Technische Universität Berlin

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Berlin"

Transkript

1 Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien f : R R, (, ) + + +, g : R R cos t, t. sin t (i) Berechnen Sie die Ableitungen von f und g. (ii) Berechnen Sie mit Hilfe der Kettenregel die Ableitung der Funktion f g im Punkt. (i) ( Punkte) Es gilt f (, ) = , g (t) = sin t cos t. (ii) (4 Punkte) Mit der Kettenregel gilt ( f g) (t) = f ( g(t)) g (t). Es ist g() = ( ). Nutzen wir die Lösungen aus dem ersten Teil erhalten wir ( f ( g()) = f (, ) =, g () =. ) Somit ist ( f g) () = ( ( = ) ).. Aufgabe 9 Punkte Gegeben seien die Vektorfelder v, v, v : R R, v (, ) =, v (, ) =, v (, ) = +. (i) Seien w i (,, z) = v i(,), i =,,. Bestimmen Sie die Divergenz und die Rotation der Vektorfelder w, w und w. (ii) Ordnen Sie den Vektorfeldern v, v und v die entsprechende Skizze zu. Kreuzen sie dazu die zugehörige Bo unter dem Bild an.

2 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v : (i) ( Punkte) Für die Divergenzen und Rotationen erhalten wir div( w )(,, z) =, rot( w )(,, z) = =, div( w )(,, z) = + =, rot( w )(,, z) =, div( w )(,, z) = + =, }{{} rot( w )(,, z) =. }{{} Hinweis: Wegen w = w + w können die jeweiligen Ergebnisse für w aus denen für w und w abgelesen werden. (ii) (6 Punkte)

3 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v : v :, v :, v :

4 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze. Aufgabe 8 Punkte Gegeben seien die Funktion f : R R, (, ) +, und die Menge D = {(, ) R : + }. (i) Bestimmen Sie das Talorpolnom. Grades von f im Entwicklungspunkt (, ). (ii) Bestimmen Sie die Art und Lage aller lokalen Etremstellen von f im Innern von D. (iii) Bestimmen Sie die globalen Etrema von f auf D. (iv) Parametrisieren Sie den Graphen von f. (v) Geben Sie einen Normalenvektor an den Graphen von f im Punkt (,, ) an. (i) ( Punkte) Die Funktion f ist selbst ein Polnom zweiten Grades, somit stimmt das Talorpolnom zweiten Grades T f von f mit f überein, es gilt also T f(, ) = f(, ). (ii) ( Punkte) Wir bestimmen zunächst den Gradienten von f, es gilt ( f)(, ) =. 4 Das notwendige Kriterium ( f)(, ) = für die Eistenz einer Etremstelle ist somit nur für den Punkt = (, ) erfüllt. Da außerdem die Hessematri f (, ) = 4 eine Diagonalmatri ist und nur positive Einträge auf der Diagonalen besitzt, ist sie positiv definit. In liegt folglich ein lokales Minimum vor mit dem Funktionswert f( ) = /4. (iii) (9 Punkte) Die Eistenz globaler Etremwerte von f auf D ist sicher, da f stetig und D eine kompakte Menge ist. Wir haben im zweiten Teil bereits das Innere von D nach möglichen Etremstellen untersucht. Es bleibt eine Randuntersuchung durchzuführen. Auf dem Rand gilt die Nebenbedinung h(, ) = + =. Singuläre Punkte: { h =, h =, =, =, + =, Die ersten beiden Gleichungen werden nur durch = = gelöst, dies führt aber zu einem Widerspruch in der dritten Gleichung. Folglich eistieren keine singulären Punkte. Lagrange-Methode: { f(, ) = λ h(, ), h(, ) =, = λ, 4 = λ, + =. Aus der zweiten Gleichung erhalten wir (4 λ) =. Diese Gleichung wird gelöst für λ = oder =. 4

5 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze λ = : Setzen wir λ = in die erste Gleichung ein, erhalten wir = /. Die dritte Gleichung liefert dann = /4. Zwei mögliche Etremstellen sind also ( = ) (,, = ),. = : Hier erhalten wir in der dritten Gleichung =. Da wir λ frei wählen können, wird auch die erste Gleichung gelöst. Weitere mögliche Etremstellen nach Lagrange sind somit = (, ), 4 = (, ). Schließlich finden wir die globalen Etrema der Funktion, indem wir die Funktionswerte in den ermittelten Punkten vergleichen. Es ist f( ) = 4, f( ) = f( ) = 9 4, f( ) =, f( 4 ) =. Das heißt, dass das globale Maimum in und und das globale Minimum in vorliegt. (iv) ( Punkte) Eine Parametrisierung des Graphen von f ist gegeben durch F : R R, (, ). + (v) ( Punkte) Zur Berechnung eines Normalenvektors nutzen wir die eben aufgestellte Parametrisierung und berechnen das Kreuzprodukt ihrer partiellen Ableitungen, welches stets senkrecht auf dem Graphen von f steht. Wir erhalten den Vektor n(, ) = = 4. 4 Im Punkt (, ) (wegen F (, ) = (,, )) ergibt sich n(, ) = Aufgabe 4 Punkte Gegeben seien die Mengen A = {(, ) R :, }, B = {(,, z) R : + z, z }. (i) Skizzieren Sie die beiden Mengen A und B. (ii) Geben Sie in der nachfolgenden Tabelle an, welche topologischen Eigenschaften (beschränkt, offen, abgeschlossen, kompakt) die Mengen A und B besitzen. Kennzeichen sie dieses durch ein +, falls die Eigenschaft vorliegt und durch ein, falls dies nicht der Fall ist. A B offen abgeschlossen beschränkt kompakt 5

6 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze (iii) Gegeben sei das Skalarfeld f : R R, (, ) 6( ). Bestimmen Sie das Integral A f(, ) dd. (iv) Gegeben sei das Vektorfeld Bestimmen Sie das Integral v : R R, z + z (,, z) ze 4. B v do. (i) (4 Punkte) z Abbildung : Skizze der Menge A (links) und der Menge B (rechts). (ii) ( Punkte) Beide Mengen sind kompakt, also abgeschlossen, beschränkt und nicht offen. offen abgeschlossen beschränkt kompakt A B (iii) ( Punkte) Mit den Grenzen und erhalten wir A f dd = = = [ 5 5 f(, ) dd = 6( ) dd [ ] = d = 4 4 d = ] = = = 5. 6

7 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze (iv) (5 Punkte) Mit dem Satz von Gauß gilt v do = Den Kegel B beschreiben wir in Zlinderkoordinaten mit B B div( v) dddz. B = { (r cos(ϕ), sin(ϕ), h) R : r [, ], ϕ [, π], r h }, die Divergenz von v ist gegeben durch div( v)(,, z) = z. Mit dem Volumenelement dv = r dhdϕdr der Zlinderkoordinaten und div( v)(r cos(ϕ), sin(ϕ), h) = h erhalten wir π v do = div( v) dddz = hr dϕdhdr B = π B r [ r = π r4 4 hr dhdr = π ] r= r= = π 4. r [ rh ] h= h=r dr = π r r dr 7

8 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze 5. Aufgabe 6 Punkte Begründen oder widerlegen Sie folgende Aussagen: (i) Es eistiert eine zweimal stetig differenzierbare Abbildung f : R R mit Hessematri f (,, ) = ( = Hess (,,) f ). (ii) Sei f : R R stetig differenzierbar und γ : [, ] R, γ(t) = die Niveaulinie von f zum Wert. Dann gilt γ f ds =. 4 cos(t), 4 sin(t) (iii) Sei F die geschlossene Fläche F = {(,, z) R : z = 5} und v : R R ein stetig differenzierbares Vektorfeld mit Vektorpotential w. Dann ist das Flussintegral von v über F null. (i) ( Punkte) Die Aussage ist falsch! Mit dem Satz von Schwarz ist die Hessematri einer zweimal stetig differenzierbaren Abbildung smmetrisch. Da die angegebene Matri allerdings nicht smmetrisch ist, kann keine solche Funktion f eistieren. (ii) ( Punkte) Die Aussage ist falsch! Es gilt nämlich f ds = f(γ(t)) γ (t) dt. Da γ die Niveaulinie von f zum Wert ist gilt f(γ(t)) =, weiterhin ist γ (t) = 4. Damit folgt f ds = f(γ(t)) γ (t) dt = 4 dt = 8. (iii) ( Punkte) Die Aussage ist wahr! Dies können wir sowohl mit dem Satz von Gauß, als auch mit dem Satz von Stokes einsehen. Mit Stokes: Da die Menge F geschlossen ist hat F keine Randkurven. Mit dem Satz von Stokes gilt daher F v do = F rot( w) do = w ds =. Mit Gauß: Die Menge F ist genau der Rand des Ellipsoiden E = {(,, z) R : z 5}. Da v ein Vektorpotential besitzt gilt notwendigerweise div( v) =, mit dem Satz von Gauß folgt v do = v do = div( v) dddz =. F E E 6. Aufgabe 7 Punkte Gegeben sei die Funktion f : R R, (, ) {,,, =. Zeigen Sie folgende Aussagen: 8

9 Analsis II für Ingenieure - April-Klausur WS /4 - Lösungsskizze (i) f ist im Punkt (, ) unstetig. (ii) f ist im Nullpunkt unstetig. (iii) f hat auf R ein globales Maimum, jedoch kein globales Minimum. (i) ( Punkte) Die Folge a k = ( k, ) konvergiert gegen den Punkt (, ). Da der Grenzwert lim f( a k) = lim ( k k ) = lim k k = k nicht eistiert und somit ungleich f(, ) = ist, ist f im Punkt (, ) unstetig. (ii) ( Punkte) Die Folge b k = ( k, k ) konvergiert gegen den Nullpunkt, wir erhalten weiterhin lim f( b k ) = lim k k ( k ) ( k ) = = f(, ). Damit ist die Funktion f auch im Nullpunkt unstetig. (iii) ( Punkte) Im ersten Aufgabenteil haben wir bereits gesehen, dass die Funktion f kein globales Minimum besitzt, da die Funktion entlang der dort angegebenen Folge a k gegen unendlich strebt. Aus der Definition von f wird mit ersichtlich f(, ) = }{{}. Damit ist das globale Maimum von f, welches in allen Punkten der Form (, ) mit R angenommen wird. 9

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser 28.02.2011 Februar Klausur Analysis II für Ingenieure Name:...................................

Mehr

Musterlösung Februar-Klausur Rechenteil WS 09/10 Analysis II für Ingenieure

Musterlösung Februar-Klausur Rechenteil WS 09/10 Analysis II für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN WS 9/ Fakultät II - Mathematik und Naturwissenschaften 5.. Dozenten: D. Hömberg, M. Karow, J. Suris Assistent: V. Dhamo, N. Hartanto, A. Volpato Musterlösung Februar-Klausur

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Phsiker Analsis ) MA9 http://www-m5.ma.tum.de/allgemeines/ma9 8S Sommersem. 8 Lösungsblatt 5 4.5.8) Zentralübung

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Bericht zur Mathematischen Eingangsprüfung im Mai 2008

Bericht zur Mathematischen Eingangsprüfung im Mai 2008 Bericht zur Mathematischen Eingangsprüfung im Mai 8 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 7. Mai 8 fand die Mathematische Eingangsprüfung nach der Prüfungsordnung 3. der DAV statt. Es waren

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (A) zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 8. - 1. Uhr (1.Termin) - Lösungen zum Theorieteil - Aufgabe 1: Die -periodische Funktion f : R R sei auf [, ) gegeben durch + 3,

Mehr

Analysis II. Mehrdimensionale Differenzialund Integralrechnung

Analysis II. Mehrdimensionale Differenzialund Integralrechnung Übungen zur Vorlesung Analysis II Aufgaben Mehrdimensionale Differenzialund Integralrechnung gelesen von Prof. Dr. Heinrich Freistühler Martin Gubisch Konstanz, Sommersemester 28 Übungsaufgaben. Aufgabe

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1 D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 3. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 76. Ableitungen

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III WiSe 04/05 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter Vorder- und Rückseite

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 08 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 4 5 Total Vollständigkeit

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14 Technische Universität Berlin Fakultät II Institut für Mathematik SS 4 Doz.: Blath, Gündel vom Hofe Ass.: Altmann, Fackeldey, Hammer 8. Okt 4 Oktober Klausur Analysis I für Ingenieure Name:....................................

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Multiple-Choice Ferienserie 13

Multiple-Choice Ferienserie 13 D-MAVT D-MATL Analsis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Multiple-Choice Ferienserie 3 Abgabetermin: Samstag, 3..5, 3:59 Uhr. Bemerkung: Bei einigen MC-Aufgaben sind mehrere Antworten richtig.

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) -

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) - Studiengang: Matrikelnummer: 1 3 4 5 6 Z Aufgaben Theorie Gesamt Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 13.. 17, 8. - 11. Uhr - Aufgabenteil (18 min.) - Zugelassene Hilfsmittel:

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Funktionen in zwei Veränderlichen

Funktionen in zwei Veränderlichen Funktionen in zwei Veränderlichen Eine Einführung in Talorpolnome Lokale Etremwerte in der Sekundarstufe II Verstehen durch Beispiele Eine Funktion die Punkte einer Ebene in einen Zahlenstrahl abbildet

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Aufgaben. f : R 2 R, f(x, y) := y.

Aufgaben. f : R 2 R, f(x, y) := y. 11. Übung zur Maß- und Integrationstheorie, Lösungsskizze A 63 Untermannigfaltigkeiten von R 2 ). Aufgaben Skizzieren Sie grob die folgenden Mengen und begründen Sie, welche davon 1-dimensionale Untermannigfaltigkeiten

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x !

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x ! Wolfgang Erben (1. Januar 016) WS 01 Analysis Aufgabe 1. (6 Punkte) Gegeben sei die Funktion f () sinh sin a) Zeigen Sie, dass f () für alle 0 durch eine Potenzreihe um 0 dargestellt werden kann. Geben

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Winter 205 BIOL HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 2 3 4 5 Total

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit Grenzwerte und Stetigkeit Gegeben sei eine Funktion z = f(,) von zwei Variablen. Außerdem sei ( 0, 0 ) eine vorgegebene Stelle der -Ebene. Wir interessieren uns für das Verhalten der Funktion bzw. der

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 7/8 Dr K Rothe Analysis III für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Funktionen in mehreren Variablen Definition:

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Höhere Mathematik II. Variante B

Höhere Mathematik II. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 202 Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal 0 DinA4-Blättern.

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Scheinklausur zur HM3 (vertieft) für LRT und MaWi

Scheinklausur zur HM3 (vertieft) für LRT und MaWi Scheinklausur zur HM (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Name des Tutors: Es gelten die üblichen Klausurbedingungen. Bitte beachten

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Höhere Mathematik II/III. Musterlösung

Höhere Mathematik II/III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II/III WiSe / Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Prof. Dr. E. Triesch Höhere Mathematik III WiSe 06/07 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 3. - 7. Uhr.Termin - Lösungen zum Aufgabenteil - Aufgabe : Gegeben sei die Funktion f 3. 7 Punkte erechnen Sie näherungsweise den Wert

Mehr

55.3 Die zentralen Begriffe zur totalen Differenzierbarkeit

55.3 Die zentralen Begriffe zur totalen Differenzierbarkeit Abschnitt 55 Totale Differenzierbarkeit R Plato 35 sind all diejenigen Punkte E Q Randpunkte, für die k D oder k D für mindestens einen Inde k gilt Für all solche Punkte E enthält nämlich die enge BE;

Mehr