Zielsetzung. Problematik
|
|
|
- Manuela Baumann
- vor 9 Jahren
- Abrufe
Transkript
1 Kreditrisiko-Modellierung für Versicherungsunternehmen Tamer Yilmaz 21. November 2007
2 Zielsetzung Die Ermittlung der Eigenkapitalhinterlegung für das Kreditrisiko, die auf das Versicherungsunternehmen bei Ausfall von Rückversicherern zukommt. 2
3 Motivation zur quantitativ ausgerichteten Kreditrisiko-Modellierung für VU Eigenkapitalhinterlegung nach Solvency II Solvency I zu Solvency II Grund: mehr Verantwortung an die VU abgeben 3-Säulen-Prinzip von Bedeutung 1.Säule: EK-Anforderungen Standardansatz und internes Modell von Bedeutung internes Modell, um eine genauere Abschätzung des Risikos abzugeben Beziehung zwischen Erst- und Rückversicherern 3
4 Grundlegende Komponente für die Kreditrisiko-Modellierung Ausfallwahrscheinlichkeiten (PD) Migrationswahrscheinlichkeiten Verlustquote (LGD) bzw. Rückzahlungsrate (RR) Ausfallbedrohter Betrag (EAD) 4
5 Ausfallwahrscheinlichkeiten (PD) Berechnung der Ausfallwahrscheinlichkeit von Moody s erfolgt anhand der Formel: PD X AnzahlderDefault-Unternehmenin X-Klasse = PX( D = 1) = Gesamtanzahlder Unternehmenin X-Klasse Die Ermittlung vom Erwartungswert und der zugehörigen Standardabweichung der einzelnen Ratingklassen aus den Moody s Daten, um die empirischen Verteilungen zu bilden und in das Modell zu integrieren. 5
6 Migrationswahrscheinlichkeiten Theorie erfolgt nach homogenen Markov-Ketten für diskrete Zeit Praxis erfolgt nach Aufteilung der N(0;1) und darauf folgende Simulation 6
7 Verlustquote (LGD) bzw. Rückzahlungsrate (RR) Berechnung der Verlustquote mit der Formel LGD = 1 RR = 1 Rückzahlungen Nominalwert Rückzahlungsraten werden nach Priorität untergliedert: Senior Secured Senior Unsecured Senior Subordinated Subordinated Junior Subordinated 7
8 Ausfallbedrohter Betrag (EAD) Rückstellungen der Rückversicherer: Beitragsüberträge (UPR) Abrechnungsforderungen (Ledger) Deckungsrückstellungen (O/S) Rückstellungen für noch nicht abgewickelte Versicherungsfälle (IBNR) Sonstige Rückstellungen Zuordnung der Rückstellungen auf die Schuldarten, wie zum Beispiel die Beitragsüberträge werden mit Senior Secured simuliert. 8
9 Risikomaße für die Eigenkapitalhinterlegung Erwartungswert als absolutes Mindestkapital (MCR) Value-at-Risk 99,5 % Tail-Value-at-Risk 99,5 % als Zielkapital (SCR) Nur Tail-Value-at-Risk erfüllt alle Eigenschaften (Subadditivität, Positive Homogenität, Monotonie, Translationsinvarianz) für ein kohärentes Risikomaß 9
10 Theorie und Praxis der Kreditrisikomessung Wahrscheinlichkeitsverteilungen, Momentenmethode Monte-Carlo-Simulation Basis-Modell ohne Berücksichtigung von Korrelationsfaktoren Ein-Faktor-Modell zur Berücksichtigung eines einzigen Korrelationsfaktors Multi-Faktor-Modell zur Berücksichtigung der Korrelationen Migration-Modell zur Berücksichtigung des Migrationsrisikos 10
11 Wahrscheinlichkeitsverteilungen Monte-Carlo-Simulation Verwendung der Betaverteilung der modifizierten Betaverteilung der Gammaverteilung mit der Herleitung zur zugehörigen Momentenmethode Stochastische Simulation, die mit einer großen Anzahl von Simulationsläufen zum Mittelwert konvergiert. Die Formel für den erwarteten Verlust lautet: EL Für das Portfolio gilt: = PD LGD EAD = PD (1 RR) EAD n P i i i i i= 1 i= 1 11 n = = EL EL EAD LGD PD
12 Ein-Faktor-Modell Gleichung des Ein-Faktor-Modells: Y = ς F + 1 ς U ( i = 1,..., m) i i i i mit FU, N(0,1) ; Assetkorrelation i ς i wird anhand einer empirischen Verteilung, die die Assetvolatilität der repräsentativen Unternehmen beschreiben, simuliert Mittelwert Std.Abw. Minimum Maximum Assetvolatilität 0,2435 0,1316 0,0161 0,
13 Multi-Faktor-Modell Die Gleichung wird erweitert Y = ς F + U i i i i mit F = wg; j 0 J i ij j j= 1 J mit w = w = 1 und G wird mit N(0,1) simuliert ij ij j j= 1 j= j
14 Technische Fachhochschule Berlin 14 Tamer Yilmaz 21. November 2007 Realistisches Portfolio Total Aa3 XL Aa3 Transatlantic Aa2 Swiss B1 Singapoure Baa3 Scottish Aa3 AXA A1 ACE Total Sonstige IBNR O/S Ledger UPR Rating Rückversicherer
15 anhand eines realistischen Portfolios Portfolio mit einem Gesamtexposure in Höhe von ,00 In Basis-Modell Mittelwert E(X) ,29 VaR 99,5% ,05 Ein-Faktor-Modell , ,08 Multi-Faktor-Modell , ,38 + etwa 10% Migrationsrisiko 15
Portfolioorientierte Quantifizierung des Adressenausfall- und Restwertrisikos im Leasinggeschäft - Modellierung und Anwendung
Portfolioorientierte Quantifizierung des Adressenausfall- und Restwertrisikos im Leasinggeschäft - Modellierung und Anwendung von Dr. Christian Helwig Fritz Knapp Verlag Jßg Frankfurt am Main Abbildungsverzeichnis
Ermittlung des Ausfallrisikos
Ermittlung des Ausfallrisikos Das Ausfallrisiko, dessen Ermittlung maßgeblich von der Datenqualität der Vorsysteme abhängt, nimmt in der Berechnung der Eigenmittelanforderung einen relativ geringen Stellenwert
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Zwei einfache Kennzahlen für große Engagements
Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt
Bonitätsrisiko und Unternehmensanleihen
Bonitätsrisiko und Unternehmensanleihen Burkhard Erke Montag, März 31, 2008 Die Folien orientieren sich an (a) Unterrichtsmaterialien von Backus (NYU) und (b) Neuere Entwicklungen am Markt für Unternehmensanleihen,
Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011
Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit
AUTOMATISIERTE HANDELSSYSTEME
UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie
Portfoliorisiko und Minimum Varianz Hedge
ortfoliorisiko und Minimum Varianz Hedge Vertiefungsstudium Finanzwirtschaft rof. Dr. Mark Wahrenburg Überblick Messung von Risiko ortfoliodiversifikation Minimum Varianz ortfolios ortfolioanalyse und
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko
Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion
von Thorsten Wingenroth 358 Seiten, Uhlenbruch Verlag, 2004 EUR 98,- inkl. MwSt. und Versand ISBN 3-933207-42-8
Reihe Portfoliomanagement, Band 17: RISIKOMANAGEMENT FÜR CORPORATE BONDS Modellierung von Spreadrisiken im Investment-Grade- Bereich von Thorsten Wingenroth 358 Seiten, Uhlenbruch Verlag, 2004 EUR 98,-
SST: - In Kraft - Ab 2011 verbindlich - Modellabhängig
Standardmodell oder internes Modell in der Lebensversicherung? Prüfungskolloquium zum Aktuar SAV 2010 Caroline Jaeger, Allianz Suisse Ursprung der Fragestellung Solvency I: - Risikounabhängig - Formelbasiert
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
Quantilsschätzung als Werkzeug zur VaR-Berechnung
Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, [email protected] Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird
Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008
Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Risikoeinstellungen empirisch
Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29.
Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29. Januar 2008 Prüfungsmodus Prüfungsdauer schriftliche Klausur 60 Minuten Punktemaximum:
Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.
XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------
Mean Time Between Failures (MTBF)
Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen
Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der
Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang
Risiko und Versicherung - Übung
Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann [email protected] [email protected] https://insurance.uni-hohenheim.de
Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm
Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag
Adressenausfallrisiken. Von Marina Schalles und Julia Bradtke
Adressenausfallrisiken Von Marina Schalles und Julia Bradtke Adressenausfallrisiko Gliederung Adressenausfallrisiko Basel II EU 10 KWG/ Solvabilitätsverordnung Adressenausfallrisiko Gliederung Rating Kreditrisikomodelle
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS
Artenkataster. Hinweise zur Datenbereitstellung. Freie und Hansestadt Hamburg. IT Solutions GmbH. V e r s i o n 1. 0 0.
V e r s i o n 1. 0 0 Stand Juni 2011 Freie und Hansestadt Hamburg Behörde für Stadtentwicklung und Umwelt IT Solutions GmbH Artenkataster Auftraggeber Freie und Hansestadt Hamburg Behörde für Stadtentwicklung
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Grundlagen zur Wheatstone'schen Brückenschaltung
Grundlagen zur Wheatstone'schen Brückenschaltung Stand: 14.07.2012 Herleitung der Brückengleichung Die Brückenschaltung besteht aus zwei parallelgeschalteten Spannungsteilern. Beide Spannungsteiler werden
Die drei Kernpunkte der modernen Portfoliotheorie
Die drei Kernpunkte der modernen Portfoliotheorie 1. Der Zusammenhang zwischen Risiko und Rendite Das Risiko einer Anlage ist die als Varianz oder Standardabweichung gemessene Schwankungsbreite der Erträge
Markus Pister (Autor) Integration formaler Fehlereinflussanalyse in die Funktionsentwicklung bei der Automobilindustrie
Markus Pister (Autor) Integration formaler Fehlereinflussanalyse in die Funktionsentwicklung bei der Automobilindustrie https://cuvillier.de/de/shop/publications/1145 Copyright: Cuvillier Verlag, Inhaberin
Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer
Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer xxx 0 Agenda Der Aufbau der Solvenz-Bilanz Zur Begriffsbestimmung des SCR Die Auswirkung
Das Black-Scholes Marktmodell
Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt
B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!
Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden
Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz
Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis
Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG
Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie
Seminar Finanzmathematik
Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie
Diskrete Modellierung
Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten
MaRisk-relevante Anpassungen im Kreditportfoliomodell. GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH
im Kreditportfoliomodell GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH Agenda Überblick KPM-KG Bedeutung des Portfoliomodells für den MaRisk-Report MaRisk-relevante Anpassungen MaRisk-relevante
Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit
Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall
Funktionaler Zusammenhang. Lehrplan Realschule
Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge
Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003
Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.
Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung
Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes
Seminar Finanzmathematik
Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung
Schleswig-Holstein 2011. Kernfach Mathematik
Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative
Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für GTR und CAS Inhaltsverzeichnis Inhaltsverzeichnis 1 Ganzrationale
Elternzeit Elternzeit (EZ)
Elternzeit (EZ) Rechte - Pflichten - Gestaltung -1 - Dauer/Aufteilung EZ - auch nach Einführung Elterngeld (12/14 Monate) Dauer EZ maximal 3 Jahre - berufstätige Eltern können EZ flexibel aufteilen bzw.
Computational Finance
Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude
Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)
HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz
Laufende Auswertung von Feedback-Fragebögen... 2. Eine Vorlage zur Auswertung eines Fragebogens und die Präsentation erstellen...
Inhaltsverzeichnis Laufende Auswertung von Feedback-Fragebögen... 2 Eine Vorlage zur Auswertung eines Fragebogens und die Präsentation erstellen... 2 Namen verwalten... 4 Dr. Viola Vockrodt-Scholz edvdidaktik.de
Offene Immobilienfonds bleiben wertstabile Anlage mit geringen Risiken. BVI-Untersuchung zeigt jungen Objektbestand
Investment-Information Offene Immobilienfonds bleiben wertstabile Anlage mit geringen Risiken Bundesverband Investment und Asset Management e.v. BVI-Untersuchung zeigt jungen Objektbestand Immobilien breit
FAMILIENSTAND ALLEINERZIEHENDE MÜTTER
Umfrage unter Eltern zur Kinder-Betreuung nach der Trennung Match-patch.de die Partnerbörse für Singles mit Familiensinn hat im Juni eine Umfrage unter seinen Mitgliedern durchgeführt. Bei der Befragung,
Renditeberechnung Generali
Renditeberechnung Generali Jahr Parameter Prämie / Einzahlung Cash-Flows Sparteilbeiträge und Rückkaufswerte 1) Prämiendatum Prämie total Davon für Prämienbefr. 2) Davon für Todesfall 3) Prämie netto für
Ergänzungen zum Fundamentum
Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
Value at Risk Einführung
Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim [email protected] Institut für Wirtschaftsinformatik Leibniz Universität Hannover
Chemie Zusammenfassung KA 2
Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen
- Auszug - Anlage Rechenschaftsbericht 2014 für das Sondervermögen Sozialfonds Bürger helfen Bürgern Winnenden
- Auszug - Anlage Rechenschaftsbericht 2014 für das Sondervermögen Sozialfonds Bürger helfen Bürgern Winnenden Erstellt von der Geschäftsführung des Sozialfonds Bürger helfen Bürgern Winnenden zur Ergänzung
Fragebogen zur Anwendung der Mittelstandklausel in Vergabeverfahren
Fragebogen zur Anwendung der Mittelstandklausel in Vergabeverfahren Mit der Online-Umfrage sollen Informationen zur Nutzung der Möglichkeiten des 97 GWB durch Vergabestellen erhoben werden. Ziel ist es
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Prüfungsfach Mathematik Samstag, 08. Juni 2002
MANAGEMENT CENTER INNSBRUCK Bitte auf jedem Blatt den Vor- und Nachnamen angeben:... Prüfungsfach Mathematik Samstag, 08. Juni 2002 Sollten Sie bereits in einem der vorangegangenen Jahre an der Vorbereitungsprüfung
Kapitel 8.3: Kalkulation vom Hundert und im Hundert. Kapitel 8.4: Durchführung der Absatzkalkulation an einem Beispiel
1 von 7 04.10.2010 15:59 Hinweis: Diese Druckversion der Lerneinheit stellt aufgrund der Beschaffenheit des Mediums eine im Funktionsumfang stark eingeschränkte Variante des Lernmaterials dar. Um alle
Dynamische Methoden der Investitionsrechnung
4 Dynamische Methoden der Investitionsrechnung Lernziele Das Konzept des Gegenwartswertes erklären Den Überschuss oder Fehlbetrag einer Investition mit Hilfe der Gegenwartswertmethode berechnen Die Begriffe
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6
Resultate GfS-Umfrage November 2006. Wie bekannt ist das Phänomen Illettrismus bei der Schweizer Bevölkerung?
Resultate GfS-Umfrage November 2006 Wie bekannt ist das Phänomen Illettrismus bei der Schweizer Bevölkerung? Frage 1: Kennen Sie das Phänomen, dass Erwachsene fast nicht lesen und schreiben können, obwohl
Kleine Einführung in die lineare Regression mit Excel
Kleine Einführung in die lineare Regression mit Excel Grundoperationen mit Excel Werte mit Formeln berechnen Bsp.: Mittelwert und Standardabweichung Das $-Zeichen Beispielauswertung eines Versuches Daten
einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110
Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung
Deckungsbeitragsrechnung Beispiel. Deckungsbeitragsrechnung Beispiel
Deckungsbeitragsrechnung Beispiel Ein Unternehmen produziert zwei Produkte (P1 und P2). Die realisierten Stückerlöse betragen CHF 1 (P1) und CHF 14 (P2). Die Stückselbstkosten betragen CHF 11 (P1) und
Veräußerung eines einzelkaufmännischen Unternehmens
Veräußerung eines einzelkaufmännischen Unternehmens I. Grundfall 1. Sachverhalt Einzelkaufmännisches Unternehmen A Anlagevermögen 500.000 Eigenkapital 900.000 Umlaufvermögen 400.000 900.000 900.000 A veräußert
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Alle Bestandteile dieses Dokuments sind urheberrechtlich geschützt. 2014 dwif-consulting GmbH. Dieses Dokument ist Teil der Präsentation und ohne die
Alle Bestandteile dieses Dokuments sind urheberrechtlich geschützt. 2014 dwif-consulting GmbH. Dieses Dokument ist Teil der Präsentation und ohne die mündliche Erläuterung unvollständig. 31.10.2014 2 Anmerkungen
Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte)
Aufgabe 1: Steuerwirkungen auf Investitionsentscheidungen (22 Punkte) Ein Investor versucht im Zeitpunkt 0 eine Entscheidung über die optimale Verwendung der ihm zur Verfügung stehenden Mittel in Höhe
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung
ARCH- und GARCH-Modelle
ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation
Abb. 30: Antwortprofil zum Statement Diese Kennzahl ist sinnvoll
Reklamationsquote Stornierungsquote Inkassoquote Customer-Lifetime-Value Hinsichtlich der obengenannten Kennzahlen bzw. Kontrollgrößen für die Neukundengewinnung wurden den befragten Unternehmen drei Statements
Qualitätsmanagement an beruflichen Schulen in Deutschland: Stand der Implementierung. Diplomarbeit
Qualitätsmanagement an beruflichen Schulen in Deutschland: Stand der Implementierung Diplomarbeit vorgelegt an der Universität Mannheim Lehrstuhl für Wirtschaftspädagogik Prof. Dr. Hermann G. Ebner von
Entwicklung eines Beratungsprogramms zur Förderung der emotionalen Intelligenz im Kindergarten
Entwicklung eines Beratungsprogramms zur Förderung der emotionalen Intelligenz im Kindergarten Dissertation Zur Erlangung des sozialwissenschaftlichen Doktorgrades der Sozialwissenschaftlichen Fakultät
y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit
Dokumentation. estat Version 2.0
Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim
How-to: Webserver NAT. Securepoint Security System Version 2007nx
Securepoint Security System Inhaltsverzeichnis Webserver NAT... 3 1 Konfiguration einer Webserver NAT... 4 1.1 Einrichten von Netzwerkobjekten... 4 1.2 Erstellen von Firewall-Regeln... 6 Seite 2 Webserver
BUNDESGESETZBLATT FÜR DIE REPUBLIK ÖSTERREICH. Jahrgang 2015 Ausgegeben am 21. Oktober 2015 Teil II
1 von 6 BUNDESGESETZBLATT FÜR DIE REPUBLIK ÖSTERREICH Jahrgang 2015 Ausgegeben am 21. Oktober 2015 Teil II 315. Verordnung: Schwankungsrückstellungs-Verordnung 2016 VU-SWRV 2016 315. Verordnung der Finanzmarktaufsichtsbehörde
Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage
Arnd Wiedemann Risikotriade Zins-, Kredit- und operationelle Risiken 2., überarbeitete Auflage . XI 1 Einleitung: Risikomessung als Fundament der Rendite-/Risikosteuerung 1 2 Zinsrisiko 3 2.1 Barwertrisiko
Comprehensive Quantitative Impact Study 2010
Comprehensive Quantitative Impact Study 2010 Handelsbuch (Trading Book) Karsten Stickelmann Zentralbereich Banken und Finanzaufsicht Deutsche Bundesbank Frankfurt am Main, 18. Februar 2010 Wesentliche
Bischöfliches Generalvikariat Münster Hauptabteilung Schule und Erziehung Schulverwaltung
Seite - 2 - Seite - 2 - Versorgungsänderungen in den letzten 10 Jahren Änderungen des 2. Haushaltsstrukturgesetzes in 1994 und 1999 Änderungen im Beamtenversorgungsgesetz Änderungsgesetz 01.01.1992 Änderungsgesetz
