Fragebogen Fallzahlberechnung / -begründung
|
|
|
- Clara Bachmeier
- vor 9 Jahren
- Abrufe
Transkript
1 Ihre Adress- und Projektdaten Ansprechpartner Firma + Adresse Telefon Projektbezeichnung Projektbeschreibung Unser Angebot Nach Zusendung des Fragebogens nehmen wir mit Ihnen unverbindlich Kontakt auf, um Ihnen ein Kostenangebot zu unterbreiten und eine individuelle Feinabstimmung vorzunehmen. In der Regel erhalten Sie innerhalb von 2-3 Werktagen nach Auftragserteilung ein Gutachten zur Fallzahlberechnung oder Fallzahlbegründung. Hinweise Erläuterungen zu den kursiv gedruckte Fachbegriffen finden sich im beigefügten Glossar. Bei Ankreuzen der Option werden Sie zum nächsten Punkt weiterverwiesen bzw. zur weiteren Klärung von uns nach Erhalt des Formulars kontaktiert. I Problemstellung Handelt es sich bei Ihrem Projekt um ein Schätz- oder Testproblem? Testproblem ( gehe zu I.1) Schätzproblem ( gehe zu I.2) 1 / 7
2 I.1 Ihr Testproblem 1. Soll das Problem ein- oder zweiseitig gelöst werden? Einseitig Zweiseitig ( gehe zur nächsten Frage) 2. Risiko einer Testentscheidung 2.1 Wie groß wird die Wahrscheinlichkeit für den Fehler 1. Art gewählt? α = 0,05 (Standard) Anderer Wert für α: Wie groß wird die Wahrscheinlichkeit für den Fehler 2. Art gewählt? β = 0,20 (Standard) Anderer Wert für β:... ( gehe zur nächsten Frage) 3. Um welche Art von Testproblem handelt es sich? (Mehrere Antworten möglich) Differenztest ( gehe in Kap. I.1 zu 3.1) Äquivalenztest ( gehe in Kap. I.1 zu 3.2) Einfache Varianzanalyse Vergleich mehrerer Gruppen ( gehe in Kap. I.1 zu 3.3) Korrelation ( gehe in Kap. I.1 zu 3.4) Regression ( gehe in Kap. I.1 zu 3.5) Andere Problemstellung - das vorliegende Problem lässt sich nicht den vorausgehenden Gliederungspunkten zuordnen. Problem: / 7
3 3.1 Falls Differenztest Welche Arten von Parametern werden verglichen? Zwei binomiale Zufallsvariablen Quantitative Parameter Falls zwei binomiale Zufallsvariablen Wie groß ist die relevante Differenz der beiden erwarteten Wahrscheinlichkeiten? Relevante Differenz: Falls quantitative Parameter Um welche Art von Vergleich handelt es sich? t-test (Vergleich zweier Mittelwerte) Wie groß ist die relevante Differenz δ? Relevante Differenz:... Keine Aussage möglich Große Differenz eine Standardabweichung (δ σ ) Mittlere Differenz halbe Standardabweichung und eine Standardabweichung (0,5σ δ σ) Kleine Differenz halbe Standardabweichung (δ 0,5σ) Parameterfreie Tests Wie groß ist die Wahrscheinlichkeit, dass ein Wert der 1. Stichprobe kleiner ist als ein Wert der 2. Stichprobe? (standardmäßig 0,75 p 0,90) Wahrscheinlichkeit:..., ob t-test oder parameterfrei 3 / 7
4 3.2 Falls Äquivalenztest Wie groß ist maximal die Differenz zwischen den Mittelwerten, um noch von Gleichwertigkeit der Therapien sprechen zu können? Differenz: Falls einfache Varianzanalyse Vergleich mehrerer Gruppen Wie viele Gruppen möchten Sie vergleichen? Anzahl:... Nach welchen Merkmalen erfolgt die Gruppeneinteilung? Merkmale:... Wie groß ist die minimale relevante Spannweite, ab der mindestens der Unterschied zwischen dem kleinsten und größten Mittelwert als signifikant erachtet wird? Spannweite: Falls Korrelation Wie groß ist der nachzuweisende Korrelationskoeffizient? Korrelationskoeffizient: Falls Regression Wie groß ist der nachzuweisende Regressionskoeffizient? Regressionskoeffizient:... Wie groß ist die Standardabweichung der X-Werte? Standardabweichung:... Wie groß ist die Standardabweichung der Y-Werte? Standardabweichung:... 4 / 7
5 I.2 Ihr Schätzproblem 1. Soll das Problem ein- oder zweiseitig gelöst werden? Einseitig Zweiseitig ( gehe zur nächsten Frage) 2. Handelt es sich um eine Intervall- oder Toleranzschätzung? Intervallschätzung ( gehe in Kap. I.2 zu 2.1) Toleranzschätzung ( gehe in Kap. I.2 zu 2.2) 2.1 Falls Intervallschätzung Wie sicher soll der Parameter geschätzt werden? Geben Sie die gewünschte Konfidenzwahrscheinlichkeit an: 95 % (Standardwert) Andere Konfidenzwahrscheinlichkeit:... Wie genau soll der Parameter geschätzt werden? Geben Sie die gewünschte Länge des Konfidenzintervalls an: Länge Konfidenzintervall: Falls Toleranzschätzung Wie groß ist der Anteil im Referenzbereich? 95 % (Standardwert) Anderer Anteil:... Möchten Sie eine Sicherheitswahrscheinlichkeit vorgeben? 95 % (Standardwert) Andere Sicherheitswahrscheinlichkeit:... 5 / 7
6 II Hauptzielvariable und Variabilität 1. Was ist die Hauptzielvariable? Wie wird die Hauptzielvariable gemessen (Messskala)? Nominal ( gehe in Kap. II zu 2.1) Ordinal ( gehe in Kap. II zu 2.2) Quantitativ ( gehe in Kap. II zu 2.3) ( gehe zu III) 2.1 Falls nominal Handelt es sich um eine binomial verteilte Hauptzielvariable (zwei Ausprägungen; ja/nein-ergebnis)? Ja Geschätzter Anteil der ja-ereignisse:... Mehr als zwei Ausprägungen Anzahl:... ( gehe zu III) 2.2 Falls ordinal Wie viele Ausprägungen hat die Variable? Ausprägungen der Variable bekannt Anzahl:... ( gehe zu III) 2.3 Falls quantitativ Ist die Standardabweichung bekannt? Ja Größe der Standardabweichung:... Nein Falls nein kann die Standardabweichung aus historischen Daten geschätzt oder der Literatur entnommen werden? Ja:... Nein ( gehe zu III) 6 / 7
7 III Drop-out-Rate Erwartete Drop-out-Rate:... ( gehe zu IV) IV Literatur Bitte führen Sie alle Literaturquellen auf, die Sie für die Fragestellung herangezogen haben: V Sonstige Kommentare Bitte senden Sie den ausgefüllten Fragebogen an folgende Kontaktadresse: Prof. Dr. Dr. Klaus Osterkorn Medizinisches Wirtschaftsinstitut GmbH Zieblandstraße 9 D München Telefon Fax [email protected] Homepage 7 / 7
Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung
Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind
Fallzahlplanung bei unabhängigen Stichproben
Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner [email protected] 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz
- 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Grundlagen der Statistik
Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ
WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert
Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:
Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen
VII. Inhaltsverzeichnis
VII Inhaltsverzeichnis Vorwort XIII Teil 1 Datentypen 1 Datentypen 3 1.1 Kommt es wirklich darauf an? 3 1.2 Daten auf einer Intervallskala 3 1.3 Daten auf einer Ordinalskala 4 1.4 Daten auf einer Nominalskala
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...
Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Statistik I für Betriebswirte Vorlesung 14
Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!
Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies
Epidemiologie / Biometrie
Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert [email protected]
Planung von Humanstudien Fallzahlberechnung
Planung von Humanstudien Fallzahlberechnung Hans-Peter Helfrich Universität Bonn 5. November 2015 H.-P. Helfrich (Universität Bonn) Planung von Humanstudien 5. November 2015 1 / 15 Einführung 1 Einführung
Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder
Formelsammlung Beschreibende Statistik Univariate Häufigkeitsverteilungen X ist ein diskretes Merkmal, mit k Ausprägungen TR: Mode 2 1 = AC absolute relative Häufigkeit Häufigkeiten Bivariate Häufigkeitsverteilungen
Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen
Inhaltsverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):
Statistik II Übung 3: Hypothesentests
Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden
Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).
Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008
Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Bei einer klinischen Therapiestudie wird bei allen Patienten der Wert eines quantitativen
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation
Biomathematik für Mediziner, Klausur SS 2000 Seite 1
Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,
Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr.
Statistik für Wirtschaftswissenschaftler von Prof. Dr. Josef Bleymüller und Prof. Dr. Rafael Weißbach sowie Dr. Günther Gehlert und Prof. Dr. Herbert Gülicher bei früheren Auflagen 17., überarbeitete Auflage
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und
Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15
Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!
4.1. Nullhypothese, Gegenhypothese und Entscheidung
rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals
Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test
Stichproben Parameterschätzung Konfidenzintervalle:
Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
Statistische Datenanalyse
Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise
2 Aufgaben aus [Teschl, Band 2]
20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:
KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008
KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Welche der folgenden Aussagen ist falsch? A. Der Median ist weniger stark von Ausreißern beeinflusst
Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:
18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse
1 GRUNDLAGEN Grundbegriffe Skalen...15
Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren
Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau
Statistiktutorium (Kurs Frau Jacobsen)
Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:
2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer
DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr
2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur
Anpassungstests VORGEHENSWEISE
Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel
Statistik für Ökonomen
Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle
Bereiche der Statistik
Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers
4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis
6. Schätzverfahren für Parameter
6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen
Statistik im Labor. BFB-tech Workshop Eugen Lounkine
Statistik im Labor BFB-tech Workshop 9.11.07 Eugen Lounkine Übersicht Darstellung und Charakterisierung von Daten Datentransformationen Lineare Korrelation Wahrscheinlichkeitsverteilung(en) Schätzer Konfidenzintervalle
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Musterlösung. Modulklausur Multivariate Verfahren
Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X
Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
Werkzeuge der empirischen Forschung
Werkzeuge der empirischen Forschung I. Daten und Beschreibende Statistik 1. Einführung 2. Dateneingabe, Datentransformation, Datenbehandlung 3. Beschreibende Statistik II. Schließende Statistik 1 III.
Beispiel 1 - Deskription
Beispiel 1 - Deskription 1 Beispiel 1 - Deskription a) Welche der hier aufgeführten statistischen Maßzahlen beschreiben die Variabilität der der Messwerte? Standardabweichung und Quartilsabstand 1 Beispiel
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Lösung Übungsblatt 5
Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von
10,24 ; 10,18 ; 10,28 ; 10,25 ; 10,31.
Bei einer Flaschenabfüllanlage ist die tatsächliche Füllmenge einer Flasche eine normalverteilte Zufallsvariable mit einer Standardabweichung = 3 [ml]. Eine Stichprobe vom Umfang N = 50 ergab den Stichprobenmittelwert
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
Statistisches Testen
Statistisches Testen Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 7. Juni 2007 Statistisches Testen Inhaltsverzeichnis Schätzverfahren und Testverfahren sind Anwendungen der Stichprobentheorie.
1 Beispiel zur Methode der kleinsten Quadrate
1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25
Arbeitsbuch zur deskriptiven und induktiven Statistik
Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen
Statistik für das Psychologiestudium
Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)
Inhaltsverzeichnis. Vorwort
V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6
Inferenz im multiplen Regressionsmodell
1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall
Bevor wir richtig anfangen... 8
Statistik macchiato Inhalt Vorwort Bevor wir richtig anfangen... 8 Beschreibung von Daten Ordnung ist das halbe Leben... 16 Häufigkeitstabellen... 19 Häufigkeitsverteilungen... 19 Mittelwert (arithmetisches
Stichwortverzeichnis. Symbole
Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament
Auswertung und Lösung
Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden
Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06
Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:
Statistik für Ökonomen
Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren
Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.
Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall
