Thüringer CAS-Projekt
|
|
|
- Axel Bauer
- vor 9 Jahren
- Abrufe
Transkript
1 Thema Integralrechnung Sek I Sek II Class-Pad TI-Nspire CAS. Schlagworte: Einführung Integralrechnung, Bestimmtes Integral Lehrermaterial: Das bestimmte Integral Inhalt Beschreibung der stofflichen Fülle und der Umsetzung Einführung des bestimmten Integrals als Verfahren zur Berechnung von krummlinig begrenzten Flächenstücken. Die Erarbeitung erfolgt mit dem TI Nspire unter Nutzung von Calculator, Graphs und Lists & Spreadsheet. Vorschlag zur Umsetzung: Einführendes Beispiel: ( ) Darstellung der Funktion liefert: Die entsprechenden Fenstereinstellungen lauten: THILLM 2010 Das bestimmte Integral 1/8
2 Veranschaulichung des Flächenproblems durch Approximation der Fläche im Intervall mittels einbeschriebener Rechtecke. Hinweis: Das Zeichnen des Rechtecks erfolgt in der linken oberen Ecke durch eine Klammereingabe und Angabe der Koordinaten. Die Bestätigung erfolgt jeweils mit der ENTER Taste. Es folgt die rechte obere Ecke durch Klammereingabe und Angabe der Koordinaten. Ziehen der unteren Seite vervollständigt die Figur. Diskussion der vollständig einbeschriebenen Fläche. Die Flächenbestimmung der Rechtecke ist durch Messung der Einzelrechteckflächen in Graphs und Addition dieser möglich, sinnvoller erscheint die Berechnung im Calculator. Je nach Leistungsstärke der Schülergruppe kann durch einfache Addition der Teilflächen die Untersumme bestimmt werden. THILLM 2010 Das bestimmte Integral 2/8
3 Eine weitere Variante stellt die Nutzung des Summenzeichens dar. Die Eingrenzung der gesuchten Fläche erfolgt analog zu den einbeschriebenen Rechtecken durch umbeschriebene Rechtecke. Hinweis: Die Ausnutzung der Kopierfunktion des TI Nspire zur Summenbildung ist sinnvoll! An dieser Stelle sollte die Diskussion der Ergebnisse und eine Teilergebnissicherung erfolgen. Tafelbild: Das bestimmte Integral Ziel: Entwicklung eines Verfahrens zur Berechnung von krummlinig begrenzten Flächenstücken. Bsp.: ( ) im Intervall [0; 1] Das von der Funktion begrenzte Flächenstück wird durch einbeschriebene und umbeschriebene Rechtecke angenähert. (Bem. : Die Screenshots sollten in die Aufzeichnung des Schülers eingeklebt werden!) THILLM 2010 Das bestimmte Integral 3/8
4 Für die gesuchte Fläche A gilt: 1,285 FE < A < 1,385 FE Eine korrektere Angabe der Fläche erhält man durch eine weitere Verfeinerung der Rechteckunterteilungen. Alternative 1: Die weitere Erarbeitung erfolgt durch Lists & Spreadsheet. Für die Untersumme lässt sich folgende Tabelle entwickeln, wobei: Spalte/ Name Inhalt Zelle A1: i:=0.1 In diese Zelle wird die Intervalllänge, also auch die Intervallanzahl durch die Variable i definiert. (0.1 in A1 eintragen, ctrl -> menu -> 7:Variablen -> 1:Variable speichern -> i angeben) B: ux seq(n,n,0,1-i,i) (i steht für einen Variablenverweis!!!) C: uf f1(ux) D: ua i*uf E: us cumulativesum(aa) Für die Obersumme ergibt sich, da i bereits definiert wurde (dynamisch mit der Tabelle in 1.5 verknüpft), wobei: Spalte Name Inhalt A: ox seq(n,n,0+i,1,i) B: uf f1(ox) C: oa i*of D: os cumulativesum(oa) Durch Variation von i (der Intervalllänge) kann THILLM 2010 Das bestimmte Integral 4/8
5 die Menge der Flächenstücke beeinflusst werden. Die weitere Erarbeitung des Tafelbildes könnte sich folgendermaßen gestalten: Für 100 einbeschriebene Rechtecke (i = 0,01) liefert die Untersumme: s 100 = 1,32835 FE Für 100 umbeschriebene Rechtecke liefert die Obersumme: S 100 = 1,33835 FE Für die gesuchte Fläche A ergibt sich: 1,32835 FE < A < 1,33835 FE Für 1000 Rechtecke ergibt sich: 1,33283 FE < A < 1,33383 FE THILLM 2010 Das bestimmte Integral 5/8
6 Alternative 2: Erarbeitung durch Notes, es können hier durchaus Intervalle gewählt werden: In einem neuen Notes Fenster jeweils b, 3:Einfügen, 1: Math Box wählen und folgende Terme eingeben: ( ) Zur Verdeutlichung können die Erläuterungen Untersumme und Obersumme angegeben werden, die durch folgende Formeln den approximierten Flächeninhalt liefern: ( ( )) sowie ( ( )) Diese müssen wiederum jeweils in eine Math Box eingegeben werden. THILLM 2010 Das bestimmte Integral 6/8
7 Schlussfolgerung: Untersumme und Obersumme besitzen denselben Grenzwert, falls die Menge der Rechtecke gegen Unendlich geht. Dieser entspricht der gesuchten Fläche. Definition: Ist ( ) eine monoton wachsende und nach oben beschränkte Zahlenfolge und ( ) eine monoton fallende und nach unten beschränkte Zahlenfolge und gilt, dann heißt dieser gemeinsame Grenzwert das bestimmte Integral der Funktion f(x) nach dx in den Grenzen von a bis b. Schreibweise: ( ) f(x) Integrand x Integrationsvariable x = a untere Integrationsgrenze x = b obere Integrationsgrenze A x = a x = b THILLM 2010 Das bestimmte Integral 7/8
8 Didaktischer Kommentar: Die graphische Darstellung der Rechteckflächen erscheint aufwendig. Nach hinreichender Klärung der Eckpunktkoordinaten gelingt das Zeichnen zügig und exakt. Der Schüler erlebt, wie die Fläche unter der Kurve sich füllt. Selbstverständlich kann die Menge der Rechtecke beliebig gewählt werden. Die Entscheidung obliegt dem Unterrichtenden, kann natürlich auch durch eine Freihandskizze ersetzt werden. Die Auswertung der Flächengrößen und somit die Ermittlung der Gesamtfläche liegt im Ermessensbereich des Lehrers. Diese kann mittels des Summenzeichens erfolgen. Somit ist an dieser Stelle ein Verweis auf mathematisch übliche Schreibweisen und deren Anwendung möglich. Die Erstellung der Tabelle zur Berechnung der Untersumme in Lists & Spreadsheet sollte gemeinsam mit den Schülern erfolgen. Mit dieser Basis sind diese in der Lage die Obersumme tabellarisch selbstständig umzusetzen. In Notes könne die Schüler die erarbeiteten Grundkenntnisse bezüglich des Summenzeichens anwenden und weiterentwickeln. Grundsätzlich ist anzuraten, dass wesentliche Screenshots in die Aufzeichnungen der Schüler übernommen werden bzw. eine Speicherung und Archivierung der Dateien als äquivalente Vorgehensweise erfolgt. THILLM 2010 Das bestimmte Integral 8/8
Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya
Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der
Flächenberechnung mittels Untersummen und Obersummen
Flächenberechnung mittels Untersummen und Obersummen Ac Einstieg: Fläche unter einer Normalparabel mit f(x) = x 2 Wir approximieren durch Rechtecksflächen, wobei zunächst senkrecht zur x-achse 10 Streifen
Arbeitsblatt 1. Ergebnisse: a) Schätzen:... b) Abzählen:... c) Berechnen: (unter Angabe der geometrischen Figuren)
Arbeitsblatt 1 Für das nächste Frequency-Festival pachtet der Veranstalter zusätzliche Fläche für die Besucherzelte beim benachbarten Landwirt. Zur Ermittlung des Pachtpreises muss die Fläche ausgemessen
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.
Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen
Kapitel 8 Einführung der Integralrechnung über Flächenmaße
8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb
Einführung in die Integralrechnung
Inhaltsverzeichnis 1. Das Problem der Flächenberechnung... 2 1.1 Problemstellung... 2 1.2 Abschätzung einer Fläche mit Vielecken... 3 1.3 Abschätzung einer Fläche mit einfachen Flächen... 4 1.4 Fläche
EINFÜHRUNG IN DIE INTEGRALRECHNUNG
Didaktik III: Der graphikfähige Taschenrechner im Mathematikunterricht SS2011 StRin Pia Scherer EINFÜHRUNG IN DIE INTEGRALRECHNUNG Referent: Daniel Meyer Datum: 08.06.2011 GLIEDERUNG Einordnung in den
Arbeiten mit Funktionen
Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl.
Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - A II - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a ( ) a a mit a IR \ {0} in der von a unabhängigen Definitionsmenge D f IR \ {0}. Teilaufgabe.
TI voyage 200. Analysis. Kompaktwissen. Eine kleine Hilfe für Schüler der DSB
TI voyage 200 Kompaktwissen Analysis Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Analysis Diese Anleitung soll helfen, Aufgaben aus dem Mathematikunterricht mithilfe des TI
Fachgruppe Mathematik September 16 Minimalanforderungen an das Arbeiten mit dem Taschenrechner TI-Nspire CAS in G9
Seite: 1 Klasse 7: 1. Eingabe der Grundrechenarten im SCRATCHPAD. 2. Berechnung als Dezimalbruch durch ctrl-enter. 3. Erstellen und Sichern eines Dokumentes. ([doc], 1: Datei, 5: Speichern unter...) 4.
Analysis I Lösung von Serie 9
FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist
3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung:
1 Rechenverfahren für THP (WS 2002) 3 Integralrechnung 3.1 Stammfunktion: In der Differentialrechnung: Gegeben: Funktion Gesucht: Ableitung Problem der Differentialrechnung: Bestimmung der Steigung vom
Fachgruppe Mathematik Januar 14 1
1 Klasse 7: 1. Eingabe der Grundrechenarten im SCRATCHPAD. 2. Berechnung als Dezimalbruch durch ctrl- Enter. 3. Erstellen und Sichern eines Dokumentes. ([doc], 1: Datei, 5: Speichern unter...) 4. Eingabe
Analysis 5.
Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion
Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik
Zeichenerklärung: [ ] - Drücken Sie die entsprechende Taste des Graphikrechners! [ ] S - Drücken Sie erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücken Sie erst die Taste [ALPHA]
Uneigentliche Integrale
Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,
1. Einführung des. Allgemeines
Allgemeines In diesem Rechner ist ein komplettes Set mathematischer Werkzeuge für Algebra, dynamische Geometrie, Statistik, Tabellenkalkulation und Messdatenerfassung in Echtzeit. Formeln, Tabellen und
Integral. Jörn Loviscach. Versionsstand: 5. Januar 2010, 16:36
Integral Jörn Loviscach Versionsstand: 5. Januar 2010, 16:36 1 Idee des Integrals Gegeben eine Funktion f, die auf dem Intervall [a, b] definiert ist, soll das bestimmte Integral [definite integral] b
Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen
14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: [email protected], Internet: www.elearning-freiburg.de Einführung des Integrals 15
Operatoren für das Fach Mathematik
Operatoren für das Fach Mathematik Anforderungsbereich I Angeben, Nennen Sachverhalte, Begriffe, Daten ohne nähere Erläuterungen und Begründungen, ohne Lösungsweg aufzählen Geben Sie die Koordinaten des
ClassPad II. Einführung und Aufgaben
ClassPad II Einführung und Aufgaben ClassPad II von außen Die wichtigsten Tasten: Übersicht über alle Apps Löschen (Backspace) Einzelne Zeichen, Markierungen & Eingaben löschen Abbruchtaste Prozesse, Berechnungen
Der Begriff des bestimmten Integrals
Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8
Wie hängen beim Kreis Durchmesser und Umfang zusammen?
Euro-Münzen und die Kreiszahl Ulla Schmidt, Freiherr-vom-Stein-Gymnasium Lünen Steckbrief der Aufgabe Sekundarstufe I (Kreisberechnungen) Dauer: 2 Unterrichtsstunden Notwendige Voraussetzungen: Schülerinnen
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
Dokumentation des Lösungsweges bei Einsatz des Taschenrechners
Dokumentation des Lösungsweges bei Einsatz des Taschenrechners Viele weiterführende mathematische Aufgaben, z.b. aus den Bereichen Funktionelle Zusammenhänge und Differential- und Integralrechnung lassen
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
Einstieg in die Differential- und Integralrechnung mit Technologie
Helmut Heugl, Hubert Langlotz Einstieg in die Differential- und Integralrechnung mit Technologie 1. Didaktische Voraussetzungen Gerade beim Begriffsbildungsprozess kann Technologie als Visualisierungswerkzeug
Lernspirale zum Thema. Einführung in die Integralrechnung. 8. Klasse. von Evelyn Stepancik und Markus Hohenwarter
Lernspirale zum Thema Einführung in die Integralrechnung 8. Klasse von Evelyn Stepancik und Markus Hohenwarter zum Lernpfad von Markus Hohenwarter, Gabriele Jauck und Andreas Lindner Voraussetzungen: Themenbereich/Inhalte:
Mehrdimensionale Integralrechnung 1
Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.
7. Integralrechnung. Literatur: [SH, Kapitel 9]
7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration
III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung
III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder
Dieter Brandt: Unterricht mit dem V200 in der Kurstufe Workshop Unterrichtsbeispiele Tagung Karlsruhe 7. März 2006
Inhalt: 1 Geschwindigkeit eines anfahrenden ICE 2 Volumenberechnung eines Bierglases 3 Der Weg zum Hauptsatz Brandt - Unterrichtsbeispiele V200 Seite : 1 1 Geschwindigkeit eines anfahrenden ICE Die Messkurve
Analysis leicht gemacht! Teil 2: Integralrechnung der ganzrationalen Funktion
Scholtyssek Analysis leicht gemacht! Teil : Integralrechnung der ganzrationalen Funktion Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Erste Schritte: Grundlagen der Tabellenkalkulation
TI- nspire 3 Erste Schritte: Grundlagen der Tabellenkalkulation Aufgabe Vorgehen Beschreibung Familie A. zahlt für Leitungswasser 80 Grundgebühr und den Verbrauchspreis 1,50 für jeden m 3. Stelle für die
Lösungsblatt Aufgabe 1.32
Aufgabenstellung: Die Geschwindigkeit eines Körpers ist für t 1 durch v t = 10 10 gegeben. t 1. Schätze die Länge des im Zeitintervall [1 4] zurückgelegten Weges durch Ober- und Untersumme ab, wobei das
4.1 Aufbau und Eingabe von Formeln
4.1 Aufbau und Eingabe von Formeln Grundlagen zu Formeln Formeln sind Berechnungen, die in eine Zelle oder in die Bearbeitungsleiste eingetragen werden können. Standardmässig zeigt Excel in der Bearbeitungsleiste
Einsatz von CAS im Mathematikunterricht Klasse 8
Einsatz von CAS im Mathematikunterricht Klasse 8 Beispiele für den Einsatz des Voyage 200 im Lernbereich 3 Funktionen und lineare Gleichungssysteme Darstellungsformen von Funktionen Eigenschaften ganz-
Flächenberechnung mit Integralen
Flächenberechnung mit Integralen Wolfgang Kippels 28. April 208 Inhaltsverzeichnis Vorwort 2 2 Einleitung 2 3 Übungsaufgaben 3 3. Aufgabe................................... 3 3.2 Aufgabe 2...................................
Grundlagen im Umgang mit dem Rechner
Grundlagen im Umgang mit dem Rechner Aufbau des Betriebssystems Schalten Sie Ihren TI-Nspire ein! Es erscheint der Startbildsschirm: Durch Klicken auf eins der sieben unten angeordneten Symbole, öffnen
Einführung des Differentialquotienten aus: Fokus Mathematik 11 (Cornelsen), Kapitel 9.1
Einführung des Differentialquotienten aus: Fokus Mathematik 11 (Cornelsen), Kapitel 9.1 Diese umfangreichere Aufgabe geht aus von mittleren Steigungen und führt dann hin zur mittleren Steigung. Zunächst
Wissen und Fertigkeiten Berthold Mersch
Wissen und Fertigkeiten Y= WINDOW ZOOM TRACE GRAPH TBLSET TABLE CALC DRAW Y= Darstellung: Stil Darstellung: Ja/Nein Term: Variable WINDOW? GRAPH ZOOM Wähle den Mittelpunkt der Vergrößerung/Verkleinerung
23 Integral. 1 Idee des Integrals
23 Integral Jörn Loviscach Versionsstand: 21. September 2013, 15:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed
Mathematikunterricht auf dem ipad mit der TI NSPIRE CAS APP
Mathematikunterricht auf dem ipad mit der TI NSPIRE CAS APP Seite 0 von 12 Schuljahrgänge 5/6 Schuljahrgänge 7/8 Schuljahrgänge 9/10 Umgang mit natürlichen Zahlen Körper und Figuren Umgang mit Brüchen
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 12. Jänner Mathematik. Teil-2-Aufgaben. Korrekturheft
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 12. Jänner 2017 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 Graphen von Polynomfunktionen dritten Grades Nur an denjenigen Stellen,
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,
Compendium zum Computeralgebrasystem CAS (Teil1: Analysis/Algebra)
Compendium zum Computeralgebrasystem CAS (Teil1: Analysis/Algebra) Andreas Rohde Cosmo Hartung Isaak Schwarzkopf Leon Johannes Dreißig Lucas Zeißig Maximilian Karst Moritz Borris Natalie Heidrich Truong
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
Informatik BMS. Excel. Trainingsunterlagen EXCEL XP BASIC
Trainingsunterlagen EXCEL XP BASIC Karin Seibel Seite 1 21.01.2008 Was ist eine Tabellenkalkulation? Inhalt Was ist eine Tabellenkalkulation?... 3 Aufbau einer Datei... 3 starten... 4 Das -Anwendungsfenster...
Folgen und Reihen. Kapitel Zahlenfolgen
Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,
Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1
Abitur Mathematik: Bayern 2012 Teil 1 Aufgabe 1 a) DEFINITIONSMENGE f(x) = ln(x + 3) x + 3 > 0 x > 3 D f =] 3; + [ ABLEITUNG Kettenregel liefert f (x) = 1 x + 3 1 = 1 x + 3 b) DEFINITIONSMENGE 3 g(x) =
Funktionsscharen. Zusatzthemen. Funktionsscharen. Berechnungen mit Funktionsscharen. Funktionsscharen. Ortskurven Extremwertaufgaben Bedienung des GTR
Funktionsscharen 335 334 Zusatzthemen Funktionsscharen Ortskurven Extremwertaufgaben Bedienung des GTR Eine Funktion, die neben dem üblichen Parameter noch einen zweiten Parameter besitzt, bezeichnet man
Flächen zwischen zwei Kurven
Flächen zwischen zwei Kurven 1 E Flächen zwischen zwei cc Kurven: Beispiel 1 Abb. B1: Die Fläche zwischen zwei Kurven f (x) und g (x) im Intervall [a, b], f (x) ist die obere Kurve und g (x) ist die untere
Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400
Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Die Bildschirmabdrucke veranschaulichen die aufgeführten Kompetenzen. Sie erheben keinen Anspruch auf Vollständigkeit
CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag
CAS / GTR endlich mal eine verständliche Bedienungsanleitung Texas Instruments TI 84 Kostenlose Mathe-Videos auf Mathe-Seite.de - 1 - Copyright Inhaltsübersicht 1. Katalog 2. Nullstellen 3. Gleichungen
Welcher Balken trägt am meisten?
Unterschiedliche Lösungswege für Extremwertaufgaben Karl-Heinz Keunecke, Altenholz Angelika Reiß, Berlin Steckbrief der Aufgabe Sekundarstufe I und II Extremwertwertaufgaben mit geometrischen Nebenbedingungen
Thüringer CAS-Projekt
Thema: Der Graph der Funktion y=sin(x) Gabriele Felsmann Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Schülermaterial: Durch Verknüpfung von Graphik und DGS wird die Entstehung des Graphen der Sinusfunktion
Bestimmung des Massenverhältnisses bei der Reaktion von Magnesium mit Sauerstoff
8 0 6 0 4 0 2 0 0 0 0 1 0 8 0 6 0 4 0 2 0 L m 1.1 Konstante Massenproportionen Untersuche, welches Volumen Sauerstoff für die Reaktion mit verschiedenen Massen Magnesium jeweils benötigt wird. Geräte 2
Höhere Mathematik II. Variante C
Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite
Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen.
-1- Selbst lernen: Einführung in den Graphikrechner TI-84 Plus Das Graphikmenü des TI84-Plus Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. 1 Grundsätzliches Die
Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya
Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich
1 Folgen und Stetigkeit
1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt
Station 1 TERME BEGRIFFE 1. Station 2 ADDITION UND SUBTRAKTION GANZER ZAHLEN. Berechne a) 7 13 = b) 7 13 = d) = h) = f) 9 28 = g) 9 28 =
Station 1 ADDITION UND SUBTRAKTION GANZER ZAHLEN Berechne a) 7 13 = b) 7 13 = c) 7 + 13 = d) 7 + 13 = e) 9 + 28 = f) 9 28 = g) 9 28 = h) 9 + 28 = Station 2 TERME BEGRIFFE 1 Benenne die einzelnen Elemente
Flächenberechnung mit Integralen
Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................
Xpert - Europäischer ComputerPass. Peter Wies. Tabellenkalkulation (mit Excel 2010) 1. Ausgabe, 5. Aktualisierung, Juli 2013
Xpert - Europäischer ComputerPass Peter Wies 1. Ausgabe, 5. Aktualisierung, Juli 2013 Tabellenkalkulation (mit Excel 2010) XP-EX2010 3 Xpert - Europäischer ComputerPass - Tabellenkalkulation (mit Excel
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
M-Kurs Hilfsmittel: Tafelwerk, Taschenrechner (Die Geheimhaltung ist gewährleistet)
Landesstudienkolleg des Landes Sachsen-Anhalt Abteilung der Martin-Luther-Universität Halle Wittenberg [Musterbeispiel] M-Kurs Hilfsmittel: Tafelwerk, Taschenrechner (Die Geheimhaltung ist gewährleistet)
Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung
Abitur MathematikBayern 04 Prüfungsteil B, Aufgabengruppe BundesabiturMathematik: Prüfungsteil B, Aufgabengruppe : Bayern 04 Aufgabe a). SCHRITT: SCHNITTPUNKTE MIT DEN KOORDINATENACHSEN Die Koordinatenachsen
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya
Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,
Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016
Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln
Thüringer CAS-Projekt
Thema Mittelwerte Hubert Langlotz Thüringer CAS-Projekt Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Mittelwerte, arithmetisches Mittel, Median, Stabilität Schülermaterial: Aufgabe Ich bekomme zu
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)
Integralrechnung. Mathematik-Repetitorium
Integralrechnung 6.1 Geometrische Interpretation 6.2 Grundaufgabe 6.3 Basisintegrale, Regeln 6.4 Produktregel: Partielle Integration 6.5 Quotienten 6.6 Variablensubstitution 6.7 Integration von Potenzreihen
Einstieg: Tabellenkalkulation
Name: Klasse: Datum: Einstieg: Tabellenkalkulation Öffne zunächst die Tabellenansicht von GeoGebra, indem du im Menü Ansicht auf Tabelle klickst. 1 Öffne eine neue GeoGebra-Datei. a) Gib in der Zelle A1
Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung
GS.06.0 - m_nt-a_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. 0 x x 8 x mit der Definitionsmenge Teilaufgabe.
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
TI-84 im Mathematikunterricht Stand:
TI-84 im Mathematikunterricht Stand: 2009-04-04 Graphen einer Funktionsgleichung zeichnen: Y= Funktionsgleichung eingeben schwarzes Feld unter = bedeutet, dass die Gleichung zum Zeichnen aktiviert ist
Mathematik p sitiv! Österreichischer Lehrplan. Mathematik p sitiv! Wolfram Thorwartl Günther Wagner Helga Wagner. 8. Klasse AHS
Mathematik positiv! 8 deckt den gesamten Lehrstoff nach dem neuen österreichischen Lehrplan der 8. Klasse AHS ab und hilft, mathematische Zusammenhänge zu analysieren, Lösungsmethoden zu erkennen und diese
Pflichtteilaufgaben zur Integralrechnung
Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche
f(x) dx = A 1 A 2 + A 3
Was ist anschaulich Integralrechnung? Berechnung von Flächeninhalten zwischen (i. A. krummlinigen) Kurven und der Rechtsachse, wobei Flächen unterhalb der Rechtsachse negativ in die Berechnung eingehen.
Grenzwert. 1-E Ma 1 Lubov Vassilevskaya
Grenzwert Ohne Grenzwerte gibt es keine Differential- und Integralrechnung. Jeder einzelne Ausdruck in der Differential- und Integralrechnung ist in irgendeinem Sinn ein Grenzwert. 1-E Die Idee des Grenzwertes
1. Schularbeit 3.E/RG Gruppe A Name:
Beachte: Wenn das Beispiel nicht händisch berechnet wird müssen alle Formeln und wesentlichen Teile im Heft angeschrieben werden. Die Rechnung mit dem TI-92 (Eingabezeile) muss mit einer Farbe im Heft
