3D-Sicht, Projektionen

Größe: px
Ab Seite anzeigen:

Download "3D-Sicht, Projektionen"

Transkript

1 Transformationen, deren Matrix als letzte Zeile nicht die Form: [... ] hat, gehören zur allgemeineren Klasse der perspektivischen Transformationen. Perspektivische Projektion von Punkten (,,z i ) auf ( *, *,) in der Projektionsebene z= mit Proj.zentrum ( Augenpunkt ) bei z=n (N>) in einem Rechts(koordinaten)system: */ = */ = N/(N-z i ) Versuch der Bildung eines Matrizenprodukts: N N - N = z i N N N-z i = (ähnliche Dreiecke) (N-z i ). * (N-z i ). * (N-z i ). (N-z i ). z N x y ( *, *,) (,,z i ) view plane

2 Konzept-Erweiterung: Homogene Koordinaten [,,z i,] T als Darstellung v. Punkt-Familien [w.,w.,w. z i,w] T, w : Wechsel von kartesischen zu homogenen Koordinaten durch W C Anhängen einer (oder einer y anderen Zahl, mit der zuvor alle Punkt-Koordinaten multipliziert wurden). Wechsel von homogenen zu kartesischen Koordinaten durch Division durch die letzte Komponente ( perspektivische Division, auch: Homogenisieren, engl. homogenize) und Weglassen dieser letzten Komponente. Geometrische Deutung 2D-Fall: Punkt C (x, y) wird in homog. Koord. als Gerade C (x h, y h, w h ) mit x h =w h. x, y h =w h. y dargestellt. x

3 Nebeneffekt der Homogenisierung: Gesamtskalierung /s = z i z i /s Homogenisierung s s sz i aufgrund d. Konvention zur Homogenisierung wirkungsgleich mit der Verwendung separater (aber einheitlicher) Skalierungsfaktoren s s s = z i s s sz i

4 Proj. Trf. Begriffliche und rechnerische Trennung: Die (hier: perspektivische) Projektion reduziert die Anzahl von Objekt-Dimensionen; die perspektivische Transformation verformt Objekte zur Vorbereitung einer Projektion (s.u.). N N N - N z i = N N N-z i perspekt. Division N /(N-z i ) N /(N-z i ) = * * Namensgebung: Koordinaten homogen, denn sie ermöglichen auch Perspektive als Matrizen-Multiplikation i.d. Grafik-Pipeline. -/N = z i -z i /N perspektivische Division N /(N-z i ) N /(N-z i ) = * *

5 Übung Übung: Im Konsole-Fenster sollen mit ASCII-Zeichen geladene 3D-Drahtmodelle (wire frame) dargestellt werden; sie sollen um die x-, y- und z-achsen drehbar und bei veränderlichem Projektionszentrum darstellbar sein. WireCullFill().exe

6 Anmerkungen zur Perspektive: Die perspektivische Division bewirkt, daß weiter entfernte Objekte (z i groß) in der Projektion kleiner erscheinen. y Verschiebung d. Projektionszentrums (N) verändert die Abbildungs-Unterschiede zwischen nah und fern. z x Verschiebung der Proj.ebene entlang der z-achse (auf z ) verändert nur den Abb.-Maßstab. (Dreiecke bleiben ähnlich.) Auslassen der perspektiv. Transformation erzeugt Parallelprojektion (orthograph. P., engl. orthographic p.); das entspricht einer Abb. mit Proj.zentr. im Unendlichen. N /(N-z i ) N /(N-z i ) = * *

7 Weitere Anmerkungen zur Perspektive: Gerade Linien und ebene Flächen werden als solche abgebildet: Punkt-Kollinearität und -Komplanarität bleiben erhalten; Teilungsverhältnisse von Strecken und Flächen bleiben dagegen nicht erhalten. Parallele Linien, die auch parallel zur Projektionsebene liegen, werden als Parallelen abgebildet; sonst laufen sie in einem Punkt zusammen, dem jeweil. Fluchtpunkt (engl. vanishing point). Geraden, die das Projektionszentrum enthalten, werden auf Punkte projiziert. Ebenen, die d. Proj.zentrum enthalten, werden auf Geraden projiziert. z x y

8 Häufige Anwendungen in künstlerischen und technischen Darstellungen: Ein- / Zwei- / Dreipunktperspektive (meist abweichend von der exakten Perspektive) Bild:

9 In Praxis und Literatur meist verbreitetes Paradigma: Perspektivische Projektion v. Punkten (,,z i ) auf ( *, *,-N) i.d. Projektionsebene z= -N (N>) mit Projektionszentrum am Koordinaten-Ursprung eines Rechts(koordinaten)systems: */ = */ = N / (-z i ) Verwendung homogener Koordinaten: N N N - = z i N N Nz i -z i z y N ( *, *,-N) (,,z i ) perspektivische Division N /(-z i ) N /(-z i ) Nz i /(-z i ) -z i /(-z i ) = * * -N x Zur Darstellg: z i *= setzen! view plane

10 Sichtvolumen (engl. view volume) eines Grafik-Systems: (R-L)F/N Darstellung nur für Objektpunkte innerhalb eines Pyramidenstumpfs (engl. pyramid frustum) mit Deck- und Grundflächen bei z=-n (near) und z=-f (far); N,F R, >. (R,T,-N) (L,B,-N) z y Trapezförmige Seitenflächen werden bestimmt durch d. Projektionszentrum bei (,,) u. (OpenGL:) durch das Rechteck mit Ecken bei (L, B, -N) und (R, T, -N). (L, B R, meist <; R, T R, meist >) x z=-n (T-B)F/N z=-f viewing volume (@ z=-n): (L)eft, (R)ight, (B)ottom, (T)op

11 Nutzung der perspekt. Trf. für den Zuschnitt von Objekten an den Sichtvolumen-Grenzen eines Grafik-Systems (Clipping): Einführung einer Pseudo-Tiefe (engl. pseudodepth) für Objekt-Punkte mit Werten zwischen - (z i =-N) und + (z i =-F). N N N a b - z i = N N az i +b -z i (-an+b)/n=- (-af+b)/f=+ N N -(F+N) -2FN F-N F-N - Pseudo-Tiefe wächst proportional zur eingestellten Nah- Grenze N und reziprok zu z i (für entfernte Objekte ungenau): F >> N F+N F-N F (az i +b)/(-z i ) = -a + b/(-z i ) = (F+N)/(F-N) + 2FN/[z i (F-N)] + 2N / z i d.h.: kurzsichtige Systeme (N klein) verdecken evtl. falsch! z-fighting

12 Ähnliche Rechnung: Einführung eines kanonischen Sichtvolumens (engl. canonical view volume) mit Werten zwischen - u. + in allen Dimensionen u. mit der Trf.-Matrix: 2N R L R+L R L 2N T B T+B T B -(F+N) -2FN F-N F-N - Hintergrund: Da Ebenen, die das Proj.zentrum enthalten, auf Geraden projiziert werden, genügt (nach der Trf.) ein Vergleich der transform. Koordinaten mit den Geraden, die das transf. Sichtvolumen begrenzen. Vorteil des kanon. Sichtvolumens: Koord. transformierter Objektpunkte werden geprüft auf <( *, *,z i *)<. Trf. des Sicht-Pyramidenstumpfs in einen Würfel; das ist eine Verformg., die bei d. Window-Viewport-Trf. aufgehoben wird.

13 Übung Übung (Forts.): Erweiterung des Programms zur Konsole-Darstellung eines 3D-Drahtmodells um die wahlweise Ausblendung abgewandter Objektflächen (Flächenmodell solid model). WireCullFill(2).exe

14 Orientierung einer Objektfläche mit den Eckpunkten P,P 2,P 3 (bei Draufsicht: gegen den Uhrzeigersinn angeordnet) gegenüber dem Augenpunkt E: E Nach außen gerichtete Normale n: n = (P 3 P 2 ) x (P P 2 ) P 3 θ n Winkel zwischen der Normalen und dem Verbindungsvektor vom Eckpunkt P 2 zum Augenpunkt E: cos θ = n (E P 2 ) / ( n. E P 2 ) P P 2 -n n (E P 2 ) -9 θ 9 sichtbare Fläche n (E P 2 ) < 9 < θ < 27 nicht sichtbare (Rück-)Fläche

15 3D-Sicht, A propos: Projektionen R. cosθ ( r =) Zur Erinnerung: Verwendung des Skalarprodukts zweier Vektoren zur Berechnung des Winkels θ zwischen ihnen: x B = R cosφ y B = R sin φ x B = r cos(φ+θ) y B = r sin (φ+θ) x B x B = x B x B + y B y B y B y B = R cosφ r cos(φ+θ) + R sin φ r sin (φ+θ) = r R cos θ cosθ = [x B y B ] [x B y B ] T r R Das Skalarprodukt r. R. cosθ eines Einheitsvektors r ( r =) mit einem bel. Vektor R ist gleich der Länge der Projektion des Vektors R auf die Achse des Einheitsvektors r. y B y B θ φ r R B x B x B B cos(α±β) = cosα cosβ Ŧ sinα sinβ sin(α±β) = sinα cosβ ± cosα sinβ

16 Beispiel zur Sichtbarkeit einer Objektfläche: Eckpunkte P = [,, ] T, P 2 = [,, ] T und P 3 = [,, ] T Augenpunkt E = [,, ] T : n = (P 3 P 2 ) x (P P 2 ) = x = = n (E P 2 ) = [,, ] = Die Fläche ist sichtbar! z E n y P (Gegenprobe mit E = [,,-] T!) P 2 P 3 x

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

Abbildung von Weltkoordinaten nach Bildkoordinaten

Abbildung von Weltkoordinaten nach Bildkoordinaten Abbildung von Weltkoordinaten nach Bildkoordinaten Werner Mayer 28. Februar 24 Zusammenfassung Dieses Dokument beschreibt die Abbildungsvorschrift von 3D-Punkten nach Pixelkoordinaten eines Bildes. Dabei

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

Projektionen von geometrischen Objekten

Projektionen von geometrischen Objekten Inhalt: Projektionen von geometrischen Objekten Überblick Hauptrisse Aonometrische Projektionen isometrisch dimetrisch trimetrisch Schiefwinklige Projektionen Kavalierprojektion Kabinettprojektion Perspektivische

Mehr

Teil 3 Abbildungen in der Ebene

Teil 3 Abbildungen in der Ebene Vektor-Geometrie für die Mittelstufe (Sekundarstufe 1) Teil 3 Abbildungen in der Ebene Für Realschulen in Bayern! (Prüfungsstoff!) und für moderne Geometrie-Kurse am Gymnasium Auch in der berstufe zur

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

OpenGL Transformationen: Modeling

OpenGL Transformationen: Modeling OpenGL Transformationen: Modeling transponiert! Punkt-Trfn = Matrizen-Multiplikationen von links (s.o.): v neu = T n (... ) T 2 T 1 v alt = T gesamt v alt OpenGL: Laden mat[16]: glloadmatrix{fd}(mat) Matrizen-Multiplikation:

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Advanced Computer Graphics Erweiterung zur 6. Übung

Advanced Computer Graphics Erweiterung zur 6. Übung Advanced Computer Graphics Erweiterung zur 6. Übung M.Sc. Tristan Nauber Advanced Computer Graphics: Übung 6 Model-View-Projection Transformationen Model-View-Projection Gegeben Gesucht y Modell Kamera

Mehr

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Koordinatensysteme und Clipping

Koordinatensysteme und Clipping Koordinatensysteme und Clipping Michael Olp Inhaltsverzeichnis 1 Einführung in die perspektivische Projektion 1 1.1 Projektion von Liniensegmenten....... 1 2 Koordinatensysteme 2 2.1 Modeling....................

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

Shader. Computer Graphics: Shader

Shader. Computer Graphics: Shader Computer Graphics Computer Graphics Shader Computer Graphics: Shader Inhalt Pipeline Memory Resources Input-Assembler Vertex-Shader Geometry-Shader & Stream-Output Rasterizer Pixel-Shader Output-Merger

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Vektoren - Einführung

Vektoren - Einführung Vektoren - Einführung Grundlegendes Verwendete Nomenklatur: Handschriftlich ist es kein Problem, einen Vektor stets durch a zu kennzeichnen. In der Textverarbeitung ist die andere Variante, Fettdruck,

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen

Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Seminar 3D-Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz und Marko Pilop {hschwarz pilop}@informatik.hu-berlin.de http://www.informatik.hu-berlin.de/ pilop/3d-basics

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Helmuts Kochrezept Nummer 5:

Helmuts Kochrezept Nummer 5: Helmuts Kochrezept Nummer : Lokale Koordinatentransformation von Vektorfedern Version 2, 19.03.2018) Dieses Kochrezept erklärt Dir, wie du ein Vektorfeld von einem orthonormalen Koordinatensystem z.b.

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

Lösungsvorschlag zum zweiten Übungsblatt

Lösungsvorschlag zum zweiten Übungsblatt Lösungsvorschlag zum zweiten Übungsblatt Aufgabe Wir zeigen, daß die Drehung um den Ursprung um 9 und die Spiegelung an der x-achse nicht kommutieren. Die Matrix für die Drehmatrix lautet in diesem Fall

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Übungen zu Computergrafik

Übungen zu Computergrafik Institut für Informatik Universität Osnabrück, 3..6 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/~cg Lukas Kalbertodt, B.Sc. Testat bis..6, 4: Uhr Übungen zu Computergrafik Sommersemester 6

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist.

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist. Lineare Funktionen Aufgabe. Sei f R R definiert durch x f = x x + 3x. Beweisen Sie ausführlich, dass f linear ist. Aufgabe. Die Funktionen (nicht erschrecken sind definiert durch + ( (R n R m (R n R m

Mehr

IV. Affine Abbildungen

IV. Affine Abbildungen IV. Affine IV. Abbildungen Affine Abbildungen 2 22 IV. Af ne Abbildungen. Kongruenzabbildungen Bei einer Kongruenzabbildung wird jedem Punkt P( der zweidimensionalen Ebene R 2 in eindeutiger Weise ein

Mehr

Was ist Robotik? Robotik heute:

Was ist Robotik? Robotik heute: Grundlagen Was ist Robotik? Das Wort Robot / Roboter entstand 92 in einer Geschichte von Karel Ċapek und geht auf das tschechische Wort robota (rbeit, Fronarbeit) zurück. Dessen Ursprung ist das altkirchenslawische

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Projektionen und Transformationen Qt Kontextmenüs Koordinatensysteme

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten Kapitel Koordinaten im Raum Schrägbilder - Kavalier-Perspektive Koordinaten Im Raum benötigt man drei Angaben, um die Lage eines Punktes zu beschreiben So beschreiben Geographen durch N5 0"E07 38 7"H5m

Mehr

3D-Darstellungen mit Maxima

3D-Darstellungen mit Maxima Kapitel 5 3D-Darstellungen mit Maxima 5.1 noch einmal: Kavalier-Perspektive 5.1.1 Würfel Wir haben schon festgestellt, dass die Matrix einer Abbildung schon durch die Bilder der drei Einheitspunkte (1

Mehr

8. Projektionsarten und Perspektive

8. Projektionsarten und Perspektive 8. Projektionsarten un Perspektive Projektionen: transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matri singulär,.h. Determinante ) Projektion ist Grunaufgabe

Mehr

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, ([email protected]) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

Computer Graphik (CS231) Projektübungsblatt 3

Computer Graphik (CS231) Projektübungsblatt 3 UNIVERSITÄT BASEL Prof. Dr. Thomas Vetter Departement Mathematik und Informatik Bernoullistrasse 16 CH 456 Basel Clemens Blumer Tobias Maier Fabian Brix http://informatik.unibas.ch/lehre/fs13/cs231/ Computer

Mehr