenten, über Prinzipien der Mechanischen und Thermischen Verfahrenstechnik sowie über Industrieroboter, Montagetechnologien und Fertigungsverfahren der Feinwerktechnik die Informationsbreite dieses Standardwerkes noch erhöhen. Damit werden alle wesentlichen Problem- und Ingenieurbereiche des Maschinenbaus behandelt. Der Dubbel ist Lehrbuch und Nachschlagewerk zugleich und wendet sich an Studenten und Ingenieure aller Fachrichtungen, für die natur- und ingenieurwissenschaftliche Grundlagen sowie die produkt- und fertigungsorientierten Fachgebiete des Maschinenbaus erforderlich sind. Technische Mechanik Band 2: W. Schnell, D. Gross, W. Hauger Elastostatik 3. Aufl VIII, 231 S. l37 Abb. Brosch. DM 29,80 ISBN Band 3: W. Hauger, W. Schnell, D. Gross Kinetik 3.Aufl VIII, 256 S. 150 Abb. Brosch. DM 29,80 ISBN In allen drei Bänden wurde ein möglichst einfacher Zugang zur Mechanik gewählt, um den unterschiedlichen Eingangskenntnissen der Studienanfanger gerecht zu werden. Somit wird ein tragfahiges Fundament gelegt, das ein tieferes Eindringen in weitergehende Gebiete der Mechanik ermöglicht.

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Englische Fachausdrücke

Englische Fachausdrücke Englische Fachausdrücke Englisch active force arch area force bar beam belt friction bending moment bound vector boundary condition branching point cantilever beam center of forces center of gravity center

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

3.1 Gleichgewichtsbedingung Freikörperbild Ebene Kräftesysteme Räumliche Kräftesysteme

3.1 Gleichgewichtsbedingung Freikörperbild Ebene Kräftesysteme Räumliche Kräftesysteme Inhaltsverzeichnis Einleitung 9 Vorwort zur deutschen Neuauflage.............................................. 10 Zum Inhalt................................................................. 11 Hinweise

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Mit Praxisbeispielen, Klausuraufgaben und Lösungen 5., überarbeitete Auflage Hans Albert Richard Universität Paderborn

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Technische Mechanik 1 Statik

Technische Mechanik 1 Statik 12., aktualisierte Auflage Russell C. Hibbeler Technische Mechanik 1 Statik Übersetzung aus dem Amerikanischen: Georgia Mais, Frank Langenau Fachliche Betreuung und Erweiterungen: Jörg Wauer, Wolfgang

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Mechanik IA Thomas Antretter

Mechanik IA Thomas Antretter Vorlesung Thomas Antretter Institut für Mechanik, Montanuniversität Leoben, 8700 Leoben Einteilung Mechanik feste Körper Fluide (Flüssigkeiten, Gase) starre Körper deformierbare Körper Mechanik fester

Mehr

Hans Albert Richard Manuela Sander. Technische Mechanik. Statik

Hans Albert Richard Manuela Sander. Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Aus dem Programm Grundlagen Maschinenbau und Verfahrenstechnik Klausurentrainer Technische Mechanik von J. Berger Lehrsystem Technische Mechanik

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK. Technische Universität Berlin Wolfgang Raack MECHANIK 13. verbesserte Auflage ULB Darmstadt 16015482 nwuiui i utr IVIOWI IClI'lIK Berlin 2004 Inhaltsverzeichnis 1 Einführung 1 1.1 Definition der Mechanik

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Lehrbuch der Technischen Mechanik - Statik

Lehrbuch der Technischen Mechanik - Statik Springer-Lehrbuch 5023 Lehrbuch der Technischen Mechanik - Statik Grundlagen und Anwendungen Bearbeitet von Rolf Mahnken 1. Auflage 2011. Taschenbuch. xiii, 461 S. Paperback ISBN 978 3 642 21710 4 Format

Mehr

Zentrale Kräftesysteme

Zentrale Kräftesysteme 2 Zentrale Kräftesysteme Zentrale Kräftesysteme http://www.fotocommunity.de Einteilung von Kräften Grundsätzliches: Einzelkraft ist eine Idealisierung. Volumenkräfte Beispiel: Eigengewicht Flächenkräfte

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage. Oldenbourg Verlag München

Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage. Oldenbourg Verlag München Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Verwendete Bezeichnungen IX XI 1 Einführung

Mehr

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN: Inhaltsverzeichnis Raimond Dallmann Baustatik 1 Berechnung statisch bestimmter Tragwerke ISBN: 978-3-446-42319-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42319-0 sowie

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3 Vektorrechnung Wolfgang Kippels 7 Oktober 018 Inhaltsverzeichnis 1 Vorwort Grundlagen der Vektorrechnung Beispielaufgaben 1 Lineare Abhängigkeit und Komplanarität 11 Aufgabe 1 1 Aufgabe Winkel zwischen

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Mechanik I. Statik und Festigkeitslehre

Mechanik I. Statik und Festigkeitslehre Mechanik I Statik und Festigkeitslehre Vorlesungsbegleitende Unterlagen Bernd Binninger Aachen im Herbst 2017 Institut fu r Technische Verbrennung RWTH Aachen Inhaltsverzeichnis 1 Statik 1 1.1 Kraft...........................................

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Statik. insbesondere Schnittprinzip. Bearbeitet von Gerhard Knappstein

Statik. insbesondere Schnittprinzip. Bearbeitet von Gerhard Knappstein Statik insbesondere Bearbeitet von Gerhard Knappstein 1. Auflage 2011. Taschenbuch. 437 S. Paperback ISBN 978 3 8085 5650 4 Gewicht: 669 g Weitere Fachgebiete > Technik > Werkstoffkunde, Mechanische Technologie

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Potenzen der Linearen Algebra

Potenzen der Linearen Algebra Potenzen der Linearen Algebra Stufen der Verallgemeinerung und ihre didaktische Umsetzung in der Lehre Fakultät für Ingenieurwissenschaften Prof. Dr. Dieter Schott E-Post: dieter.schott@hs-wismar.de www.et.hs-wismar.de/schott

Mehr

(0, 3, 4) (3, 3, 4) (3, 3, 0)

(0, 3, 4) (3, 3, 4) (3, 3, 0) Übungsmaterial 1 2 Vektoren im Raum 2.1 Das räumliche Koordinatensystem Abbildung 1 zeigt das Koordinatensystem im R 3, dem dreidimensionalen Raum, mit eingefügtem Quader. Die Koordinaten einiger Eckpunkte

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen:

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen: Vektorgeometrie ganz einfach Teil 5 Skalarprodukt Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen

Mehr

Gleichgewicht am Punkt

Gleichgewicht am Punkt Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Statik insbesondere Schnittprinzip

Statik insbesondere Schnittprinzip Statik insbesondere Statik insbesondere von Gerhard Knappstein 4. Auflage VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 42781 Haan-Gruiten Europa-Nr.: 56504 Der Autor Dipl.-Ing.

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Mechanik I. Statik und Festigkeitslehre

Mechanik I. Statik und Festigkeitslehre Mechanik I Statik und Festigkeitslehre Vorlesungsbegleitende Unterlagen Bernd Binninger Aachen im Herbst 2018 Institut fu r Technische Verbrennung RWTH Aachen Inhaltsverzeichnis 1 Statik 1 1.1 Kraft...........................................

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind.

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. . Vektorräume.. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. Physikalische Beispiele fur Vektoren: Kraft, Geschwindigkeit, Beschleunigung,

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN Baustatik I (WS 2017/2018) 1. Einführung 1.2 Modellbildung 1 Statische Berechnungen Für die statischen Berechnungen sind geeignete Tragwerksmodelle mit den maßgebenden Einflussgrößen zu wählen, welche

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Definition, Grundbegriffe, Grundoperationen

Definition, Grundbegriffe, Grundoperationen Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Vektoren - Einführung

Vektoren - Einführung Vektoren - Einführung Grundlegendes Verwendete Nomenklatur: Handschriftlich ist es kein Problem, einen Vektor stets durch a zu kennzeichnen. In der Textverarbeitung ist die andere Variante, Fettdruck,

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Technische Mechanik. Statik II. Technische Mechanik Inhaltsübersicht. Prof. (FH) Dr. techn. Andreas Schrempf SS 2016

Technische Mechanik. Statik II. Technische Mechanik Inhaltsübersicht. Prof. (FH) Dr. techn. Andreas Schrempf SS 2016 Technische Mechanik Statik II Prof. (FH) Dr. techn. ndreas Schrempf SS 216. Schrempf (Studiengang Medizintechnik) TME2 SS 216 1/ 22 Technische Mechanik Inhaltsübersicht 1 llgemeines Kraftsystem. Schrempf

Mehr

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1 Inhaltsverzeichnis Vorwort V 1 Statik des starren Körpers 1 Grundüberlegungen zu Kräften und Gleichgewicht 1 1.1 Allgemeine Überlegungen 1 1.1.1 Kraft, Schnittprinzip 1 1.1.2 Schnittbilder 1 1.1.3 Einteilung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

2.3. Vektorprodukt und Spatprodukt

2.3. Vektorprodukt und Spatprodukt .3. Vektorprodukt und Spatprodukt Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

1 Einführung in die Vektorrechnung

1 Einführung in die Vektorrechnung 3 1 Einführung in die Vektorrechnung Neben der Integral- und Differentialrechnung ist die Vektorrechnung eine der wichtigsten mathematischen Disziplinen für die Ausbildung in einem Ingenieurfach, da in

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Einführung in die Statik und räumliche Kraftsysteme

Einführung in die Statik und räumliche Kraftsysteme Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg

Mehr

Umwelt-Campus Birkenfeld. der Fachhochschule Trier. Technische Mechanik I. Prof. Dr.-Ing. T. Preußler. 2. Grundlagen. 2.

Umwelt-Campus Birkenfeld. der Fachhochschule Trier. Technische Mechanik I. Prof. Dr.-Ing. T. Preußler. 2. Grundlagen. 2. 2. Grundlagen 1 2.1 Mathematische Grundbegriffe In der Mechanik treten folgende mathematische Größen auf: Skalare Richtungsunabhängige Größen, definiert durch Maßzahl und Einheit (Länge, Zeit, Arbeit,

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Theorie 1 1 / 2 Grundbegriffe

Theorie 1 1 / 2 Grundbegriffe Theorie 1 1 / 2 Grundbegriffe Was ist ein Vektor? Wie lassen sich Vektoren darstellen? Theorie 1 2 / 2 Grundbegriffe Antwort : Ein Vektor ist die Menge aller gleichlangen, gleichgerichteten und gleichorientierten

Mehr

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8.

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8. 44570_Mayr_205x227_44570_Mayr_RZ 03.07.5 3:39 Seite Martin Mayr Das erfolgreiche Lehrbuch ermöglicht Studenten des Maschinenbaus, der Elektrotechnik und der Mechatronik einen leichten Einstieg in die Technische

Mehr

2.3. Das Vektorprodukt

2.3. Das Vektorprodukt 2.3. Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht stehende Vektoren zu bestimmen.

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Vektoren Evelina Erlacher 9. März 007 1 Pfeile und Vektoren im R und R 3 1 Der Betrag eines Vektors 3 Die Vektoraddition

Mehr

KOMPETENZHEFT ZUR VEKTORRECHNUNG IM RAUM. = 1 eingeschlossenen Winkel.

KOMPETENZHEFT ZUR VEKTORRECHNUNG IM RAUM. = 1 eingeschlossenen Winkel. Mathematik macht Freunde KOMPETENZHEFT ZUR VEKTORRECHNUNG IM RAUM 1. Aufgabenstellungen Aufgabe 1.1. Eine Flugdrohne fliegt vom Punkt A = 4 0 geradlinig zum Punkt B = 1 8. Berechne ihre Position P, nachdem

Mehr

6. Vektor- und Koordinaten-Geometrie.

6. Vektor- und Koordinaten-Geometrie. 6. Vektor- und Koordinaten-Geometrie. Jeder endlichen Menge, etwa der Menge kann man durch M = {,,, }. R 4 (M) = { a 1 + a 2 + a 3 + a 4 a i R } die Menge der formalen Linearkombinationen zuordnen. Es

Mehr

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0 6 Der Vektorraum R n In den folgenden Wochen wenden wir uns der Linearen Algebra zu, die man als eine abstrakte Form des Rechnens mit Vektoren auassen kann. Ein zentrales Thema werden lineare Raume (=

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Ulrich Gabbert/Ingo Raecke Technische Mechanik für Wirtschaftsingenieure 5., aktualisierte Auflage Mit 301 Abbildungen, 16 Tabellen, 83 Beispielen sowie einer CD-ROM Wi im Carl Hanser Verlag 1 Statik 11

Mehr