1 Zahlen. 1.1 Die reellen Zahlen

Größe: px
Ab Seite anzeigen:

Download "1 Zahlen. 1.1 Die reellen Zahlen"

Transkript

1 Zahlen Die aus dem Alltagsleben bekannten rationalen Zahlen (Bruchzahlen) reichen nicht aus, um Analysis rigoros betreiben zu können. Die historische Entwicklung zeigt vielmehr, dass für die Belange der Analysis der Zahlenbereich der rationalen Zahlen zum Bereich der reellen Zahlen erweitert werden muss. Der Anschaulichkeit halber führen wir die reellen Zahlen als Dezimalzahlen mit unendlich vielen Stellen ein. Wir illustrieren exemplarisch, wie sich Rechenregeln und die Ordnungsrelation in natürlicher Weise von den rationalen auf die reellen Zahlen übertragen. Ein weiterer Abschnitt ist den Gleitpunktzahlen gewidmet, welche als praktikable Approximation an die reellen Zahlen in den meisten Programmiersprachen implementiert sind. Insbesondere besprechen wir die optimale Rundung und die damit zusammenhängende relative Maschinengenauigkeit.. Die reellen Zahlen In diesem Buch setzen wir die folgenden Zahlensysteme als bekannt voraus: N = {,,,,...} die Menge der natürlichen Zahlen; N 0 = N {0} die Menge der natürlichen Zahlen mit Null; Z = {...,,,, 0,,,,...} die Menge der ganzen Zahlen; Q = { k n ; k Z und n N} die Menge der rationalen Zahlen. Zwei rationale Zahlen k n und l m sind genau dann gleich, wenn km = ln gilt. Weiters identifiziert man eine ganze Zahl k Z mit der Bruchzahl k Q. Offensichtlich gelten dann die Inklusionen N Z Q. Seien M und N beliebige Mengen. Eine Abbildung von M nach N ist eine Vorschrift, die jedem Element von M genau ein Element von N zuordnet. In dieser Allgemeinheit werden wir den Begriff der Abbildung selten verwenden. Der für uns wichtige Spezialfall reellwertiger Funktionen wird im Kapitel ausführlich besprochen werden.

2 Zahlen Eine Abbildung heißt bijektiv, falls umgekehrt zu jedem Element n N genau ein Element in M existiert, das n zugeordnet wird. Definition. Zwei Mengen M und N werden gleich mächtig genannt, wenn es eine bijektive Abbildung zwischen diesen Mengen gibt. Eine Menge M heißt abzählbar unendlich, wenn sie gleich mächtig wie N ist. Die Mengen N, Z und Q sind gleich mächtig, in einem gewissen Sinn also gleich groß. Alle drei Mengen haben unendlich viele Elemente, die abgezählt werden können. Jede Abzählung stellt eine bijektive Abbildung zu N her. Die Abzählbarkeit von Z sieht man aus der Darstellung Z = {0,,,,,,,...}. Für den Beweis der Abzählbarkeit von Q verwendet man das Diagonalverfahren nach Cantor : Man zählt hier in Richtung der Pfeile ab, wobei jede rationale Zahl nur bei ihrem ersten Auftreten berücksichtigt wird. Damit ist die Abzählbarkeit der positiven rationalen Zahlen (und damit aller rationalen Zahlen) nachgewiesen. Zur Veranschaulichung der rationalen Zahlen verwenden wir die Zahlengerade, welche man sich als (unendlich langes) Lineal vorstellen kann, bei dem ein (beliebiger) Punkt als Null ausgezeichnet ist. Die ganzen Zahlen sind äquidistant von Null ausgehend aufgetragen. Ebenso findet jede rationale Zahl entsprechend ihrer Größe einen eindeutigen Platz auf der Zahlengeraden, vgl. Abb... 0 a Abb... Die Zahlengerade. Die Zahlengerade besitzt aber auch Punkte, die nicht rationalen Zahlen zuordenbar sind. (Man sagt, dass Q nicht vollständig ist.) Beispielsweise ist die Länge der Diagonale d im Einheitsquadrat (vgl. Abb..) mit dem Lineal abmessbar. Bereits den Pythagoreern war bekannt, dass d = gilt, aber d = keine rationale Zahl ist. G. Cantor,

3 . Die reellen Zahlen Satz. / Q. Beweis: Der Beweis dieser Aussage wird indirekt geführt. Angenommen, wäre rational. Dann könnte man als gekürzten Bruch = k n Q schreiben. Quadrieren ergibt k = n und somit wäre k eine gerade Zahl. Das ist nur möglich, wenn Abb... Diagonale im Einheitsquadrat. k selbst gerade ist, also k =l. Dies oben eingesetzt ergibt l =n und nach Kürzen l = n. Somit wäre n ebenfalls gerade, was im Widerspruch zur Annahme steht, dass der Bruch k n gekürzt war. Bekanntlich ist die eindeutige positive Nullstelle des Polynoms x. Die nahe liegende Vermutung, dass alle nicht rationalen Zahlen Nullstellen von Polynomen mit ganzzahligen Koeffizienten sind, erweist sich jedoch als falsch. Es gibt weitere nicht rationale Zahlen (die so genannten transzendenten Zahlen), welche sich nicht so darstellen lassen. Beispielsweise ist die Kreiszahl π = / Q transzendent, kann aber auf der Zahlengeraden dargestellt werden als der halbe Umfang des Kreises mit Radius (z.b. durch Abrollen). Wir nehmen im Folgenden einen pragmatischen Standpunkt ein und konstruieren die fehlenden Zahlen als Dezimalzahlen. Definition. Eine endliche Dezimalzahl x mit l Stellen hat die Form x = ± d 0.d d d...d l mit d 0 N 0 und den Ziffern d i {0,,..., 9}, i l, wobeid l 0 gilt. Satz. (Darstellung rationaler Zahlen als Dezimalzahlen) Jede rationale Zahl lässt sich als endliche oder periodische Dezimalzahl schreiben. Beweis: Sei q Q, folglich q = k n mit k Z und n N. Man erhält die Darstellung von q als Dezimalzahl durch sukzessive Division mit Rest. Da der Rest r N jeweils die Bedingung 0 r<nerfüllt, wird der Rest spätestens nach n Schritten Null oder periodisch. Beispiel.5 Nehmen wir beispielsweise q = 5 7 Q. Fortgesetzte Division mit Rest zeigt, dass q = mit Divisionsresten 5,,,, 6,, 5,,,, 6,, 5,,,... gilt. Die Periode dieser Dezimalzahl ist sechs. Jede von Null verschiedene Dezimalzahl mit endlich vielen Stellen lässt sich als periodische Dezimalzahl (mit unendlich vielen Stellen) schreiben. Dazu vermindert man die letzte Dezimalstelle, die ja verschieden von Null ist, um eins und ergänzt als weitere Dezimalen unendlich oft die Ziffer 9. Beispielsweise ist dann 7 50 = 0. = ab der dritten Stelle periodisch. Damit kann Q als Menge jener Dezimalzahlen aufgefasst werden, deren Dezimalentwicklung ab einer bestimmten Stelle periodisch wird.

4 Zahlen Definition.6 Als Menge der reellen Zahlen R bezeichnet man alle Dezimalzahlen der Form ± d 0.d d d... mit d 0 N 0 und den Ziffern d i {0,..., 9}, d.h. Dezimalzahlen mit unendlich vielen Stellen. Die Menge R \ Q heißt Menge der irrationalen Zahlen. Offensichtlich gilt Q R. Nach dem bisher Gesagten sind die Zahlen und irrational. Es gibt aber sehr viel mehr irrationale als rationale Zahlen, wie der folgende Satz zeigt. Satz.7 R kann nicht abgezählt werden, ist also mächtiger als Q. Beweis: Der Beweis wird indirekt geführt. Wir nehmen an, man könnte die reellen Zahlen zwischen 0 und abzählen und schreiben eine Aufzählung an: 0.d d d d... 0.d d d d... 0.d d d d... 0.d d d d Mit Hilfe dieser Liste definieren wir nun die Dezimalstellen { falls dii =, d i = sonst. Dann ist x =0.d d d d... nicht in obiger Aufzählung enthalten im Widerspruch zur Annahme der Abzählbarkeit. Obwohl R also bedeutend mehr Zahlen als Q enthält, lässt sich jede reelle Zahl beliebig genau durch rationale Zahlen approximieren, z.b. π auf 9 Stellen π Q. Für praktische Anwendungen genügen gute Approximationen an die reellen Zahlen. Für waren solche bereits den Babyloniern bekannt ;, 5, 0 = =.96..., vgl. Abb... Die etwas ungewohnte Schreibweise kommt daher, dass die Babylonier in einem Zahlensystem zur Basis 60 rechneten.

5 . Ordnungsrelation und Arithmetik auf R 5 0 ;,5,0 5 ;5, Abb... Babylonische Keilschrifttafel YBC 789 (Yale Babylonian Collection, mit Genehmigung) von 900 vor unserer Zeit mit U bersetzung der Inschrift, nach []. Es ist ein Quadrat mit Seitenla nge 0 und Diagonale ; 5, 5 dargestellt. Das Verha ltnis betra gt ;, 5, 0.. Ordnungsrelation und Arithmetik auf R Im Folgenden schreiben wir reelle Zahlen (eindeutig) als Dezimalzahlen mit unendlich vielen Stellen, beispielsweise also statt 0.. Definition.8 (Ordnungsrelation) Seien a = a0.a a... und b = b0.b b... nichtnegative reelle Zahlen in Dezimaldarstellung, d.h. a0, b0 N0. (a) Man nennt a kleiner gleich b (und schreibt a b), falls a = b ist oder es einen Index j N0 gibt mit aj < bj und ai = bi fu r i = 0,..., j. (b) Weiters legt man fest, dass a b gilt und schreibt a b, falls b a. Diese Definition setzt die bekannte Ordnung von N und Q auf R fort. Die Ordnungsrelation besitzt folgende Interpretation auf der Zahlengeraden: Es gilt a b, falls a auf der Zahlengeraden links von b liegt, wobei a = b mo glich ist. Die Relation hat offenbar folgende Eigenschaften: Fu r alle a, b, c R gilt a a (reflexiv), a b und b c a c (transitiv), a b a=b (antisymmetrisch). und b a Im Fall a b und a = b schreibt man a < b und nennt a kleiner b. Weiters definiert man a b, falls b a ist (in Worten: a gro ßer gleich b), und a > b, falls b < a ist (in Worten: a gro ßer b). In a hnlicher Weise wie die Ordnung ko nnen Addition und Multiplikation von Q auf R fortgesetzt werden. Anschaulich verwendet man, dass jeder reellen Zahl eine Strecke auf der Zahlengeraden entspricht. Man definiert die Addition reeller Zahlen dann als Addition der entsprechenden Strecken.

6 6 Zahlen Eine rigorose und gleichzeitig algorithmische Definition der Addition geht von der Beobachtung aus, dass reelle Zahlen beliebig genau durch rationale Zahlen approximiert werden können. Seien a = a 0.a a... und b = b 0.b b... zwei nichtnegative reelle Zahlen. Durch Abschneiden nach der k-ten Dezimale erhalten wir zwei rationale Approximationen a (k) = a 0.a a...a k a und b (k) = b 0.b b...b k b. Dannista (k) + b (k) eine monoton wachsende Approximation an die zu definierende Zahl a + b. Das erlaubt, a + b als Supremum dieser Approximationen zu definieren. Zur rigorosen Rechtfertigung dieser Vorgangsweise verweisen wir auf Kap. 5. In gleicher Weise wird auch die Multiplikation reeller Zahlen definiert. Es zeigt sich, dass die reellen Zahlen mit der Addition und der Multiplikation (R, +, ) einen Körper bilden. Es gelten somit die üblichen Rechenregeln, z.b. das Distributivgesetz (a + b)c = ac + bc. Der folgende Satz fasst einige wichtige Rechenregeln für zusammen. Die Behauptungen können leicht mit Hilfe der Zahlengeraden verifiziert werden. Satz.9 Für alle a, b, c R gilt a b a + c b + c, a b und c 0 ac bc, a b und c 0 ac bc. Man beachte, dass a<bnicht a <b impliziert. Beispielsweise ist <, aber trotzdem gilt >. Für a, b 0 gilt jedoch stets a<b a <b. Definition.0 (Intervalle) man als Intervalle: Die folgenden Teilmengen von R bezeichnet [a, b] ={x R ; a x b} (a, b] ={x R ; a<x b} [a, b) ={x R ; a x<b} (a, b) ={x R ; a<x<b} abgeschlossenes Intervall; links halboffenes Intervall; rechts halboffenes Intervall; offenes Intervall. Intervalle lassen sich, wie durch Abb.. illustriert wird, anschaulich auf der Zahlengeraden darstellen. a b c d e f Abb... Die Intervalle (a, b), [c, d] und (e, f] auf der Zahlengeraden. Bemerkung. Es erweist sich als praktisch, die Symbole (minus Unendlich) und (Unendlich) einzuführen, mittels der Eigenschaft

7 . Ordnungsrelation und Arithmetik auf R 7 a R : <a<. Man definiert damit beispielsweise die uneigentlichen Intervalle [a, ) ={x R ; x a} (,b)={x R ; x<b} und weiters (, ) =R. Man beachte aber, dass und nur Symbole und keine reellen Zahlen sind. Als Anwendung der in Satz.9 gegebenen Eigenschaften der Ordnungsrelation lösen wir exemplarisch einige Ungleichungen. Beispiel. Man bestimme alle x R mit x 5 < x +. In diesem Beispiel sind zwei Ungleichungen enthalten, nämlich x 5 und 5 < x +. Die erste Ungleichung wird umgeformt zu x 7 x 7. Das ergibt eine erste Bedingung an x. Die zweite Ungleichung lautet x < x< und ergibt eine zweite Bedingung an x. DieLösung des ursprünglichen Problems muss beide Bedingungen erfüllen. Daher lautet die Lösungsmenge { L = x R ; 7 } [ x< = 7 ),. Beispiel. Man bestimme alle x R mit x x. Durch quadratisches Ergänzen formt man die Ungleichung um zu (x ) = x x +. Durch Wurzelziehen ergeben sich die zwei Fälle x oder x. Die Vereinigung beider Fälle ergibt die Lösungsmenge L = {x R ; x oder x } =(, ] [, ).

8 8 Zahlen. Maschinenzahlen Die reellen Zahlen können nur unvollständig am Computer realisiert werden. In exakter Arithmetik wie beispielsweise in maple sind reelle Zahlen durch symbolische Ausdrücke gegeben, z.b. =RootOf( Z^-). Mit Hilfe des Befehls evalf können diese auf sehr viele Stellen genau ausgewertet werden. Die in Programmiersprachen üblicherweise als Modell für die reellen Zahlen verwendeten Gleitpunktzahlen (floating point numbers) haben feste relative Genauigkeit, z.b. double precision mit 5 Bit Mantissenlänge. Für diese Maschinenzahlen gelten die Rechenregeln von R nicht, z.b.ist +0 0 = in double precision. Gleitpunktzahlen sind normiert durch das Institute of Electrical and Electronics Engineers IEEE sowie durch die International Electrotechnical Commission IEC 559:989. Im Folgenden geben wir einen kurzen Abriss dieser Maschinenzahlen. Weiter gehende Informationen findet man in [0, 7]. Man unterscheidet zwischen einfach langem und doppelt langem Format. Das einfach lange Format (einfache Genauigkeit, single precision) benötigt Bit Speicherplatz V e M 8 Das doppelt lange Format (doppelte Genauigkeit, double precision) benötigt 6 Bit Speicherplatz V e M 5 Hier bezeichnet V {0, } das Vorzeichen, e min e e max ist der Exponent (eine ganze Zahl mit Vorzeichen); schließlich ist M die Mantisse der Länge p M = d + d d p p = d d...d p, d j {0, }. Diese Darstellung entspricht der folgenden Zahl x: x =( ) V e p d j j. Normalisierte Gleitpunktzahlen in der Basis haben stets d =. Deshalb muss man d nicht speichern und enthält für die Mantissenlängen j= einfach genau p = ; doppelt genau p = 5.

9 . Rundung 9 Der Einfachheit halber betrachten wir nur normalisierte Gleitpunktzahlen. Mit M = M max und e = e max erhält man die größte Gleitpunktzahl x max = ( p) emax. Mit M = M min und e = e min ergibt sich die kleinste positive (normalisierte) Gleitpunktzahl x min = emin. Die Gleitpunktzahlen liegen nicht gleichmäßig auf der Zahlengeraden verteilt, ihre relative Dichte ist aber annähernd konstant, vgl. Abb e min e min e min+ Abb..5. Gleitpunktzahlen auf der Zahlengerade, nach [7]. Im IEEE Standard gelten näherungsweise folgende Werte: x min x max einfach genau doppelt genau Weiters gibt es noch spezielle Symbole wie z.b. ±INF... ± NaN... notanumber;z.b.beinull dividiert durch Null. Mit diesen Symbolen kann auch ohne Programmabbruch weitergerechnet werden.. Rundung Sei x = a e R mit / a< und x min x x max. Weiters bezeichne u, v zwei Gleitpunktzahlen, welche x einschließen, d.h. u und v seien benachbarte Maschinenzahlen mit u x v. Dannist und u = 0 e b...b p v = u + 0 e = u + 0 e (p )

10 0 Zahlen Somit gilt v u = e p.für die optimale Rundung rd(x) vonx ist daher rd(x) x (v u) =e p. Damit lässt sich der relative Fehler der Rundung angeben. Wegen a gilt rd(x) x x e p a e p = p. Dieselben Überlegungen gelten für negative x (indem man den Betrag nimmt). Definition. Die Zahl eps = p heißt relative Maschinengenauigkeit. Eine wichtige Anwendung dieses Konzepts ist der folgende Satz. Satz.5 Sei x R mit x min x x max. Dann existiert ε R mit rd(x) = x( + ε) und ε eps. Beweis: Wir definieren ε = rd(x) x. x Nach der obigen Rechnung gilt ε eps. Experiment.6 (Experimentelle Bestimmung von eps) Sei z die kleinste positive Maschinenzahl, für die + z> gilt. = , z = = p. Somit folgt z = eps. Die Zahl z lässt sich experimentell bestimmen, und damit auch eps. (Man beachte, dass in MATLAB die Zahl z als eps bezeichnet wird.) Im IEC/IEEE Standard gilt: einfach genau : eps = , doppelt genau : eps = Bei doppelt genauer Arithmetik hat man in etwa 6 Stellen Genauigkeit zur Verfügung..5 Übungen. Zeigen Sie, dass irrational ist.. Beweisen Sie für alle a, b R die Dreiecksungleichung a + b a + b.

11 .5 Übungen Hinweis: Unterscheiden Sie die Fälle, dass a und b entweder dasselbe oder verschiedenes Vorzeichen haben.. Lösen Sie die folgenden Ungleichungen sowohl händisch als auch mit maple (mittels solve). Geben Sie die Lösungsmenge in Intervallschreibweise an. (a) x 8x +, (b) (c) x x, (d) (e) x < 6+x, (f) x > +x, +x x >, x x, (g) x x +, (h) x x +<.. Berechnen Sie die Binärdarstellung der Gleitpunktzahl x = 0. in einfach genauer IEEE-Arithmetik ( Bit Speicherplatz). 5. Bestimmen Sie experimentell die relative Maschinengenauigkeit eps. Hinweis: Schreiben Sie in der Programmiersprache Ihrer Wahl ein Computerprogramm, das Ihnen die kleinste Maschinenzahl z mit + z> berechnet.

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Diana Lange. Generative Gestaltung Operatoren

Diana Lange. Generative Gestaltung Operatoren Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Testklausur 1 zur Vorlesung. Modellierung und Programmierung I. Dr. Monika Meiler Zeit: 60 Minuten

Testklausur 1 zur Vorlesung. Modellierung und Programmierung I. Dr. Monika Meiler Zeit: 60 Minuten Matrikelnummer: Punkte: Testklausur 1 zur Vorlesung Modellierung und Programmierung I Dr. Monika Meiler Zeit: 60 Minuten Bemerkungen: Jedes Blatt ist mit der Matrikelnummer zu versehen. Jede Aufgabe ist

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Mind Mapping am PC. für Präsentationen, Vorträge, Selbstmanagement. von Isolde Kommer, Helmut Reinke. 1. Auflage. Hanser München 1999

Mind Mapping am PC. für Präsentationen, Vorträge, Selbstmanagement. von Isolde Kommer, Helmut Reinke. 1. Auflage. Hanser München 1999 Mind Mapping am PC für Präsentationen, Vorträge, Selbstmanagement von Isolde Kommer, Helmut Reinke 1. Auflage Hanser München 1999 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 21222 0 schnell

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr