Höhere Mathematik für Ingenieure 2

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik für Ingenieure 2"

Transkript

1 Prüfungklausur (A) zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, Uhr (1.Termin) - Lösungen zum Theorieteil - Aufgabe 1: Die -periodische Funktion f : R R sei auf [, ) gegeben durch + 3, < 1 f() =, 1 <, < Gegen welche Grenzfunktion g() konvergiert die Fourierreihe von f() punktweise auf dem Intervall [, ]? (Die Funktion g() ist in geeigneter Form anzugeben. Die Fourierreihe soll nicht berechnet werden!) Die Fourierreihe konvergiert gegen f() in deren Stetigkeitspunkten. In den Sprungstellen konvergiert sie gegen dem Mittelwert aus linksseitigem und rechtsseitigem Grenzwert [f( ) + f( )]. Für die Grenzfunktion g() ergibt sich damit 1 in analytischer Form oder als Graphik g() =,5, = + 3, < < 1, 1 < 3, =, < <,5, = Aufgabe : Bestimmen Sie Definitionsbereich D f und Wertebereich W f der Funktion 1 f(, y) =. + y 9 Skizzieren Sie den Definitionsbereich in der -y-ebene. D f = { (, y) + y > 9} W f = (, ) Punkte außerhalb der Kreisscheibe, ohne Kreislinie.

2 Aufgabe 3: Es sei g(, y) = + (y + 3) 16. a) Skizzieren Sie die durch g(, y) = beschriebene Kurve. b) Geben Sie eine Parameterdarstellung der Kurve g(, y) = an. c) In welchen Punkten (, y) läßt sich die Gleichung g(, y) = nicht lokal nach y auflösen? Warum? a) +(y+3) = 16 b) eine Parameterdarstellung ist z.b. (t) = 4 cos t, y(t) = 4 sin t 3, t [, ]. c) g(, y) = ist nach y lokal nicht auflösbar, wenn g y = (y + 3) =, also für y = 3. Das passiert in den Kurvenpunkten ( 4; 3) bzw. (4; 3) (mit senkrechten Tangenten). Aufgabe 4: Gegeben seien vier Punkte A, B, C, D auf dem Graph einer Funktion f zweier Variabler. Ordnen Sie diesen folgende vier Bedingungen zu! (i) f >, (ii) f =, (iii) f >, (iv) f =, f y =, f y =, f y >, f y >. A = (ii), B = (i), C = (iv), D = (iii).

3 Aufgabe 5: Klassifizieren Sie die folgenden Differentialgleichungen (bezüglich Ordnung, (Nicht-)Linearität, gegebenenfalls (In-)Homogenität, Art der Koeffizienten): a) sin(y ) + y = b) y y = c) y + y = a) nichtlineare DGL,. Ordnung; b) lineare DGL, 1. Ordnung, konstante Koeffizienten, inhomogen; c) lineare DGL,. Ordnung, nichtkonstante Koeffizienten, homogen. Aufgabe 6: Gegeben ist der Bereich B, der von der Parabel y = 1 +1 und der Geraden y = 1 begrenzt wird (Skizze). Geben Sie eine Beschreibung des Bereichs mit Hilfe von a) Normalbereichen bzgl. der -Achse, b) Normalbereichen bzgl. der y-achse, an. a) B = { (, y 3, 1 y } b) B = B 1 B wobei B 1 = { (, y 3,5 y 1, y y + 4 } B = { (, y 1 y 1, y y } Aufgabe 7: Wir betrachten das Rechteck Q = [, ] [, 4] und das Quadrat P = [, 1] [, 1], sowie eine stetige Funktion f : Q R. Falls zwischen den Variablen 1, und den Variablen y 1, y die Beziehung y 1 = 1 1, y = 1 4 besteht, wie lautet dann die korrekte Beziehung nach der Transformationsformel? Begründen Sie Ihre Antwort! (i) f( 1, ) d 1 d = 6 f(y 1, y ) dy 1 dy Q P (ii) f( 1, ) d 1 d = 8 f(y 1, 4y ) dy 1 dy Q P (iii) f( 1, ) d 1 d = 1 f ( 1 y 8 1, 1y 4 ) dy1 dy Q P (iv) f( 1, ) d 1 d = 6 f(y 1, 4y ) dy 1 dy Q P Richtig ist die Formel (ii), denn transformiert wird gemäß 1 = y 1, = 4 y mit der Funktionaldeterminante ( 1, ) (y 1, y ) = 4 = 8.

4 - Lösungen zum Aufgabenteil - Aufgabe 1: Gegeben sei die Funktion f() = 1 + cos Berechnen Sie näherungsweise den Wert des Integrals. (7 Punkte) 1 1 f() d, indem Sie f() durch das Taylorpolynom. Grades (Taylorreihe bis zum Glied zweiter Ordnung) im Entwicklungspunkt = approimieren. f() = 1 + cos = (1 + cos ) 1, f() = 1 f () = (1 + cos ) ( sin ) = sin (1 + cos ), f () = f () = 4 (1 + cos ) 3 ( sin ) sin + (1 + cos ) cos = 4 sin (1 + cos ) 3 + cos (1 + cos ), f () = 1 T = f() + f () ( ) + f ()! ( ) = cos d 1 ( ) }{{} geradef unktion d = 1 ( ) d = [ ] 1 = ( ) = = ,8

5 Aufgabe : (6 Punkte) Betrachtet wird die Radialkraft F = m ω r, die auf einen Körper mit Masse m wirkt, der sich mit Winkelgeschwindigkeit ω auf einer Kreisbahn mit Radius r bewegt. Schätzen Sie mit Hilfe des totalen Differentials den absoluten und relativen Fehler der Radialkraft F, wenn m = (5 ± 1)g, ω = (1 ±, 5) 1 und r = (1, 5 ±, )m s gemessen wurden. F = F (m, ω, r) = m ω r, F m = ω r, F ω = m ω r, F r = m ω. (Maimaler) Absoluter Fehler: F df = F m dm + F ω dω + F r dr F m dm + F ω dω + m ω dr = ω r dm + m ω r dω + F r dr = 1 1, , 5, , = = 15 [ g m s (Maimaler) Relativer Fehler: = mn] F = F (5; 1; 1,5) = 5 1 1,5 = 375 [mn] F F df F =.7 3,73%

6 Aufgabe 3: Gegeben sei die Funktion f(, y) = ( y) y 3 + 3y + 9y. (8 Punkte) a) Untersuchen Sie f(, y) auf lokale (relative) Etremwerte. b) In welche Richtung wird an der Stelle (1; 1) der Anstieg der Funktionsfläche am größten? Bestimmen Sie den maimalen Anstieg an dieser Stelle. a) f(, y) = ( y) y 3 + 3y + 9y Ableitungen : f = ( y) f y = 3y + 6y + 9 f = ( y) f yy = 6y + 6 f y = f y = Notwendige Bedingungen : ( y) = (1), 3y +6y +9 = (). Aus der Produktform von (1) erhält man: ( y) = = oder y =. Für = folgt aus () y y 3 = mit den Lösungen y = 1 ± = 1 ±. Für y = folgt aus () = ±3. Damit gibt es insgesamt die 4 stationären Stellen P 1 = (; 1), P = (; 3), P 3 = ( 3; ), P 1 = (3; ). Hesse-Matri : ( ) ( y) H f = 6y + 6 H f = 1( y)(1 y) 4 Hinreichende Bedingungen : H f (; 1) = 7 >, f = 6 > lokales Minimum in (; 1) mit f(; 1) = 5. H f (; 3) = 4 >, f = < lokales Maimum in (; 3) mit f(; 3) = 7. H f (±3; ) = 36 < keine lokalen Etrema (Sattelpunkte) in (±3; ). ( ) ( ) f (1; 1) 6 b) Steilster Anstieg in Gradientenrichtung: f(1; 1) = =. f y (1; 1) 1 Der Anstieg der Funktionsfläche an der Stelle (1; 1) in Gradientenrichtung ist gegeben durch die Richtungsableitung in Richtung r = f(1; 1), ( ) f(1; 1) = f(1; 1) r 1 = f(1; 1) f(1; 1) r f(1; 1) = [ f(1; 1)] f(1; 1) = f(1; 1) = 37.

7 Aufgabe 4: (7 Punkte) a) Lösen Sie das Anfangswertproblem y + y = e, y(1) = e 1. b) Bestimmen Sie die allgemeine Lösung der DGL y + 4 y =. a) y + y = e, y(1) = e 1. Inhomogene lineare Differentialgleichung 1. Ordnung Homogene Gleichung (Trennung der Veränderlichen): y + y =, y = y dy d, y =, ln y = ln + C, y H = C. Partikuläre Lösung der inhomogenen Gleichung (Variation der Konstanten): y = c(), y = c c, y + y = c c + c = e, c = e, c = e d = dt = t = e (Subst. e = t, e d = dt), y P = c() = e. Allgemeine Lösung der inhomogenen Gleichung: Anfangswertproblem: y(1) = C + e 1 y I = y H + y P = C + e! = e 1, C = 1, y A = 1 + e. b) y + 4 y = Homogene lineare Differentialgleichung 3. Ordnung mit konstanten Koeffizienten Charakteristische Gleichung (Ansatz y = e λ ) λ 3 + 4λ = λ (λ + 4) =, λ 1 =, λ,3 = ± i (konjugiert komple) y H = C 1 + C sin + C 3 cos.

8 Aufgabe 5: Für welche Konstante a ist das Kurvenintegral (7 Punkte) ( ) e z sin( y) d + ae z sin( y) dy + e z cos( y) dz γ wegunabhängig? b) Bestimmen Sie für das oben berechnete a diejenige Stammfunktion des Integranden, die im Punkt (,, ) gleich 1 ist. c) Ermitteln Sie für obiges a unter Verwendung von Aufgabe b) den Wert des Kurvenintegrals, wenn die Kurve γ von (,, 1) nach (,, ) verläuft. (a) Vektorfeld v = (P ; Q; R) T in v d ist definiert und stetig partiell differenzierbar γ auf R 3. Integrabilitätsbedingung für Kurvenintegrale. Art (im Vektorfeld) rot v = i j k y z P Q R = e z sin( y) ae z sin( y) e z sin( y) + e z sin( y) ae z cos( y) ae z cos( y) Integral ist wegunabhängig, wenn a = 1. (b) Berechnung der Stammfunktion f(, y, z) mit v = gradf P e z sin( y) f v = Q = e z sin( y)! = f y R e z cos( y) (c) f z! = (Ansatzmethode): 1. f = P f = P d = e z sin( y) d = e z cos( y) + c(y, z) ( c(y, z) Ansatz für die von y und z abhängige Integrationskonstante).. f y = Q e z sin( y) + c y (y, z) = e z sin( y) c(y, z) = dy = d(z) ( d(z) Ansatz für die von z abhängige Integrationskonstante). Zwischenstand: f(, y, z) = e z cos( y) + d(z). 3. f z = R e z cos( y) + d (z) = e z cos( y) d(z) = dz = C. Für die Stammfunktion ergibt sich folglich: f(, y, z) = e z cos( y) + C. Speziell für f(,, ) = e cos( ) + C = 1 + C! = 1 findet man C = und die gesuchte spezielle Stammfunktion ist damit f(, y, z) = e z cos( y) +. (,,) (,,1) v d = f(,, ) f(,, 1) = e cos( ) e 1 cos( ) = 1.

9 Aufgabe 6: Berechnen Sie die Länge der Kurve mit der Parameterdarstellung (4 Punkte) ( ) ( ) cos 3 t =, t. y sin 3 t S = t t 1 = 3 [ẋ(t)] + [ẏ(t)] dt = = 3 (cos t sin t) (cos t + sin t) dt = 3 }{{} =1 (3 cos t( sin t)) + (3 sin t cos t) dt cos t sin t dt sin t dt = 3 4 [ cos t] = 3 4 ( cos + cos ) = 3

10 Aufgabe 7: Der ebene Bereich B sei zusammengesetzt aus dem Vierteleinheitskreis im 1. Quadranten und einem Dreieck im. Quadranten (siehe Skizze). Wie muß a > gewählt werden, damit der geometrische Schwerpunkt S( s, y s ) des Bereiches B auf der y-achse liegt? (6 Punkte) Hinweis: Für die Schwerpunktkoordinaten gilt S = 1 ddy bzw. y S = 1 A A y ddy. B Der Flächeninhalt A von B kann elementar berechnet werden. B B läßt sich zerlegen in den Dreiecksbereich (in kartesischen Koordinaten) D = { (, y) a, y + 1 } a und die Viertelkreisscheibe (in Polarkoordinaten) V = { (r, ϕ) } r 1, ϕ. Damit der geometrische Schwerpunkt von B auf der y-achse liegt, muß gelten S = 1 ddy =. Das ist genau dann der Fall, wenn A B ddy = ddy + ddy = B D V D ddy = a +1 = a y= dy d = = a ( ) a + 1 d = [ ] 1 a = a a 6 ddy = 1 r cos ϕ r dϕ dr = 1 r dr cos ϕ dϕ V r= ϕ= [ r 3 = 3 ] 1 [ ] sin ϕ = 1 3 r= ϕ= B ddy = a ! = a = 6 3 =, a =

11 Aufgabe Z: Berechnen Sie mit Hilfe geeigneter Integrationsmethoden das (uneigentliche) Integral a d (a > ). a (3 Punkte) a t d = lim a t a = lim t a [ d = lim ] t a a t a ( a t + ) a = + a = a Das unbestimmte Integral a d berechnet man etwa durch Substitution u = a, du = a a d = du = u = a

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 3. - 7. Uhr.Termin - Lösungen zum Aufgabenteil - Aufgabe : Gegeben sei die Funktion f 3. 7 Punkte erechnen Sie näherungsweise den Wert

Mehr

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an.

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an. Prüfungsklausur Höhere Mathematik II 5. Juli 7) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Eine Funktion fx) lasse sich in einem Intervall in eine

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (B) zum Modul Höhere Mathematik für Ingenieure 2 25. Juli 29, 3. - 7. Uhr (2.Termin) Aufgabe : - Lösungen zum Theorieteil - Geben Sie eine Funktion f : R 2 R an, für die die Niveaumenge

Mehr

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (. Juli 6) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe 1: In der x-y-ebene seien die Mengen A {(x, y) : x } und

Mehr

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also 5. Juli Lösungshinweise Theorieteil Aufgabe : Der Vektor x = ist ein Eigenvektor der Matrix A = Bestimmen Sie den zum Eigenvektor x zugehörigen Eigenwert. 3 3 3 3 (Hinweis: Es ist nicht erforderlich, das

Mehr

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) -

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) - Studiengang: Matrikelnummer: 1 3 4 5 6 Z Aufgaben Theorie Gesamt Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 13.. 17, 8. - 11. Uhr - Aufgabenteil (18 min.) - Zugelassene Hilfsmittel:

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x !

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x ! Wolfgang Erben (1. Januar 016) WS 01 Analysis Aufgabe 1. (6 Punkte) Gegeben sei die Funktion f () sinh sin a) Zeigen Sie, dass f () für alle 0 durch eine Potenzreihe um 0 dargestellt werden kann. Geben

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 20.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Sommersemester 8 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt zum Thema Aufgaben zu Analysis. Uneigentliche Integrale Aufgabe Berechnen Sie die uneigentlichen Integrale der Form L[f](s)

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT 3 (Analysis für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 015/016 Geben

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Aufgaben für das Seminar und zum selbständigen Üben 22. Januar 2018 Vorbereitende Übungen Aufgabe 1: Bestimmen Sie die Isoklinen zu den folgenden Differentialgleichungen

Mehr

Bericht zur Mathematischen Eingangsprüfung im Mai 2008

Bericht zur Mathematischen Eingangsprüfung im Mai 2008 Bericht zur Mathematischen Eingangsprüfung im Mai 8 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 7. Mai 8 fand die Mathematische Eingangsprüfung nach der Prüfungsordnung 3. der DAV statt. Es waren

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Musterlösung Februar-Klausur Rechenteil WS 09/10 Analysis II für Ingenieure

Musterlösung Februar-Klausur Rechenteil WS 09/10 Analysis II für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN WS 9/ Fakultät II - Mathematik und Naturwissenschaften 5.. Dozenten: D. Hömberg, M. Karow, J. Suris Assistent: V. Dhamo, N. Hartanto, A. Volpato Musterlösung Februar-Klausur

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras 9.4.4 April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 9.. 08, 3.00-6.00 Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Zuname: Vorname: Kennzahl: Matr.Nr: PRÜFUNG AUS MATHEMATIK 2. 1)(8 P.) Berechnen Sie 6 2x (x 1)(x 2) dx.

Zuname: Vorname: Kennzahl: Matr.Nr: PRÜFUNG AUS MATHEMATIK 2. 1)(8 P.) Berechnen Sie 6 2x (x 1)(x 2) dx. (8 P.) Berechnen Sie 6 2x (x (x dx. (8 P.) Bestimmen Sie mit Hilfe der Methode der Lagrange schen Multiplikatoren die stationären Punkte der Funktion f(x, y) = x 2 + 2y 2 unter der Nebenbedingung x + y

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis ) MA903 http://www-m5.ma.tum.de/allgemeines/ma903 06S Sommersem. 06 Lösungsblatt 8 (3.6.06)

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Mathematik II für MB und ME

Mathematik II für MB und ME Übungsaufgaben Serie : Integralrechnung. Berechnen Sie folgende Integrale 3 + 2 2 d, b) d) sin(3) cos(3) d, e) Mathematik II für MB und ME e a d, c) 6 d, f) + 2 2. Berechnen Sie durch geeignete Substitution

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Höhere Mathematik II/III. Musterlösung

Höhere Mathematik II/III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II/III WiSe / Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Winter 205 BIOL HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 2 3 4 5 Total

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 7/8 Dr K Rothe Analysis III für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Funktionen in mehreren Variablen Definition:

Mehr

3. Funktionen mehrerer Veränderlicher

3. Funktionen mehrerer Veränderlicher 3. Funktionen mehrerer Veränderlicher 3.1 Definition Nov 5 16:37 Nov 9 14:27 Prof. Dr. B. Grabowski 1 Nov 9 14:30 3 D Plotter https://netmath.vcrp.de/downloads/systeme/sage/funktionsplotter3d.html Nov

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 23 1. Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : sin als Lösung besitzt. Welche der folgenden Aussagen

Mehr

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1 Fehlerfortpflanzung & Etremwertbestimmung Folie 1 Fehlerfortpflanzung Einführung In vielen technischen Zusammenhängen sind die Werte bestimmter Größen nicht genau bekannt sondern mit einer Unsicherheit

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr