24. Projektive Geometrie

Größe: px
Ab Seite anzeigen:

Download "24. Projektive Geometrie"

Transkript

1 24. Projektive Geometrie Projektive Räume Zweck: Störende Ausnahmefälle der affinen Geometrie beseitigen durch geschickte Erweiterung affiner Räume zu sogenannten projektiven Räumen, wo die Ausnahmen nicht mehr auftreten. Sei K ein beliebiger Körper, V ein K-Vektorraum. Definition: Die Menge der eindimensionalen Teilräume von V heißt projektiver Raum. P := P(V ) := {Kx x V \ {0}} Eine Teilmenge X P(V ) heißt projektiver Teilraum von P(V ), falls ein Untervektorraum U x V existiert mit X = P(U x ) := {Kx x U x \ {0}} dim(p) := dim(u) 1 heißt Dimension von P. X heißt Punkt Gerade Ebene 0 falls dim X = 1 2 P n := P n (K) := P(K n+1 ) heißt der projektive Standardraum. Bemerkung: Die leere Menge ist ein projektiver Raum mit U = {0}, also dim = 1.. Lemma: Ist I eine beliebige Indexmenge und i X : X i P(V ) projektive Teilräume. Dann ist X := i I X i P(V ) ein projektiver Teilraum. Insbesondere existiert für jede beliebige Teilmenge M P(V ) die projektive Hülle [M] := X X proj. TR;M X 107

2 24. Projektive Geometrie Speziell: (1) X, Y P(V ) projektive Teilräume [X Y ] = P(U x + U y ) (2) Für M = {P 1,..., P r } setze [M] := [P 1,..., P r ] Beweis: Sei X i = P(U i ) zu Teilvektorräumen U i V. Damit: X = i I {Kx x U i \ {0}} = { Kx x i I U i, x 0 ( Def. = P i I U i ) } Definition: Ein projektiver Teilraum H P(V ) heißt (proj.) Hyperebene, falls ein Punkt = p = Kx P(V ) existiert mit [H {p}] = P(V ) Bemerkung: Falls n = dim P(V ) < ist, so gilt für projektive Teilräume H P(V ): H Hyperebene dim H = n 1 Satz 40: Ist dim P(V ) <, so gilt: (1) Für projektive Teilräume X, Y P ist dim X + dim Y = dim[x Y ] + dim X Y (2) Für jede Hyperebene H und jeden projektiven Teilraum X H ist dim(x H) = dim X 1 Insbesondere besitzen zwei verschiedene Geraden in einer projektiven Ebene P(V ) genau einen Schnittpunkt. 108

3 24.2. projektive Koordinaten Beweis: (1) dim X + dim Y Def. = dim U x 1 + dim U y 1 = dim(u x + U y ) + dim(u x U y ) 2 = dim[x Y ] + dim(x Y ) (2) X H impliziert [X H] = P(V ). Damit folgt: dim[x H] = dim P(V ) = dim H + 1 dim X H (1) = dim H + dim X dim[x H] = dim X projektive Koordinaten Definition: Die Punkte p 0, p 1,..., p k P heißen unabhängig, wenn gilt dim[p 0, p 1,..., p k ] = k Lemma: Für p κ = K v κ (v κ V ) gilt: p 0, p 1,..., p k unabhängig dim(kv Kv k ) = k + 1 linear unabhängig Beweis: p 0,..., p k unabhängig dim(kv 0,..., Kv k ) = k + 1 Definition: Sei dim P = n < und seien p 0,..., p k, e P. Das n+2-tupel (e; p 0,..., p n ) heißt ein Koordinatensystem von P, wenn je n+1 Punkte hiervon linear unabhängig sind. Beachte: Ein Koordinatensystem legt eine (bijektive) Koordinatenabbildung fest wie folgt: D : P P(K n+1 ) (1) Jede Wahl von Erzeugern v κ der p κ ergibt eine Basis {v 0,..., v n} von V. Insbesondere hat jedes v V mit e = Kv die Darstellung n v = x νv ν }{{} ν=0 =:v ν mit x ν 0 ν (wegen der Voraussetzung über lineare Unabhängigkeit). Dabei sind die v ν unabhängig von der Wahl der v ν. 109

4 24. Projektive Geometrie (2) Zu festem v existiert also eine eindeutig bestimmte Basis {v 0,..., v n } mit v = n ν=0 v ν. Zu einem beliebigen anderen v = λ v K v gehört die Basis {λv 0,..., λv n }. (3) Für einen beliebigen Punkt p = K w mit Basisdarstellung w = n x ν v ν ν=0 setze D(p) := K (x 0,..., x n ) =: (x 0 :... : x n ). Das ist wohldefiniert, da für w = λ w mit λ 0 gilt: Daher: w = n λx }{{} ν =:x ν ν=0 v ν K(x 0,..., x n) = K(x 0,..., x n ) D(p) ist unabhängig von der speziellen Wahl von v. (x 0 :... : x n ) heißen homogene Koordinaten von P. (4) Es gilt offenbar: D(p ν = (0 :... : ν 1 : 0 :... : 0) D(e) = (1 :... : 1) Projektivitäten Vorbemerkung: Jede injektive lineare Abbildung φ : V W von K-Vektorräumen definiert eine Abbildung der zugehörigen projektiven Räume. φ : P(V ) P(W ), p = K v φ(p) := φ(kv) = Kφ(v) Definition: Eine Permutation ϕ von P heiß t Projektivität, wenn ein Vektorraumautomorphismus φ Aut(V ) existiert mit φ = ϕ. Lemma: Für φ 1, φ 2 Aut(V ) gilt: φ 1 = φ 2 c K, c 0 : φ 1 = c φ 2 Beweis: = : klar 110

5 24.4. Der Zusammenhang zwischen affinen und projektiven Räumen = : Für alle x gilt: φ 1 (Kx) = φ 2 (Kx), d.h. es existiert ein c x K mit φ 1 (x) = c x φ 2 (x). Für x, y linear unabhängig setze z := x + y. φ 1 (z) = c z φ 2 (z) = c z (φ 2 (x) + φ 2 (y)) φ 1 (z) = φ 1 (x) + φ 1 (y) = c x φ 2 (x) + c y φ 2 (y) Da x, y linear unabhängig und φ i Automorphismus folgt: φ 2 (x), φ 2 (y) linear unabhängig. Koeffizientenvergleich liefert c x = c z = c y. Damit sind alle c x gleich =: c. Bemerkung: (1) Die Projektivitäten von P bilden eine Gruppe, wobei φ 1 φ 2 = φ 1 φ 2 und φ 1 1 = φ 1 1 ist. (2) Jede Projektivität bildet einen projektiven Teilraum auf einen projektiven Teilraum gleicher Dimension ab. Satz 41: Zu verschiedenen Koordinatensystemen (e; p 0,..., p n ) und (e ; p 0,..., p n) von P existiert genau eine Projektivität ϕ, die sie ineinander überführt, d.h. ϕ(p ν ) = p ν ϕ(e) = e Beweis: Übung Der Zusammenhang zwischen affinen und projektiven Räumen Sei P = P(V ), fixiere eine Hyperebene H P und a = Ky P \ H. Also P = [H, a] und V = U H Ky. Vorbemerkung: Jedes p P \ H ist von der Form p = K(u p + y) mit u p U H eindeutig. Für p = Kx P gilt: p H p = Kx U H Also gilt: p P \ H p = Kx U H. Wegen direkter Summe ist x eindeutig zerlegbar: x = u p + λy (u p U H ) x U H λ 0 = Kx = K(λ 1 u p +y) }{{} =:u p 111

6 24. Projektive Geometrie Satz 42: Die Menge A := P \ H ist ein affiner Raum mit U H als Translationsvektorraum bezüglich der Operation (u, p) K(u + u p + y) wobei p = K(u p + y) gilt, mit eindeutig bestimmtem u p U H. Dabei ist die Translation pq = u q u p. Beachte: dim A = dim U H = dim V 1 = dim P(V ) Definition: Die Punkte von A heiß en eigentliche Punkte, die von H uneigentlich. Umgekehrt lässt sich jeder affine Raum A erweitern zu einem projektiven Raum durch disjunkte Vereinigung mit einer projektiven Hyperebene H gleicher Dimension: ohne Einschränkung sei A = K n. Zum Beispiel haben wir die injektive Abbildung H := P(0 } {{ K n } ). K n+1 j 1 : A P(K n+1 ), (x 1,..., x n ) (1 : x 1 :... : x n ) Für eigentliche Punkte p = (y 0 : y 1 :... : y n ), d.h. p H, gilt: y 0 0, also p = ( ) d.h. p hat die affinen Koordinaten y1 y 0,..., yn y 0 in A. Es gilt: j 1 (A) H = P(K n+1 ) Ferner gilt mit den den Einbettungen folgende Gleichheit: Aber: nicht disjunkt. Beispiel: ( 1 : y 1 y 0 j ν : K n P(K n+1 ), (x 1,..., x n ) (x 1 :... : x ν 1 : 1 : x ν+1 :... : x n ) P(K n+1 ) = (1) Die reelle projektive Gerade P 1 (R) n+1 ν=1 j ν (A) Es gibt zwei Modelle: { R x R 2 x 0 } { G R 2 G affine Gerade mit 0 G } :... : yn y 0 ), Dies ist das sogenannten Büschelmodell von P 1. Fixiere g (die Hyperebene besteht hier aus einem Punkt) P 1 \ {g} bijekt. g (affine Gerade g, g g) 112

7 24.4. Der Zusammenhang zwischen affinen und projektiven Räumen eigentliche Punkte g a g a g g ist der einzige uneigentliche Punkt; das entspricht anschaulich einem unendlich fernen Punkt F auf g. Sprich: Fernpunkt. Wir erhalten das Punktmodell von P 1 : g {F }. Ein einheitliches Modell liefert der Einheitskreis um (0, 1) R 2 S := { y R 2 y (0, 1) = 1 } { Rx R 2 x 0 } bij. S Rx Rx S {s x } (s x (0, 0)) (2) Die projektive Ebene P 2 (R) Bündelmodell: { Rx R 2 x 0 } bij. { affine Gerade g R 3, 0 g } Fixiere die affine Ebene E R 3 mit 0 E und eine dazu parallele E mit 0 E. Dabei entsteht eine Bijektion P 2 \ {g E } E g g E A g = 0A Jedem g E ordnet man genau einen Fixpunkt F g P 2 zu. {g E } ist projektive Gerade. f := {F g g E } heißt Ferngerade. E f ist das Punktmodell des P 2. Analog lassen sich generell Bündel- und Punktmodell des P n mittels A n+1 beschreiben. 113

8

9 Stichwortverzeichnis Abbildung affine, 71 kanonische, 23 orthogonale, 51 unitäre, 51 Abbildungseigenschaft universelle (UAE), 21 Abstand, 25, 37, 85 Adjungierte, 41 adjungierter Homomorphismus, 41 affin Abbildung, 71 Automorphismus, 72 Gruppe, 72 Hülle, 65 Koordinatensystem, 71 Raum, 61 Standardraum, 62 Teilraum, 62 Affinität, 72, allgemeine Lage, 66 Approximation, 102 ausgeartete Paarung, 17 Automorphismengruppe, 51 Automorphismus, 51 affiner, 72 Büschelmodell, 112 Basiswechsel unitärer, 56 Bewegung, 85, 89 bilineare Fortsetzung, 18 Bilinearform, 17 symmetrische, 26 Blockdiagonalmatrix, 13 cartesisches Koordinatensystem, 85 Chauchy-Schwarzsche Ungleichung, 27 Darstellungsmatrix, 27 Diagonalmatrix, 7 Block-, 13 Dimension, 107 diskrete Metrik, 25 Drehachse, 59 verallgemeinerte, 59 Drehebene, 59 Drehkästchennormalform, 58 Drehung, 59, 88 Dreiecksungleichung, 25 E. Schmidt Orthogonalisierungsverfahren, 32 Ebene, 62 projektive, 108 Einheitskreis, 113 Endomorphismus nilpotenter, 11 normaler, 41 Normalform, 7 selbstadjungierter, 47 euklidischer Raum, 85 Fern- Gerade, 113 Punkt, 113 Fix- Gerade, 81 Punkt, 79, 81, 113 Raum, 79 Richtung, 79 Form hermitesche, 26 Fortsetzung bilineare, 18 Fourierformel, 21 Fundamentalmatrix, 18 gemeinsames Lot, 86 Gerade, 62 Geradentreue, 81 Gram-Schmidt, 32 Gruppe affine,

10 Stichwortverzeichnis algebraische, 105 orthogonale, 51 unitäre, 51 Hülle affine, 65 projektive, 107 Halb- Achse, 99 Achsenlänge, 99 Haupt- Achse, 99 Achsentransformation, 99 Raum, 7 hermitesche Form, 26 Hermitezität, 27 Homogenität, 25 Hyperebene, 59, 62, 100, 103, 108 Durchschnitt, 103 projektive, 108 Hyperfläche, 99, 100 Invariante affine, 102 Isometrie, 51, 85 Isomorphismus affiner Räume, 72 Iwasawa-Zerlegung, 36 Jacobi-Matrix, 99, 103 Jordan- Block, 15 Kästchen, 13, 14 Normalform, Komplement orthogonales, 36, 38 Koordinaten homogene, 110 projektive, 109 Koordinaten- Abbildung, 109 Darstellung, 71 System, 109 Vektor, 71 Koordinatensystem affines, 71 cartesisches, 85 Kurve, 100 Längentreue, 52, 85 Lage allgemeine, 66 linear Abbildung, 41 Varietät, 62 Lorenzgruppe, 51 Lot, 37 gemeinsames, 86 Lotfußpunkt, 37, 86 Matrix hermitesche, 47 Jacobi-, 103 Matrizengruppe algbraische, 105 Metrik, 25 diskrete, 25 Minimalpolynom, 8 Mittelpunkt, 97 Morphismus, 51 affiner Räume, 71 Multi- Index, 93 Linearität, 21 Näherung, 102 Nilpotenz, 11 Norm, 25 normaler Endomorphismus, 41 Normalform, 55, 88 Jordansche, 13, 14 normierter Raum, 25 orthogonal, 31 Abbildung, 51 Gruppe, 51 Teilräume, 86 Orthogonal- Basis (OGB), 20 Raum, 38 System, 31 Orthonormalbasis (ONB), 20 Paarung, 17 ausgeartete, 17 Parallelität, 67 Parallelogrammgleichung, 29 Partition, 13 Polynom charakteristisches, 8 Positivdefinitheit, 25,

11 Stichwortverzeichnis Projektion orthogonale, 36, 37 Projektivität, 110 Punkt, 61 eigentlicher, 112 regulärer, 102, 103 singulärer, 102 unabhängiger, 109 uneigentlicher, 112 Punktmodell, 113 Pythagoras Satz von, 36 Quadrik, 93 Mittelpunkt der, 97 oskulierend, 102 Schmieg-, 102 Raum affin, 111 affiner, 61 euklidischer, 85 normierter, 25 projektiv, 111 projektiver, 107 Regularität, 100 Richtungsvektorraum, 61 Teilraum affiner, 62 projektiver, 107 Torus, 102 Torusfläche, 102 Trägheitssatz von Sylvester, 96 Translation, 61, 80, 88 Translationsvektor, 61 Transversalität, 103 unitär Abbildung, 51 Basiswechsel, 56 Gruppe, 51 universell Abbildungseigenschaft (UAE), 21 Untervektorraum, 7 invarianter, 7 Ursprung, 71 Varietät lineare, 62 Vektorraumpaarung, 17 Verbindungsgerade, 62 Winkel, 31 Winkeltreue, 52 Schiefsymmetrie, 26 Schnittpunkt, 108 Sesqilinearform, 26 Singularität, 100, 101 Skalarprodukt, 26 Spektral- Radius, 47 Satz, 43 Spektrum, 43 Spiegelung, 59, 88 Standardraum affiner, 62 projektiver, 107 Standardskalarprodukt, 27 Streckung, 80 Summenzerlegung, 13 symmetrisch Bilinearform, 26 Paarung, 20 Tangente, 99, 103 Tangentialraum, 99, 100, 102, 103 Taylorentwicklung,

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4.

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Aufgabe 2.1 (8 Punkte) Es sei K ein Körper, n N, V ein 2n-dimensionaler K -Vektorraum und U

Mehr

Lineare Algebra - Zusammenfassung

Lineare Algebra - Zusammenfassung Lineare Algebra - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit.

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Agnieszka Wenska 2008-02-19 1 Wir wissen bereits: Was projektive Räume und Unterräume sind Wie man die

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden?

Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden? Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden? Antwort in Dim 2: Sei Q eine Quadrik in R 2 gegeben durch a 11... a 1n x 1 x

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Steilkurs Lineare Algebra 1 einige wichtige Stationen

Steilkurs Lineare Algebra 1 einige wichtige Stationen Steilkurs Lineare Algebra 1 einige wichtige Stationen Für einen Körper K ist ein K-Vektorraum V eine Menge mit einer kommutativen und assoziativen Verknüpfung + : V V V, für die es ein neutrales Element

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

21. Affine Koordinaten und affine Abbildungen

21. Affine Koordinaten und affine Abbildungen 21.1. Grundbegriffe Definition: Sei A ein affiner Raum mit Richtungs-VRm V der Dimension n. (a) Sei B die Menge aller Basen von V. Ein Paar K := (O, B) A B heißt affines Koordinatensystem, wobei O der

Mehr

Analytische Geometrie

Analytische Geometrie 21 Vorlesungen über Analytische Geometrie für Lehramtstudierende der Schulformen Grund-, Mittel- und Realschule Jens Jordan Universität Würzburg, Wintersemster 2015/16 Hier kommt noch ein schönes Bildchen

Mehr

Tagesablauf. Allgemeine Organisation. Programm des Kompaktseminars

Tagesablauf. Allgemeine Organisation. Programm des Kompaktseminars Kompaktseminar Werbellinsee Sept. 2008 1 Tagesablauf 9:00 Frühstück 9:30-13:00 Erste Sitzung (mit Pausen nach Bedarf) 13:00 Mittagessen 14:30-19:00 Zweite Sitzung (mit Pausen nach Bedarf) 19:00 Abendessen

Mehr

4 Bilinearformen und Skalarprodukte

4 Bilinearformen und Skalarprodukte 4 Bilinearformen und Skalarprodukte 4 Grundlagen über Bilinearformen Definition 4 Sei V ein K-Vektorraum Eine Bilinearform b auf V ist eine Abbildung b : V V K mit folgenden Eigenschaften: (B) x, y, z

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 42 Normale Endomorphismen Nach Satz 34.1 besitzt eine Isometrie über C eine Orthonormalbasis aus Eigenvektoren

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Freitag, 16.03.2012 Sascha Frölich Ferienkurs Lin. Alg. -

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu:

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu: 1 Bilinearformen Tutorium 4 Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Φ(αv + w, x) = α Φ(v, x) + Φ(w, x) und Φ(v, βx + y) = β Φ(v, x) + Φ(v, y) Bemerkung. Dies ist

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016 Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

4.3 Affine Punkträume

4.3 Affine Punkträume 4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

Modulteilprüfung Geometrie (BaM-GS, L3M-RF)

Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Prof. Dr. Martin Möller SoSe 2011 // 05. Juli 2011 Kontrollieren Sie, ob Sie alle Blätter (12 einschließlich zweier Deckblätter) erhalten haben, und geben Sie

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

Zusammenfassung: Geometrie.

Zusammenfassung: Geometrie. Zusammenfassung: Geometrie. Gabriele Nebe und Sebastian Thomas Lineare Algebra II, WS 2009/10 nach dem Skript von Prof. W. Plesken Affine Geometrie Definition. Ein affiner Raum ist eine Menge A, auf der

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

Modulteilprüfung Geometrie (BaM-GS), Probeklausur

Modulteilprüfung Geometrie (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Geometrie (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 4. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (8 einschlieÿlich zweier Deckblätter) erhalten

Mehr

Inhalt der Vorlesung Lineare Algebra I

Inhalt der Vorlesung Lineare Algebra I Inhalt der Vorlesung Lineare Algebra I Prof. Dr. W. Plesken WS 2000/2001 1 1 Mengen und Abbildungen 1.1 Inhalt und Ziel der Vorlesung 1.2 Die mengentheoretische Sprechweise Lernziel: Einfache Notation

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Aufgabe 1. Welche der folgenden Abbildungen sind Sesquilinearformen oder Bilinearformen? Welche davon sind Skalarprodukte? (a) B 1 : R R R, (x, y) xy (b)

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Lösungsvorschlag zur LA-Klausur vom

Lösungsvorschlag zur LA-Klausur vom I. (4 Punkte) Lösungsvorschlag zur LA-Klausur vom 7.03.008 Es sei M eine Menge mit zwei Verknüpfungen und. Weiter gebe es ein Element e M, das sowohl für als auch für neutrales Element ist. Schließlich

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Algebraische Kurven. Vorlesung 27. Der projektive Raum. Die Geraden durch einen Punkt

Algebraische Kurven. Vorlesung 27. Der projektive Raum. Die Geraden durch einen Punkt Prof. Dr. H. Brenner Osnabrück WS 2017/2018 Algebraische urven Vorlesung 27 Der projektive Raum Die Geraden durch einen Punkt Definition 27.1. Sei ein örper. Der projektive n-dimensionale Raum P n besteht

Mehr

5 Analytische Geometrie

5 Analytische Geometrie 5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Lineare Algebra Klausur 2

Lineare Algebra Klausur 2 Lineare Algebra Klausur 2 (24.9.2015 Dozent: Ingo Runkel) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Übungen zur Vorlesung Lineare Algebraische Gruppen im Wintersemester 2012/13

Übungen zur Vorlesung Lineare Algebraische Gruppen im Wintersemester 2012/13 Übung 1.1. (k = k). Es sei k die multiplikative Gruppe und k die additive Gruppe. Welche Homomorphismen gibt es von jeder der algebraischen Gruppen k, k zu jeder der algebraischen Gruppen k, k? Übung 1.2.

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr