musikalischen Akustik
|
|
|
- Matilde Brahms
- vor 9 Jahren
- Abrufe
Transkript
1 JOHANNES BARKOWSKY Mathematische Quellen der musikalischen Akustik Mit 305 graphischen Darstellungen und 71 Tabellen 2007 FLORIAN NOETZEL VERLAG HEINRICHSHOFEN-BÜCHER WILHELMSHAVEN
2 sverzeichnis 1. Mathematische Grundlagen 1.1 Ableiten und Integrieren Sinus-und Kosinusfunktion Komplexe Zahlen Polarkoordinaten Euler-Gleichung Bogenmaß und Sinusfunktionen Fourier-Reihe Gibbs-Phänomen Addition von Sinusschwingungen Einige Definitionen Schallwahrnehmung 2.1 Das Gehör Ohm'sches Grundgesetz der Akustik Residualtöne Nicht-lineare Übertragung Klirrfaktor Kombinationstöne Obertöne Schwebungen und.rauhigkeit 67
3 2.7 Dezibel (db) Schalldruckpegel Addition von Schalldrücken Schallleistungspegel und Schallintensitätspegel Wahrnehmung von Lautheit Phon und Sone Musikalische Dynamikstufen Bewertungskurven Binaurales Hören Tonhöhe, Tonchroma, absolutes Gehör Stimmungssysteme 3.1 Der Tonraum Temperierte Stimmung Pythagoräische Stimmung Reine Stimmung Mitteltönige Stimmungen Zyklische Stimmungen Auswahlsysteme Außereuropäische Tonsysteme Physikalische Herleitung von Tonleitern Kirchentonarten Klangsynthese 4.1 Schwingung von Luftmolekülen Schallwandler Additive Synthese 72S 4.3 Amplitudenmodulation Ringmodulation Multiplikative Mischung 7 34
4 4.4 Frequenzmodulation Chowning FM Waveshaping Tschebyscheff-Polynome Subtraktive Synthese Formanten Formanten der Singstimme Formanten der Sprechstimme Rauschen Synthese mit Hilfe von Wellenformspeichern Karplus-Strong-Algorithmus Normalisierung A-D-, D-A-Wandlung und Störabstand Rekonstruktionsfilter Datenreduktion: verdecktes Rauschen Klangerzeugung durch schwingende Luftsäulen 5.1 Volumen, Druck und Temperatur Adiabatenexponent 7SO 5.2 Wellengleichung Schallgeschwindigkeit Lösung der Wellengleichung Fortschreitende Wellen Reflektierte Wellen Beidseitig offene Pfeifen Einseitig offene Pfeifen Zylindrisches Rohr, druckgesteuert Konisches Rohr Bauformen der Orgelpfeifen 227
5 5.6 Schallerregung in Labialpfeifen Laminare und turbulente Strömung Schneidenton Mensur Akustische Impedanz Dämpfung und Absorption Klangerzeugung durch schwingende Saiten 6.1 Schwingender Massenpunkt Wellengleichung für eine Saite ohne Biegesteifigkeit Lösung nach Bernoulli Lösung nach d'alembert Stegkräfte Auslenkung einer angeschlagenen Saite Grundfrequenz einer Saite ohne Biegesteifigkeit Saiten mit Biegesteifigkeit Klavier und Flügel Bewegung der gestrichenen Saite nach Helmholtz Wolfstöne 3 7S 7. Klangerzeugung durch schwingende Membranen 7.1 Zweidimensionale Wellengleichung Lösung der Wellengleichung Randbedingungen Die kreisrunde Membran Lösung der Wellengleichung Bessel'sche Funktionen Schwingungsmoden 343
6 Klanganalyse 8.1 Fourier-Transformation Herleitung der Fourier-Koeffizienten Diskrete Fourier-Transformation und Rücktransformation Abtasttheorem Fourier-Transformation mit komplexen Koeffizienten Rücktransformation Schnelle Fourier-Transformation (FFT) Fourier-Integral Reelle Spektralfunktion Fensterfunktionen Anzahl der Abtastpunkte korrigieren Spektrogramme Beurteilung einer Zeitfunktion Weitere Funktionen und Transformationen 9.1 Autokorrelation Cepstrum Faltungstheorem Laplace-Transformation Sprungfunktion Rechteckpuls Stufenfunktion Dirac'sche Deltafunktion 439 ^ 9.5 Übertragungsfunktionen Abtastfunktion z-transformation Kurvenintegrale Fourier-, Laplace-, z-transformation im Vergleich 455
7 1 0. Gedämpfte Schwingungen Frequenz einer gedämpften Schwingung Inharmonizität des Flötentons? Spektrum einer gedämpften Schwingung Klangfilterung 11.1 Kondensator Ladungskurve Spule Filterung durch.fourier-transformation Filterung durch Faltung Nicht-rekursive Filter Linearer Phasengang Nullstellen Filterlänge n = Filterlänge n = Berechnung der Übertragungsfunktion Filterkoeffizienten und Fourier-Kosinusreihe Zeitunterschied - Frequenzunterschied Rekursive Filter Resonanzfilter Raumakustik 12.1 Reflexion, Brechung, Beugung, Streuung Schallreflexion Schallbrechung Schallbeugung Schallstreuung Huygens-Fresnel'sches Prinzip Gangunterschied der Elementarwellen Fraunhofer'sche Beugung Schallreflexionen im Raum 544
8 12.5 Absorption Helmholtz-Resonatoren Nachhall Tabellen der Schallabsorption in Luft Beispielrechnungen Hörsamkeit Sprachverständlichkeit 5/ Haas-Effekt Sprachübertragungsindex STI Raumakustische Kriterien für die Aufführung von Musik 577 Griechische Buchstaben 584 Vergrößerung und Verkleinerung von Einheiten (Sl-Präfixe) 585 Übersicht der Formelzeichen 587 Bibliographie 597 Index 605
Einführung in die Akustik
Einführung in die Akustik von Hans Borucki 2, durchgesehene A uflage 1980 Fcc: : ::: r;:r:h 5 Technische noc^c^u:? Darmstadt HoaftcchuSü/tTüSe 4 x 0=64288 Dara Bibliographisches Institut Mannheim/Wien/Zürich
Einführung in die Akustik
Einführung in die Akustik von HANS BORUCKI 3., erweiterte Auflage Wissenschaftsverlag Mannheim/Wien/Zürich Inhalt 1. Allgemeine Schwingungslehre 13 1.1. Begriff der Schwingung 13 1.1.1. Die mechanische
Digitale Signalverarbeitung
Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen
Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme
Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere
Fourierreihen periodischer Funktionen
Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung
EPI WS 2007/08 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen
Signale, Systeme und Klangsynthese
Martin Neukom Signale, Systeme und Klangsynthese Grundlagen der Computermusik PETER LANG Bern Berlin Bruxelles Frankfurt a. M. New York Wien Inhaltsverzeichnis Vorwort Dank 21 23 1 Einleitung 25 1.1 Übersicht.......
EPI WS 2008/09 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte
Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus
7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich
Mathematik für Ingenieure mit Maple
Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit
PHYSIK IVI. Alfred Böge. Grundlagen, Versuche, Aufgaben, Lösungen. Unter Mitarbeit von Walter Schlemmer
Alfred Böge PHYSIK Grundlagen, Versuche, Aufgaben, Lösungen Unter Mitarbeit von Walter Schlemmer mit 396 Bildern, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung Siebte, überarbeitete Auflage
Akustische Phonetik. Uwe Reichel, Phil Hoole IPS, LMU München
Akustische Phonetik Uwe Reichel, Phil Hoole IPS, LMU München Phonetische Vorgänge Die Bereiche des signalphonetischen Bandes Aus Pompino-Marschall (1995), Abb. 2, S. 14 Inhalt Teil I: Allgemeine Akustik
Wohlfühlatmosphäre durch flexible Akustik
EVVC AG IV Sitzung 2014 Gerriets Acoustics Wohlfühlatmosphäre durch flexible Akustik Die Gerriets GmbH - Gegründet 1946 durch Hans Gerriets - ansässig in Umkirch, 10 km von Freiburg - ca. 180 Angestellte
8. Akustik, Schallwellen
Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der
W.Güth. Einführung indie Akustik der Streichinstrumente
W.Güth Einführung indie Akustik der Streichinstrumente S. Hirzel Verlag Stuttgart/Leipzig 1995 Inhaltsverzeichnis Vorwort 5 I. Die Statik der Geige 11 I, 1 Die statische Kraft 11 I, 1,1 Die Überlagerung
Anfänge in der Antike
Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und
Inhaltsverzeichnis - "- "- - " Einleitung Was ist Schall? 1 Was ist Akustik? 4
- "- "- - " Einleitung Was ist Schall? 1 Was ist Akustik? 4 Einige Begriffe aus der Schwingungslehre Einige Beispiele von Schwingungen 7 Komplexe Darstellung harmonischer Schwingungen I I Schwebungen 12
Generator (Wellenform) Resonator (Klangformung / Filter) Schallabstrahlung. Generator Resonator 1 Resonator 2 Resonator n Schallabstrahlung
Musikinstrument als lineares System (LTI) Generator (Wellenform) Resonator (Klangformung / Filter) Schallabstrahlung Aufteilung in 2 Klassen a) Rückkopplungsfrei Generator Resonator 1 Resonator 2 Resonator
Einführung in die Physik I. Schwingungen und Wellen 3
Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
12. Vorlesung. I Mechanik
12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene
Inhalt dieses Vorlesungsteils - ROADMAP
Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des
Grundlagen, Versuche, Aufgaben, Lösungen. Unter Mitarbeit von Gert Böge, Wolfgang Böge und Walter Schlemmer
Alfred Böge PHYSIK Grundlagen, Versuche, Aufgaben, Lösungen Unter Mitarbeit von Gert Böge, Wolfgang Böge und Walter Schlemmer mit 389 Bildern, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung
Die Physik des Klangs
Die Physik des Klangs Eine Einführung von Klaus Gillessen STUDIO VERLAG Bibliographische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
Grundlagen, Versuche, Aufgaben, Lösungen. Mit 389 Abbildungen, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung
Alfred Böge Jürgen Eichler Physik Grundlagen, Versuche, Aufgaben, Lösungen 10., überarbeitete und erweiterte Auflage Mit 389 Abbildungen, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik
12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse
Grundlagen, Versuche, Aufgaben, Losungen. 9., neu bearbeitete und erweiterte Auflage
Alfred Boge Jtirgen Eichler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Physik Grundlagen, Versuche, Aufgaben,
Die Blockflöte akustisch beleuchtet. Hans-Christof Maier
Die Blockflöte akustisch beleuchtet Hans-Christof Maier Die Tonerzeugung Schneidenton Schwingungserzeugung am Labium Resonanzen Schwingungsverstärkung im Flötenrohr Der Schneidenton Ein Luftblatt wird
DER SCHALL ALS MECHANISCHE WELLE
DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.
Virtuelle Raumakustik Faltungshall, Spiegelschallquellen. von Kai Oertel
Faltungshall, Spiegelschallquellen von Inhalt 1. Motivation 2. Raumakustik Grundbegriffe 3. Raumakustische Modelle 4. 5. Fazit 1. Motivation Reflexionen überwiegen im Raum Raumakustik hat also wesentlichen
1 Fouriersynthese und Fourieranalyse
Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der
Fourier - Transformation
Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation
Betrachtetes Systemmodell
Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt
Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?
Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen
4. Gleichungen im Frequenzbereich
Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden
Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington
Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum Jonathan Harrington Wie entsteht der Schall? 1. Ein Gegenstand bewegt sich und verursacht Luftdruckveränderungen. Luftmoleküle
Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135
Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2
SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen
Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:
Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug
Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Ing. LAMMER Christian Amt der Steiermärkischen Landesregierung, Fachabteilung 17C Leiter des Referates SEL schall-und erschütterungstechn. ASV
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Wellenlehre. Theorieschub
Wellenlehre Theorieschub Gliederung 1. Lehrbuchanalyse 2. Schulbuchanalyse 3. Kinematik vs. Dynamik 4. Zusammenfassend Theorie von Wellen 5. Offene ungeklärte Fragen 6.??? Lehrbuchanalyse Pohl: Einführung
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
Töne, Klänge und Geräusche Arbeitsblatt
Lehrerinformation 1/5 Arbeitsauftrag Die SuS sortieren Bilder und suchen so zuerst nach eigenen Definitionen zu Tönen, Klängen und Geräuschen, bevor sie anhand der Arbeitsblätter fachlich Klarheit erhalten.
SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen
SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k 2 H d xt ( ) Bewegungsgleichung: m k x t 2
5. Eigenschwingungen
5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.
Programme (hier können Sie selber üben) Einführung in die Linguistik (Ling 101) WS 2009/10. Wiederholung. Thema heute: Sprachsignale
Fachbereich Sprachwissenschaft Einführung in die Linguistik (Ling 101) WS 2009/10 Programme (hier können Sie selber üben) Für die Demo in der heutigen Vorlesung wird Praat benutzt Link: http://www.fon.hum.uva.nl/praat/
Primzahlen Darstellung als harmonische Schwingung
Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der
Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks
Tontechnik 1 Akustische Grundbegriffe Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Mikrofon-Aufnahmetechnik Schalldruck Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen
Inhaltsverzeichnis. vii
Inhaltsverzeichnis 1 Riemann-Integrale... 1 1.1 Eigentliche und uneigentliche Riemann-Integrale... 1 1.2 Aufgaben... 7 Die Integration wichtiger Sprungfunktionen... 7 Eigentliche und uneigentliche Riemann-Integrale...
UNERHÖRTE RÄUME Lärmvermeidung bis Sound Design
UNERHÖRTE RÄUME Lärmvermeidung bis Sound Design Prof. Dr. Philip Leistner Breidenbach, 8. September 2016 Fraunhofer-Institut für Bauphysik IBP Universität Stuttgart Lehrstuhl für Bauphysik [email protected]
Zusammenfassung : Fourier-Reihen
Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation
Zeitfunktionen. Kapitel Elementarfunktionen
Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch
Einführung in die Systemtheorie
Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen
Inhaltsverzeichnis. Thomas Görne. Tontechnik
Inhaltsverzeichnis Thomas Görne Tontechnik Schwingungen und Wellen, Hören, Schallwandler, Impulsantwort, Faltung, Sigma-Delta-Wandler, Stereo, Surround, WFS, Regiegeräte, tontechnische Praxis ISBN: 978-3-446-42395-4
11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit
Inhalt Wellenphänomene. Wellenausbreitung. Wellengleichung.3 Interferenzen und Gruppengeschwindigkeit Wellenphänomene Wellen sind ein weiteres wichtiges physikalisches Phänomen Anwendungen: Radiowellen
Tonhöhen in der Musik. Horst Eckardt, München 14. Juli 2013
Tonhöhen in der Musik Horst Eckardt, München 14. Juli 2013 Inhalt Physik der Tonerzeugung (Akustik) Intervalle, Stimmung und Harmonik Besonderheiten der Musikgeschichte Tonhöhen und Solfeggio-Frequenzen
Messung & Darstellung von Schallwellen
Messung Digitalisierung Darstellung Jochen Trommer [email protected] Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung
Prüfbericht: Messung der Nachhallzeit
Prüfbericht: Messung der Nachhallzeit nach DIN EN ISO 3382-2:2008, Akustik - Messung von Parametern der Raumakustik - Teil 2: Nachhallzeit in gewöhnlichen Räumen (ISO 3382-2:2008) Datum der Messung: 24.08.15
9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP
13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer
Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007
Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München [email protected] 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm
Wellengleichung. Johannes Wallmann. 23. Juni 2015
Wellengleichung Johannes Wallmann 23. Juni 2015 1 Einleitung Die Wellengleichung ist eine partielle Differentialgleichung zweiter Ordnung. Sie modelliert die Schwingungen eines elastischen Körpers (z.b.
Fourier- und Laplace- Transformation
Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)
Physik für technische Berufe
Alfred Böge Jürgen Eichler Physik für technische Berufe Physikalisch-technische Grundlagen, Formelsammlung, Versuchsbeschreibungen, Aufgaben mit ausführlichen Lösungen 11., aktualisierte und erweiterte
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Grundgebiete der Elektrotechnik 2
Grundgebiete der Elektrotechnik 2 Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation von Prof. Dr.-Ing. Horst Clausert, TU Darmstadt Prof. Dr.-Ing. Günther
4.6 Schwingungen mit mehreren Freiheitsgraden
Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander
Akustische Phonetik Teil 1. Uwe Reichel, Phil Hoole IPS, LMU München
Akustische Phonetik Teil 1 Uwe Reichel, Phil Hoole IPS, LMU München Inhalt! Schall! Schwingung! Zeitsignal! Schalldruck, Schallschnelle! Sinoidalschwingung! Schallarten! Periodische Signale! zeitliche
Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole
Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,
Einführung in. die Akustik. Von. Abteilungsleiter im ForsdlUngslaboratorium der Siemens-Werke a. o. Professor an d er Universität Berlin
Einführung in die Akustik Von Dr. phil. F erdinand Trendelenburg Abteilungsleiter im ForsdlUngslaboratorium der Siemens-Werke a. o. Professor an d er Universität Berlin Mit 215 Abbildungen Springer" Verlag
Springers Mathematische Formeln
Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,
Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern
Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden
Grundgebiete der Elektrotechnik
Arnold Führer Klaus Heidemann Wolfgang Nerreter Grundgebiete der Elektrotechnik Band 2: Zeitabhängige Vorgänge mit 462 Bildern, 105 durchgerechneten Beispielen und 147 Aufgaben mit Lösungen 8., völlig
Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren)
Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) https://cuvillier.de/de/shop/publications/885 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,
Physikalische Aufgaben
Physikalische Aufgaben Bearbeitet von Helmut Lindner 34., verbesserte Auflage 2007. Buch. 339 S. Hardcover ISBN 978 3 446 41110 4 Format (B x L): 12,1 x 19,2 cm Gewicht: 356 g Zu Leseprobe schnell und
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
Schallanalyse mit modernen Methoden Lernen an Stationen
Thema: Schallanalyse mit modernen Methoden Lernen an Stationen StRef. Torsten Frömmichen Gewerbliche und Hauswirtschaftliche Schulen Emmendingen StRef. Torsten Frömmichen GHS Emmendingen 2 Inhalt 1. Einführung
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Mechanische Schwingungen und Wellen
Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende
Die Phonetik von Tonhöhe
Jochen Trommer [email protected] Universität Leipzig Institut für Linguistik Phonetikanalyse SS 2007 Überblick Die Akustik von Tonhöhe Tonhöhe & Musik Der Phonationszyklus Die Tonhöhe von Sinussschwingungen
Mustererkennung. Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210. Skript, Literatur, Anmeldung im Netz
Mustererkennung Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210 Skript, Literatur, Anmeldung im Netz Mustererkennung Anwendungsbeispiele für Mustererkennung? Mustererkennung
2. Schallentstehung. Erstellt: 03/2005 Hannes Raffaseder / FH St. Pölten / Telekommunikation und Medien 1/25
2. Schallentstehung Erstellt: 03/2005 Hannes Raffaseder / FH St. Pölten / Telekommunikation und Medien 1/25 1 Schallentstehung Schallquellen können im Allgemeinen in bis zu drei Teilkomponenten zerlegt
Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.
Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral
Mathematik, Signale und moderne Kommunikation
Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 [email protected] 29.4.2009 1 NuHAG, Universität Wien [email protected] Mathematik, Signale und moderne Kommunikation
Mechanik Akustik Wärme
Mechanik Akustik Wärme Autoren Klaus Lüders Gebhard von Oppen 12., völlig neu bearbeitete Auflage W DE G Walter de Gruyter Berlin-New York 2008 Inhalt Einleitung 1 Teil I: Mechanik
TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS
4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische
Biosignalverarbeitung (Schuster)
Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,
Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz
Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,
Komplexe Zahlen (Seite 1)
(Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine
Z-Transformation, Cepstrum, LPC, Autokorrelation Sebastian Stüker
Institut für Anthropomatik Z-Transformation, Cepstrum, LPC, Autokorrelation Sebastian Stüker 04.11.2009 Interactive Systems Labs Verallgemeinerung der Fourier- Transformation: F(s) = L{ f }(s) = 0 e st
1 Eigenschaften von Schall
1 Eigenschaften von Schall 1.1Schalldruck und Pegel Schall ist eine periodische Druckschwankung, verursacht z.b. durch Sprechen, die sich in einem elastischen Medium ausbreitet. Physikalisch ist Schall
Springer-Lehrbuch. Höhere Mathematik 2. Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung
Springer-Lehrbuch Höhere Mathematik 2 Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung Bearbeitet von Kurt Meyberg, Peter Vachenauer überarbeitet 2003. Taschenbuch. xiii,
(Anleitung für Klassenstufe 7 bis 10) 1 Theoretischer Hintergrund
1 Versuch M18: Musik und Töne (Anleitung für Klassenstufe 7 bis 10) Was wäre unsere Welt ohne Musik? Vielleicht spielst du selber ein Instrument oder jemand aus deinem Bekanntenkreis. Auf jeden Fall ist
3.3 Eindimensionale Wellengleichung
3.3. Eindimensionale Wellengleichung 77 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese
Mechanische Schwingungen und Wellen
Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff
Schulinternes Curriculum ARG
Physik Schulinternes Curriculum ARG Unterrichtsvorhaben Fachliche Kompetenzen Inhalte Methoden / Material UMGANG MIT DACHWISSEN verwenden Entropie als Wärmeäquivalent. S1 1 THERMODYNAMIK ea ERKENNTNISGEWINNUNG
Inhalt. Inhalt. Vorwort Schwingungen
3 Inhalt Vorwort... 12 1 Schwingungen 1.1 Grundlagen aus der Kinematik und Mechanik... 16 1.2 Klassifikation von Schwingungen... 19 1.3 Einfache, freie Schwingungen ohne Dämpfung... 20 1.3.1 Harmonische
