DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

Größe: px
Ab Seite anzeigen:

Download "DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012"

Transkript

1 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe,

2 Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge der digitalen Signalverarbeitung Matlab, Octave und Scilab FIR-Filter Eigenschaften Entwurf Fensterung TP BP-Transformation IIR-Filter Eigenschaften Topologien (Direktform I, II) Schweizer Taschenmesser der digitalen Signalverarbeitung Hardware-Plattformen für den Amateur Günstige DSP-Lösungen Mikrocontroller als DSP-Ersatz

3 Aufbau DSP-System DSP 3

4 Digitalisierung 4 Digitalisierung eines Signales bedeutet Quantisierung in der Zeit: Messung der Amplitude eines analogen Signals in regelmäßigen Abständen Quantisierung der Amplitude: Umwandlung der kontinuierlichen Spannungswerte in eine diskrete Folge von numerischen Werten

5 Digitalisierung Digitalisierung eines Signales bedeutet Quantisierung in der Zeit: Messung der Amplitude eines analogen Signals in regelmäßigen Abständen Quantisierung der Amplitude: Umwandlung der kontinuierlichen Spannungswerte in eine diskrete Folge von numerischen Werten 5 Abtasten in diskreten Zeitabständen

6 Digitalisierung Digitalisierung eines Signales bedeutet Quantisierung in der Zeit: Messung der Amplitude eines analogen Signals in regelmäßigen Abständen Quantisierung der Amplitude: Umwandlung der kontinuierlichen Spannungswerte in eine diskrete Folge von numerischen Werten Abtasten in diskreten Zeitabständen Quantisieren=Runden auf verfügbare Stufen Zahlenfolge: 0,1,1,2,3,3,4,4,4,4,4,4,3,3,2,1,1, 0,-1,-2,-2,-3,-3,-4,-4,-4,-4,-4,-3, -3,-2,-2, 6

7 Digitalisierung Digitalisierung eines Signales bedeutet Quantisierung in der Zeit: Messung der Amplitude eines analogen Signals in regelmäßigen Abständen Quantisierung der Amplitude: Umwandlung der kontinuierlichen Spannungswerte in eine diskrete Folge von numerischen Werten Abtasten in diskreten Zeitabständen Quantisieren=Runden auf verfügbare Stufen Zahlenfolge: 0,1,1,2,3,3,4,4,4,4,4,4,3,3,2,1,1, 0,-1,-2,-2,-3,-3,-4,-4,-4,-4,-4,-3, -3,-2,-2, Quantisierungsfehler: 0,-0.25,0.47,0.14,-0.26,0.23, -0.38,-0.12,

8 Digitalisierung (Spektrum) 8 Das Spektrum wiederholt sich um Vielfache der Abtastfrequenz Beispiel im Bild fs=10khz, fc=1khz Auch numerische Übertragungsfunktionen (z.b. digitale Filter) wiederholen sich um Abtastfrequenzvielfache

9 Digitalisierung (Spektrum) Das Spektrum wiederholt sich um Vielfache der Abtastfrequenz Beispiel im Bild fs=10khz, fc=1khz Auch numerische Übertragungsfunktionen (z.b. digitale Filter) wiederholen sich um Abtastfrequenzvielfache 9 Versuch der digitalen Filterung (rot) Funktioniert nicht, da sich auch dessen Übertragungsfunktion wiederholt

10 Digitalisierung (Spektrum) 10 Das Spektrum wiederholt sich um Vielfache der Abtastfrequenz Beispiel im Bild fs=10khz, fc=1khz Auch numerische Übertragungsfunktionen (z.b. digitale Filter) wiederholen sich um Abtastfrequenzvielfache Versuch der digitalen Filterung (rot) Funktioniert nicht, da sich auch dessen Übertragungsfunktion wiederholt Auch höherfrequente Signale können zu den Abtastwerten passen hier z.b. auch -9kHz und 11kHz

11 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 11 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 1 khz

12 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 12 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 2 khz

13 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 13 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 3 khz

14 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 14 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 4 khz

15 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 15 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 5 khz

16 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 16 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 6 khz wir sehen 4 khz!

17 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 17 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 7 khz wir sehen 3 khz!

18 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 18 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 8 khz wir sehen 2 khz!

19 Abtasttheorem (Shannon/Nyquist) Das Abtasttheorem besagt, daß die Abtastfrequenz mindestens doppelt so hoch wie die höchste Nutzsignalfrequenz (bzw. Bandbreite BW) sein muß f s 2 BW 19 In diesem Fall wird das abgetastete Signal vollständig und eineindeutig durch die Abtastwerte beschrieben Bei Nichteinhaltung erscheinen neue Signalanteile, die in der Regel stören Aliasing fs = 10 khz fc = 9 khz wir sehen 1 khz!

20 Aufbau DSP-System DSP 20

21 Lineare zeitinvariante Systeme System: erzeugt aus Eingangsgrößen Ausgangsgrößen x(t) 21 LTI-System y(t) Zeitinvarianz: Das Verhalten ändert sich nicht über Zeit. wenn x1(t) y1(t) folgt x1(t- t) y1(t- t) Linearität: Es gilt das Überlagerungsprinzip (Superpositionsprinzip). wenn x1(t) y1(t) und x2(t) y2(t) folgt ax1(t) + bx2(t) ay1(t) + by2(t)

22 Beschreibung LTI-Systeme LTI-Systeme können im Zeitbereich durch ihre Impulsantwort beschrieben werden Die Impulsantwort ist die Reaktion des Systems auf einen Dirac-Impuls (t) x(t) = δ (t) y(t) = a(t) 1 t 0 t 0 Jedes beliebige Eingangssignal läßt sich als Summe zeitlich verschobener und gewichteter Dirac-Impulse darstellen Ausgangssignal y(t) ist Faltungs summe mit Impulsantwort a(t): x(t ) = x(t) x(iτ ) δ (t iτ ) i= y (t ) = x(iτ ) a (t iτ ) i= τ t 0 22 x(0)δ (t) x(2τ )δ (t-2τ ) x(τ )δ (t-τ ) x(3τ )δ (t-3τ ) Man schreibt abgekürzt auch: y (t ) = x(t ) a (t )

23 Beschreibung LTI-Systeme Die Impulsantwort beschreibt das LTI-System vollständig Was heißt das? 23

24 Beschreibung LTI-Systeme Die Impulsantwort eines LTI-Systems ist über die Fourier-Transformation mit der Übertragungsfunktion des Systems verbunden! FourierTransf. Im Zeitbereich wird das Ausgangssignal eines Systems durch die Faltung vom Eingangssignal mit der Impulsantwort ermittelt Im Frequenzbereich wird das Ausgangssignal durch Multiplikation mit der Übertragungsfunktion des Systems ermittelt 24

25 Werkzeuge dig. Signalverarbeitung DSP-Algorithmen werden i.d.r mit Hilfe numerischer Simulations-SW entwickelt Kommerzieller Marktführer ist MathWorks mit Matlab Es gibt sehr gute alternative Simulationsprogramme die frei verfügbar sind GNU Octave Matlab-ähnliche Syntax Scilab Komfortabler insb. für Windows-Nutzer 25

26 Werkzeuge Octave.org 26 Vor allem für Linux und POSIX-Systeme entwickelt, aber auch unter Windows und Mac OS lauffähig

27 Werkzeuge Scilab.org 27 Nicht GNU GPL, aber andere freie Lizenz Sehr gut unter Windows nutzbar

28 FIR-Filter FIR Finite Impulse Response (endliche Impulsantwort) Immer stabil! Durch garantierte Stabilität meist Basis adaptiver Filter (Veränderung der Koeffizienten zur Laufzeit) Direkte Implementierung der Faltungssumme (Zeitbereich) Koeffizienten h(0)...h(p-1) entsprechen den Stützstellen der Impulsantwort Symmetrische FIR-Filter sind phasenlinear und haben eine Gruppenlaufzeit, die der halben Filterlänge entspricht Verstärkung im Durchlaßbereich ist Summe aller Koeffizienten Eingang für ADC-Werte Ausgang zum DAC P 1 28 y (k )= h (i) x (k i) i=0

29 FIR-Filter - Entwurf Einfachste Methode: Frequenzgang (Übertragungsfunktion) vorgeben und Fourier-Transformieren Impulsantwort Wenn es sich um ein TP, BP, HP handelt, kann gleich die SINC-Funktion verwendet werden (Fourier-Transformierte eines Rechtecks ) Impulsantwort auf Filterlänge (= Anzahl Koeffizienten) begrenzen und Fensterfunktion anwenden zur Unterdrückung des Leck-Effektes Impulsantwort mit Fensterfunktionen 29 Übertragungsfunktion mit versch. Fensterfunktionen

30 FIR-Filter - Entwurf Einfachste Methode: Frequenzgang (Übertragungsfunktion) vorgeben und Fourier-Transformieren Impulsantwort Wenn es sich um ein TP, BP, HP handelt, kann gleich die SINC-Funktion verwendet werden (Fourier-Transformierte eines Rechtecks ) Impulsantwort auf Filterlänge (= Anzahl Koeffizienten) begrenzen und Fensterfunktion anwenden zur Unterdrückung des Leck-Effektes Impulsantwort mit Fensterfunktionen 30 Übertragungsfunktion mit versch. Fensterfunktionen

31 FIR-Filter - TP-BP-Transformation 31 TP BP-Transformation durch Multiplikation der Impulsantwort mit Kosinus entsprechender Frequenz (Mittenfrequenz des BP, 3kHz im Bild)

32 FIR-Filter - TP-BP-Transformation 32 TP BP-Transformation durch Multiplikation der Impulsantwort mit Kosinus entsprechender Frequenz (Mittenfrequenz des BP, 3kHz im Bild)

33 FIR-Filter - TP-BP-Transformation TP BP-Transformation durch Multiplikation der Impulsantwort mit Kosinus entsprechender Frequenz (Mittenfrequenz des BP, 3kHz im Bild) Bei Verwendung des Sinus' wird eine Phasenverschiebung +/- 90 erzielt TP HP-Transformation durch Vorzeichenwechsel jedes zweiten Koeffizienten 33

34 FIR-Filter - TP-BP-Transformation TP BP-Transformation durch Multiplikation der Impulsantwort mit Kosinus entsprechender Frequenz (Mittenfrequenz des BP, 3kHz im Bild) Bei Verwendung des Sinus' wird eine Phasenverschiebung +/- 90 erzielt TP HP-Transformation durch Vorzeichenwechsel jedes zweiten Koeffizienten 34

35 IIR-Filter IIR Infinite Impulse Response (unendliche Impulsantwort (möglich)) Direktform I 35

36 IIR-Filter IIR Infinite Impulse Response (unendliche Impulsantwort (möglich)) Besitzen Rückkopplungen können instabil sein Direktform I 36

37 IIR-Filter IIR Infinite Impulse Response (unendliche Impulsantwort (möglich)) Besitzen Rückkopplungen können instabil sein Sehr recheneffiziente Filter mit wenigen Multiplikationen realisierbar Filterentwurf schwieriger als bei FIR-Filtern, i.d.r. mit spezieller Design-Software Sehr empfindlich auf Quantisierungseffekte (Rundungen) Werden meist als kaskadierte Filter 2-ter Ordnung (biquads) eingesetzt Direktform I 37 Direktform II, auch kanonische

38 IIR - Schweizer Taschenmesser Mit der IIR-Topologie kann nur anhand unterschiedlicher Koeffizienten enorm viel realisiert werden: TP-,BP-,HP-Filter, Differenzierer, Integrierer, Oszillatoren, Kamm-Filter, Beispiel digitaler Oszillator (Grenzfall der Stabilität) Digitaler IIR-Oszillator 38

39 Aktuelle günstige DSP-Lösungen Mittlerweile gibt es wieder kostengünstige DSP-Evaluierungsmodule, insbesondere von Texas Instruments ( Lieferung erfolgt auch an private Besteller 35$ 99$ 49$ 39

40 Mikrocontroller als DSP-Ersatz Leistungsfähigkeit moderner Mikrocontroller steigt immer weiter Es gibt sogar Modelle mit DSP-Co-Prozessor auf dem selben Chip ARM Cortex M4 40 Auch kleine 16Bit-MCUs können zumindest IIR-Filter bei geringer Abtastrate (8kHz) rechnen MSP430-Familie

41 DSP mit MSP430F

42 QRP-FIR-Filter Signal im FIR-Filter weiter schieben Mit Koeffizienten multiplizieren und Addieren 42

43 Digitale QRP-NF-Filter Mit einem 10mm x 10mm Mikrocontroller für <5 lassen sich stromsparende DSP-NF-Filter nach QRP-Manier aufbauen Die internen 12 Bit-AD- und DA-Wandler genügen von der Dynamik, wenn sowieso eine AGC im Einsatz ist (einfache analoge Filter sollten ergänzt werden) DSP 43

44 Ende

Digitale Signalverarbeitung für Einsteiger

Digitale Signalverarbeitung für Einsteiger Digitale Signalverarbeitung für Einsteiger Dipl.-Ing. Erich H. Franke, DK6II erich.franke@afusoft.com 54. Weinheimer UKW-Tagung 2009 Errata: Nobody is perfect Im Skriptum haben sich kleine aber ärgerliche

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes

Mehr

Digitale Signalverarbeitung mit MATLAB

Digitale Signalverarbeitung mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr. The Anh Vuong

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. The Anh Vuong email: av@dr-vuong.de http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser... Network-Architecture,

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Regelungstechnik : Vorlesung 10

Regelungstechnik : Vorlesung 10 Regelungstechnik : Vorlesung 10 Umgang mit Beschränkungen der Aktoren Alle Aktoren haben gewisse Beschränkungen. Sie sind beispielsweise in ihrer Amplitude oder Dynamik beschränkt. Das Missachten von Stellgrößenbegrenzung

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen Signale und Systeme von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage Oldenbourg Verlag Munchen I Einfuhrung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

System- und Signaltheorie

System- und Signaltheorie Otto Mildenberger System- und Signaltheorie Grundlagen für das informationstechnische Studium 3., überarbeitete und erweiterte Auflage Mit 166 Bildern vieweg 1 Einleitung 1 1.1 Aufgaben der Systemtheorie

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE hartmut.gemmeke@kit.edu Tel.: 07247-82-5635 Einführung in die Elektronik für Physiker 22. Analog-Digital-Wandlung und digitale Filter Digitale Datenerfassung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Grundlagen der Informationstechnik

Grundlagen der Informationstechnik Martin Meyer Grundlagen der Informationstechnik Signale, Systeme und Filter Mit 250 Abbildungen und 33 Tabellen Herausgegeben von Otto Mildenberger Vieweg Praxiswissen Vieweg VII 1 Einführung 1 1.1 Das

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Vortrag der Diplomarbeit

Vortrag der Diplomarbeit Vortrag der Diplomarbeit Entwicklung eines Continuous-Time Delta- Sigma Modulators für den Einsatz in der Positronen-Emissions-Tomographie von 07.09.2009 Überblick und Gliedergung: Teil 1: CT ΔΣ Modulator

Mehr

2 Signalabtastung und Rekonstruktion

2 Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion In vielen praktischen Anwendungen werden analoge Signale mit digitalen Systemen wie z.b. Computern oder Mikro-Controllern erfasst und

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 1: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Vergleich zeitkontinuierlicher und zeitdiskreter Systeme Systemtheorie hat zeitkontinuierliche Systeme

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr. Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Karl-Dirk Kammeyer, Kristian Kroschel Digitale Signalverarbeitung Filterung und Spektralanalyse mit MATLAB-Übungen 6., korrigierte und ergänzte Auflage Mit 315 Abbildungen und 33 Tabellen Teubner Inhaltsverzeichnis

Mehr

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Faltung, Bildbereich und Stabilität

Faltung, Bildbereich und Stabilität Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Faltung, Bildbereich und Stabilität Dresden, den 03.08.2011 Gliederung Vorbemerkungen Faltung Bildbereich

Mehr

Signale und Systeme. Christoph Becker

Signale und Systeme. Christoph Becker Signale und Systeme Christoph Becker 18102012 Signale Definition 1 Ein Signal ist eine Folge von Zahlen {xn)} welche die Bedingung xn) < erfüllt Definition 2 Der Frequenzgang / frequency domain representation

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

Digitale Signalverarbeitung für Einsteiger Teil 2

Digitale Signalverarbeitung für Einsteiger Teil 2 Digitale Signalverarbeitung für Einsteiger Teil 2 Dipl.-Ing. Erich H. Franke, DK6II erich.franke@afusoft.com 55. Weinheimer UKW-Tagung 2010 RTTY: Ein kurzes Update Spektrale Breite im Funkkanal: B = 235

Mehr

Eigenschaften und Anwendung zeitdiskreter Systeme

Eigenschaften und Anwendung zeitdiskreter Systeme Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Eigenschaften und Anwendung zeitdiskreter Systeme Dresden, den 3.8.2 Gliederung Vorbemerkungen Eigenschaften

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr