Projekt 8: Terz-Band-Equalizer

Größe: px
Ab Seite anzeigen:

Download "Projekt 8: Terz-Band-Equalizer"

Transkript

1 Institut für Eletronische Musik und Akustik Algorithmen in Akustik und Computermusik1, UE Projekt 8: Terz-Band-Equalizer Name: Michael Neffe Matr.Nr.: Studienkennzahl: F-750 Betreuer: Piotr Majdak Institut für Eletronische Musik und Akustik 31. Oktober

2 Abstract In this project a mono or stereo Inputsignal should be filtert by a 1/3-octave band Equalizer. Equalizers shape the audio spectrum by enhancing certain frequency bands while others remain unaffected. This Equalizer is built by a series connection of second-order peakfilter, which are controlled independently. Kurzbeschreibung Aufgabe dieses Projektes ist es einen Equalizer in Matlab zu programmieren der Terzbänder filtert. Die variablen Parameter für den Anwender sind die Mittenfrequenz jedes Terzbandes und Verstärkung, positiv oder negativ. Die Verstärkung wird in Dezibel [db] eingegeben. 1.0 Beschreibung Ziel dieses Projekts ist die Beinflussung des Signals in seinem Spektrum durch einen Terzbandequalizer. Grundsätzlich soll ein Equalizer einen bestimmten Frequenzbereich einer bestimmten Bandbreite verstärken oder abschwächen und den Rest des Signals unverändert passieren lassen. Bei diesem Equalizer ist die Bandbreite jedes peakfilters mit einer Terz fix vorgegeben. Weiters ist es möglich sowohl Mono als auch Stereosignale zu bearbeiten. Originalsignal und bearbeitetes Signal werden auch graphisch ausgegeben. 1.1 Aufbau des Equalizers: Ein Equalizer ist aus einer Kaskadeschaltung von Peakfiltern aufgebaut. Der Peakfilter selbst besteht aus einem beschalteten Allpassfilter 2.Ordnung Allpass 2.Ordnung: Übertragungsfunktion: siehe Abbildung 1 A2(z) Der Betrag des Frequenzganges ist eins(unity gain), und die Phase dreht von 0 auf -360 Grad über den Frequenzbereich. Bei -180 Grad hat der Allpass 2.Ordnung seine Grenzfrequenz Peakfilter 2.Ordnung: ABBILDUNG 1: Übertragungsfunktion: Institut für Eletronische Musik und Akustik 31. Oktober

3 ABBILDUNG 2: Strukturbild Definition der Bandbreite: fo obere Eckfrequenz der Terz in Hz fu untere Eckfrequenz der Terz in Hz fm Mittenfrequenz der Terz in Hz f Bandbreite f=fo-fuinhz 3 fo = 2 * fu = 1.26 * fu fm, terz = 1.12* fu 0.9 * fo f 0.20* fo 0.26* fu 0.22* fm Mit Hilfe dieser Gleichungen sind die 28 Terzbänder für den Equalizer berechnet worden. Nachstehend folgt eine Auflistung aller Mittenfrequenzen: TABELLE 1: Mittenfrequenzen der Terzbänder Nr. Mittenfrequenz Nr. Mittenfrequenz Nr. Mittenfrequenz Nr. Mittenfrequenz 1 25,0 Hz 8 125,0 Hz ,0 Hz ,0 Hz 2 31,5 Hz 9 160,0 Hz ,0 Hz ,0 Hz 3 40,0 Hz ,0 Hz ,0 Hz ,0 Hz 4 50,0 Hz ,0 Hz ,0 Hz ,0 Hz 5 63,0 Hz ,0 Hz ,0 Hz ,0 Hz 6 80,0 Hz ,0 Hz ,0 Hz ,0 Hz 7 100,0 Hz ,0 Hz ,0 Hz ,0 Hz Institut für Eletronische Musik und Akustik 31. Oktober

4 2.0 Programm und Funktion: Die Kaskadeschaltung der einzelnen peakfilter wird im Matlabprogramm durch eine for-schleife realisiert, die den Kern des Programms darstellt. Die Filterung des Signals durch den peakfilter wird mit Hilfe der Fuktion filter, die Matlab in einer Toolbox zur Verfügung stellt, erreicht. 2.1 Eingabeparameter: Definition der Funktion in Matlab: function out = terzequalizer(in, G, fs) Die Eingabeparameter sind zum einen das Eingangssignal in, die Samplefrequenz fs und zum anderen die Verstärkung G. fs wird meist mit 44100Hz angegeben und die Verstärkung G ist eine 2x28 Matrix, wobei in der ersten Spalte die Auswahl des Terzandes und in der zweiten Spalte die Festlegung der Verstärkung in Dezibel(dB) erfolgt. An dieser Stelle wird ausdrücklich darauf hingewiesen, dass nicht alle 28 Verstärkungen für jede Berechnung angegeben werden müssen, sondern nur jene die ungleich Null sind. Das Eingangssigal kann mit dem Befehl wavread( Name ) eingelesen werden, sofern das Signal ein Audiosignal(.wav) ist. Nach der Berechnung wird des Ausgangssignal sofort abgespielt und als wave-file unter Name abgespeichert. 2.2 Funktion: Die Funktionsüberprüfung erfolgt mit Hilfe der Implsantwort. Eingangsvektor: in = [1; zeros(9999,1)]; Impulsantwort mit Band 24, das entspricht einer Mittenfrequenz von fm = 5000Hz und die Verstärkung ist G = 12dB: Institut für Eletronische Musik und Akustik 31. Oktober

5 ABBILDUNG 3: Spektrum der Impulsantwort 1 Als zweites Beispiel wird die Impulsantwort gewonnen wobei nun drei Bänder eine Verstärkung ungleich Null aufweisen: G = [8,12 ;17,-12; 25,6]; Band 8: fm=125hz; Band 17: fm= 1000Hz; Band 25: fm=6300hz ABBILDUNG 4: Spektrum der Impulsantwort 2 Institut für Eletronische Musik und Akustik 31. Oktober

6 2.3 Programm: function out = terzequalizer(in, G, fs) V=zeros(28,1); % Einfügen der Verstärkungen in Vektor V an richtiger Position for i=1:size(g,1), V(G(i,1))=G(i,2); end; % fc gibt die Mittenfrequenz des jeweiligen Terzbandes an fc = [25; 31.5; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; ; 2500; 3150; 4000; 5000; 6300; 8000; 10000; 12500]; % fb definiert die Bandbreitedes Filters(Terz) fb = [5.6 ;7.5; 9.5; 11; 15; 19; 22; 28; 40; 44; 56; 75; 95; 110; 150; 180; 230; 290; 390; 440; 560; 750; 950; 1100; 1500; 1900; 2200; 2800]; % Berechnung der Koeffizienten d = -cos((2*pi/fs).*fc); V0 = 10.^(V./20); H0 = V0-1; ab = (tan((pi/fs).*fb)-1)./(tan((pi/fs).*fb)+1); % for boost ac = (tan((pi/fs).*fb)-v0)./(tan((pi/fs).*fb)+v0); % for boost [L, B] = size(in); % größe des Eingangssignals wird bestimmt len = L+2; % Definition von Variablen a = zeros(28,1); lh = length(h0); x = zeros(len,b); y = zeros(len,b); % Umindizierung vom Eingangssignal for l = 1: B, x(3:len,l) = in(:,l); end; % Berechnug des neuen Signals for k = 1: B,% Schleife für Berechnung der Kanäle for f = 1 : lh,% Schleife zur Berechnung des Signals für das richtige Terzband mit Koeffizienten % Berücksichtigung der pos. bzw. neg. Verstärkung Institut für Eletronische Musik und Akustik 31. Oktober

7 if V(f) < 0 a(f) = ac(f); else a(f) = ab(f); end % Berechnung der peakfilter-differenzengleichung A = [1, d(f)*(1-a(f)), -a(f)]; B = [(1+(H0(f)/2)*(1+a(f))), (d(f)*(1 - a(f))), (-a(f)- a(f)*(h0(f)/2)-(h0(f)/2))]; y(:,k) = filter(b,a,x(:,k)); x(:,k) = y(:,k); % Ausgangssignal wird Eingangssignal des nächsten Filters end; end; out = y(3:len,:); %graphische und akustische Ausgabe IN = fft(in); OUT = fft(out); ax =0:fs/L:(fs-fs/L);% Skalierung der x-achse auf Hz figure subplot(211), plot(ax, abs(in)), title('inputsignal'), xlabel('frequenz in Hz'), ylabel('amplitude'),grid; subplot(212), plot(ax, abs(out)), title('outputsignal'), xlabel('frequency in Hz'), ylabel('amplitude'),grid; %subplot(212), plot(ax, 180/pi*unwrap(angle(OUT))), title('impulseresponse'), xlabel('frequency in Hz'), ylabel('phase in degrees'); % Festlegung des Dateinamens für das output-signal wavwrite(out, 44100, 16, 'Name'); wavplay(out,44100); 3.0 Beispiele und Audiodateien: 3.1 Beispiel 1: Feidman.wav Das Original- und Eingangssignal ist Feidman.wav, das bearbeitete also das Output- Signal ist Feidman1.wav. Die Frequenzbänder 15 und 16 wurden um 12dB abgeschwächt und die Frequenzbänder 8 und 9 um 12 db verstärkt. Das Ergebnis ist ein Signal das sehr dumpf klingt und die Begleitung in den Vordergrund hebt. Verstärkungsmatrix: G = [8, 12; 9, 12; 15, -12; 16,-12]; Institut für Eletronische Musik und Akustik 31. Oktober

8 ABBILDUNG 5: Feidman1.wav 3.2 Beispiel 2: Mingusbb.wav Verstärkungsmatrix: G = [15, -12; 23,12]; ABBILDUNG 6: mingusbb1.wav Institut für Eletronische Musik und Akustik 31. Oktober

9 3.3 Beispiel 3: Hader.wav Verstärkungsmatrix: G = [14,-24; 23,12; 24,12]; ABBILDUNG 7: hader1.wav Institut für Eletronische Musik und Akustik 31. Oktober

Verarbeitungsalgorithmen in FUNKTIONSGENERATOR+ SWEEPGENERATOR

Verarbeitungsalgorithmen in FUNKTIONSGENERATOR+ SWEEPGENERATOR Verarbeitungsalgorithmen in Computermusik und Akustik UE IEM Institut für Elektronische Musik FUNKTIONSGENERATOR+ SWEEPGENERATOR Betreuer: Piotr Majdak Martin Schörkmaier 9530506, F750 Projekt 1 1.11.2002

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 1 Senden Sie die Hausübung bis spätestens 22.4.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem Studenten im Selbststudium erarbeitet.

A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 5 Operationsverstärker Übungstermin 21.06.2018 A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem

Mehr

Praktikum 2.1 Frequenzverhalten

Praktikum 2.1 Frequenzverhalten Elektrizitätslehre 3 Martin Schlup, Martin Weisenhorn. November 208 Praktikum 2. Frequenzverhalten Lernziele Bei diesem Versuch werden die Frequenzabhängigkeiten von elektrischen Grössenverhältnissen aus

Mehr

Assignment 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Assignment 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Assignment 3 Senden Sie die Hausübung bis spätestens 14.06.017 per E-Mail an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter Filter Filter! Hochpassfilter! Tiefpassfilter! Bandpassfilter (Bandsperrfilter)! FIRFilter! Oktav/Terz... nteloktavfilter wird Titel 2 Hochpassfilter LowCutFilter HighPassFilter Trittschallfilter BassCutFilter

Mehr

Amplitudenmodulation. fmod: Modulationsfrequenz fträger: Trägerfrequenz m: Modulationsgrad

Amplitudenmodulation. fmod: Modulationsfrequenz fträger: Trägerfrequenz m: Modulationsgrad 07/16 in der ArtemiS SUITE Die der ArtemiS SUITE liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Damit können die Frequenz, die Stärke und der zeitliche Verlauf von Amplitudenmodulationen

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Aufgabe 1 (Unsicherheitsschranke für gemessene Übertragungsfunktion)

Aufgabe 1 (Unsicherheitsschranke für gemessene Übertragungsfunktion) Prof. L. Guzzella Prof. R. D Andrea 5-59- Regelungstechnik II (FS 28) Musterlösung Übung 5 Unsicherheitsschranken, Spezifikationen im Frequenzbereich, Matlab M.B. (michael.benz@imrt.mavt.ethz.ch), 4. April

Mehr

1. Aufgabenblatt: EDS Wiederholung und Filterung

1. Aufgabenblatt: EDS Wiederholung und Filterung Kommunikationstechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 19.10.2009 1. Aufgabenblatt: EDS Wiederholung und Filterung 1. Aufgabe a. Erstellen Sie ein Rechtecksignal mit der Frequenz f = 130 Hz

Mehr

Prof. Dr. Stefan Funken, Dipl.-Ing. Christoph Erath 15. Mai WiMa-Praktikum (Matlab 2/9) Einführung in LATEXund Matlab

Prof. Dr. Stefan Funken, Dipl.-Ing. Christoph Erath 15. Mai WiMa-Praktikum (Matlab 2/9) Einführung in LATEXund Matlab Prof. Dr. Stefan Funken, Dipl.-Ing. Christoph Erath 15. Mai 2009 WiMa-Praktikum (Matlab 2/9) Einführung in LATEXund Matlab Page 2 WiMa-Praktikum (Matlab 2/9) 15. Mai 2009 Funken / Erath Matlab 2/9 m-files

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Grundlagen der Videotechnik (Angewandte Mediensysteme/Prof. Schuller)

Grundlagen der Videotechnik (Angewandte Mediensysteme/Prof. Schuller) Grundlagen der Videotechnik (Angewandte Mediensysteme/Prof. Schuller) Einführung Dipl.-Ing. Marco Niehaus marco.niehaus@tu-ilmenau.de Büro: H 3523 Tel.: 69-1673 25.10.2012 Slide 1 Marco Niehaus Grundlagen

Mehr

Inhaltsverzeichnis. Angelika Bosl. Einführung in MATLAB/Simulink. Berechnung, Programmierung, Simulation. ISBN (Buch):

Inhaltsverzeichnis. Angelika Bosl. Einführung in MATLAB/Simulink. Berechnung, Programmierung, Simulation. ISBN (Buch): Inhaltsverzeichnis Angelika Bosl Einführung in MATLAB/Simulink Berechnung, Programmierung, Simulation ISBN (Buch): 978-3-446-42589-7 ISBN (E-Book): 978-3-446-42894-2 Weitere Informationen oder Bestellungen

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

MATLAB: Kapitel 3 Programmieren

MATLAB: Kapitel 3 Programmieren Bisher wurde gezeigt, wie Matlab sequentiell (d.h. in unverzweigten Strukturen) Anweisungen abarbeitet. Sollen jedoch komplizierter Sachverhalte programmiert werden, sind verzweigte Strukturen unerlässlich.

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

Übung 9: Aufgaben zu RC- und SC- Filter

Übung 9: Aufgaben zu RC- und SC- Filter ZHAW, ASV, FS05 Übung 9: Aufgaben zu C- und SC- Filter Aufgabe : Kontaktloses Skipass System Bei einem berührungsfreien, induktiven Zutrittssystem in die Ski-Arena wird vom Lesegerät ein starkes Trägersignal

Mehr

Fachhochschule Südwestfalen Wir geben Impulse. Kontrollstrukturen und Schleifen in Octave

Fachhochschule Südwestfalen Wir geben Impulse. Kontrollstrukturen und Schleifen in Octave Fachhochschule Südwestfalen Wir geben Impulse Kontrollstrukturen und Schleifen in Octave Einführung Inhalt m-files Script-Files Function-Files Ein- Ausgabe von Variablen oder Ergebnissen For-Schleife While-Schleife

Mehr

A-123 VCF Einführung. doepfer System A VCF 4 A-123

A-123 VCF Einführung. doepfer System A VCF 4 A-123 doepfer System A - 100 VCF 4 A-123 1. Einführung Lev el 2 Audio In 1 2 A-123 VCF 4 Frequency Das Modul A-123 (VCF 4) ist ein spannungsgesteuertes Hochpaßfilter, das aus einem Klangspektrum die unteren

Mehr

Signale und Systeme. Christoph Becker

Signale und Systeme. Christoph Becker Signale und Systeme Christoph Becker 18102012 Signale Definition 1 Ein Signal ist eine Folge von Zahlen {xn)} welche die Bedingung xn) < erfüllt Definition 2 Der Frequenzgang / frequency domain representation

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Übung 8: Aufgaben zu LC- und RC-Filter

Übung 8: Aufgaben zu LC- und RC-Filter = Übung 8: Aufgaben zu LC- und RC-Filter Aufgabe : Basisband LC-Filter für Funk-Modem Ein Frequency Hopping Funksignal (ähnlich Bluetooth) mit Mbit/s Datenraste belegt nach dem Dehopping im Basisband einen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Übung 6: Fast Fourier Transformation

Übung 6: Fast Fourier Transformation Computational Physics 1, Seminar 6, Fast Fourier Transformation 1 Übung 6: Fast Fourier Transformation Aufgabe 1 Fourierfilterung von Bildern: Erstellen Sie ein Programm, welches ein Bild einliest, dieses

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung Technische Akustik 2016 Jan Borgers 1. Grundlagen Bezugsgrößen für Schalldruck; Schallleistung Seite 2 Filterkurven A-; B-; C-Gewichtung Seite 3 Terz-; Oktavfilter und deren Bandbreiten Seite 5 Rauschsignale

Mehr

Voxengo PrimeEQ Bedienungsanleitung

Voxengo PrimeEQ Bedienungsanleitung Version 1.1 http://www.voxengo.com/product/primeeq/ Inhalt Einleitung 3 Funktionsmerkmale 3 Kompatibilität 3 Bedienelemente 4 Equalizer 4 Danksagung 5 Copyright 2016-2017 Aleksey Vaneev 2 Einleitung Der

Mehr

a) Name and draw three typical input signals used in control technique.

a) Name and draw three typical input signals used in control technique. 12 minutes Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Problem 1 (2 points each) a) Name and draw three typical input signals used in control technique. b) What is a weight function? c) Define the eigen value

Mehr

3. Basisbandtransformation durch Integerband-Abtastung

3. Basisbandtransformation durch Integerband-Abtastung Bearbeiten von Frequenzbändern 1. Analyse-Filterbank, Basisbandtransformation 2. Basisbandtransformation durch Modulation 3. Basisbandtransformation durch Integerband-Abtastung 1 1. Analyse-Filterbank

Mehr

Kurze Einführung in Octave

Kurze Einführung in Octave Kurze Einführung in Octave Numerische Mathematik I Wintersemester 2009/2010, Universität Tübingen Starten von Octave in einer Konsole octave eintippen (unter Linux) Octave als Taschenrechner Beispiele:

Mehr

A-120 VCF Einführung. doepfer System A VCF 1 A-120

A-120 VCF Einführung. doepfer System A VCF 1 A-120 doepfer System A - 100 VCF 1 A-120 1. Einführung Lev el A udio In Audio Out A-120 VCF 1 Frequency Resonance Das Modul A-120 (VCF 1) ist ein spannungsgesteuertes Tiefpaßfilter, das aus einem Klangspektrum

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Bedienungsanleitung. Equalizer 601-Fenster des Studio Managers Yamaha Corporation. Alle Rechte vorbehalten.

Bedienungsanleitung. Equalizer 601-Fenster des Studio Managers Yamaha Corporation. Alle Rechte vorbehalten. Bedienungsanleitung Was sind Add-On Effects? Add-On Effects sind Software-Pakete, mit denen zusätzliche hochwertige Effektprogramme auf Digitalmischpulten installiert werden. Equalizer 60-Fenster des Studio

Mehr

A-124 WASP FILTER. 1. Einführung. doepfer System A VCF 5 A-124

A-124 WASP FILTER. 1. Einführung. doepfer System A VCF 5 A-124 doepfer System A - 100 VCF 5 A-124 1. Einführung Lev el Audio In A-124 Das Modul A-124 () ist ein spezielles spannungsgesteuertes 12 db-multimode-filter, das die eigenwillige Schaltungstechnik des "Wasp"

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Der SDR (Software Defined Receiver) von Peter Carnegie, London.

Der SDR (Software Defined Receiver) von Peter Carnegie, London. Der SDR (Software Defined Receiver) von Peter Carnegie, London. Die Soundkarte erhält ein 12 khz-signal vom DRT1 und wird gesteuert durch eine serielle Verbindung zwischen Computer und DRT1. Mode Dekodierung

Mehr

Elektronik II 4. Groÿe Übung

Elektronik II 4. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 9. Juni 2015 1/15 Elektronik II 4. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 9. Juni 2015 G.

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Komplexprüfung Angewandte Medienwissenschaft. Teil 1. Einführung in die Angewandte Informationstechnik. Name, Vorname:... Seminargruppe:...

Komplexprüfung Angewandte Medienwissenschaft. Teil 1. Einführung in die Angewandte Informationstechnik. Name, Vorname:... Seminargruppe:... Komplexprüfung Angewandte Medienwissenschaft Teil 1 Einführung in die Angewandte Informationstechnik Name, Vorname:... Seminargruppe:... Studiennummer:... Zusätzliche Blätter:... AUFGABE 1 2 3 4 5 maximal

Mehr

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files.

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files. MATLAB m-files m-files sind Folgen von MATLAB- oder Daten-Files. Erstellen von m-files Über File New M-file wird ein Texteditor geöffnet. Dort wird das m-file als ASCII-File erzeugt und unter name.m im

Mehr

7.Übung Schaltungstechnik SS2009

7.Übung Schaltungstechnik SS2009 . Aufgabe: Aktives Filter.Ordnung Lernziele Vorteile und Nachteile aktiver Filter im Vergleich zu passiven Filter-Schaltungen. Berechnung eines einfachen Filters.Ordnung. Aufgabenstellung e d a Gegeben

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Allpass-Transformation

Allpass-Transformation Grundidee: Allpass-Transformation Entwurf eines IIR-Filters H p (z) mit bekanntem Verfahren Abbildung des Frequenzgangs durch Transformation der Frequenzvariablen Transformation durch Substitution ζ =

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Übung 6: Fast Fourier Transformation

Übung 6: Fast Fourier Transformation Computational Physics 1, Seminar 6, Fast Fourier Transformation 1 Übung 6: Fast Fourier Transformation Aufgabe 1 Fourierfilterung von Bildern: Erstellen Sie ein Programm, welches ein Bild einliest, dieses

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Zweiter Teil des Tutorials Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Workspace Im Workspace sind die Variablen mit ihrem jeweiligen Wert gespeichert.

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Kurt Diedrich Franz Peter Zantis. Filtern ohne Stress. Theorie - Konzept - Praxis. Elektor-Verlag, Aachen

Kurt Diedrich Franz Peter Zantis. Filtern ohne Stress. Theorie - Konzept - Praxis. Elektor-Verlag, Aachen Kurt Diedrich Franz Peter Zantis Filtern ohne Stress Theorie - Konzept - Praxis Elektor-Verlag, Aachen Inhaltsverzeichnis Vorwort 7 1. Was bedeutet Filtern"? 9 1.1 Filtergrundtypen 11 1.1.1 Hochpässe 11

Mehr

Automatische Lautsprecherentzerrung mit Kautz-Filtern

Automatische Lautsprecherentzerrung mit Kautz-Filtern Seminararbeit aus Algorithmen in Akustik und Computermusik 2, SE Automatische Lautsprecherentzerrung mit Kautz-Filtern Sebastian Braun (0673052) Marco Schretter (0230932) Betreuung: Franz Zotter Graz,

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.

Mehr

A-126 VC Frequ. Shifter

A-126 VC Frequ. Shifter doepfer System A - 100 VC Frequency er A-126 1. Einführung A-126 VC Frequ. er Audio In Audio Out Ove r- load Lev el Das Modul A-126 () ist ein spannungssteuerbarer analoger Frequenzschieber (engl. voltagecontrolled

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

SV2: Digitale Filter und Konvertierung der Abtastrate

SV2: Digitale Filter und Konvertierung der Abtastrate Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung 9. Februar 2017 Fachpraktikum Signalverarbeitung SV2: Digitale Filter und Konvertierung der Abtastrate 1 Einführung

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Einführung in MATLAB + MATLAB Simulink. Dipl.-Inf. Markus Appel

Einführung in MATLAB + MATLAB Simulink. Dipl.-Inf. Markus Appel Einführung in MATLAB + MATLAB Simulink Dipl.-Inf. Markus Appel mappel@informatik.hu-berlin.de 28.10.2016 Was ist MATLAB? ein universelles Algebra-Programm zur Lösung mathematischer Probleme grafische Darstellung

Mehr

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge.

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. Darstellung als Filterbank Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. - Trifft in bestimmten Maße auch auf das Original zu, da

Mehr

A= A 1 A 2. A i. A= i

A= A 1 A 2. A i. A= i 2. Versuch Durchführung siehe Seite F - 3 Aufbau eines zweistufigen Verstärkers Prof. Dr. R Schulz Für die Verstärkung 'A' eines zwei stufigen Verstärkers gilt: oder allgemein: A= A 1 A 2 A= i A i A i

Mehr

Signalfluss-Diagramm für GSV-6

Signalfluss-Diagramm für GSV-6 Signalfluss-Diagramm für GSV-6 Stand vom 20.08.2017 7 Strain- Voltage Gage Write Input Range 1 2 3 4 5 6 D/A 8 ch1 Strain- Gage A/D Aout- Scale Int Float FT- Mode off Scale- Factor v1 = 500 v2 = 1 or 2

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

A-102 A Einführung. doepfer System A VCF 9 A-102 VCF 6 A-103

A-102 A Einführung. doepfer System A VCF 9 A-102 VCF 6 A-103 doepfer System A - 100 VCF 9 A-102 VCF 6 A-103 1. Einführung Level Audio Out A-102 A-103 Frequency Resonance Die Module A-102 (VCF 9) und A-103 (VCF 6) sind spannungsgesteuerte Tiefpaßfilter, die aus einem

Mehr

Lösungen Serie 4 (Komplexe Zahlen: Ortskurven)

Lösungen Serie 4 (Komplexe Zahlen: Ortskurven) Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 4 Komplexe Zahlen: Ortskurven Dozent: oger Burkhardt Klasse: Studiengang ST. Aufgabe

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der analogen Schaltungstechnik GaST (WS 205/6) Bearbeiter Matr.-Nr. Emailadresse Aufgabe

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr. Ing. H. D. Ribbecke

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Meÿtechnik und Meÿsignalverarbeitung Elektrische Messtechnik, Labor Rechnerunterstützte Erfassung und Analyse von Messdaten Studienassistentin/Studienassistent Gruppe Datum Note

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008 Funktionen in Matlab Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2008 15. und 29. Mai 2008 Funktionen in Matlab Wir kennen schon diverse

Mehr

2.5.3 Innenwiderstand der Stromquelle

2.5.3 Innenwiderstand der Stromquelle 6 V UA(UE) 0. 1. 2. U E Abbildung 2.4: Kennlinie zu den Messwerten in Tabelle 2.1. 2.5.3 Innenwiderstand der Stromquelle Die LED des Optokopplers wird mittels Jumper kurzgeschlossen. Dadurch muss der Phototransistor

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen Elektrizitätslehre und Schaltungen Versuch 38 ELS-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung 1.1 Wechselstromwiderstände (Lit.: Gerthsen) 1.2 Schwingkreise (Lit.: Gerthsen)

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Ingenieurinformatik II Numerik für Ingenieure Teil 2

Ingenieurinformatik II Numerik für Ingenieure Teil 2 Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Einführung in. Pierre Bayerl

Einführung in. Pierre Bayerl Einführung in Pierre Bayerl 19. November 21 Matlab Numerische Manipulation von Matrizen und Vektoren und deren Visualisierung. Verwendung: Interaktive Eingabe von Befehlen Skriptprogramme ( Batch-Dateien

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

SYSTEMTHEORIE (SS 2008)

SYSTEMTHEORIE (SS 2008) FH Landshut FB Elektrotechnik Prof. Dr. S. Pohl ------------------------------------------------------------------------------------------------------------ ARBEITSBLÄTTER ZUR SYSTEMTHEORIE (SS 2008) ---------------------------------------------------------------------------------------------------------

Mehr

Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay

Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay Dieses Filter trennt das Signal eines Stereokanals in einen Hochpasszweig und einen Tiefpasszweig 2. Ordnung nach Linkwitz-Riley auf. Die Trennfrequenz

Mehr

Kapitel 10: Audiofilter-Einstellungen

Kapitel 10: Audiofilter-Einstellungen Kapitel 10: Audiofilter-Einstellungen Kapitel 10: Audiofilter-Einstellungen In diesem Kapitel beschreiben wir, wie die Canopus-Audiofilter eingestellt werden, die Sie bei Rex Edit und Adobe Premiere einsetzen

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr