Statistik I (Sozialwissenschaften)

Größe: px
Ab Seite anzeigen:

Download "Statistik I (Sozialwissenschaften)"

Transkript

1 Dr. Hans-Ofried Müller Insiu für Mahemaische Sochasik Fachrichung Mahemaik Technische Universiä Dresden hp:// Saisik I (Sozialwissenschafen) 2. Rechenübung, WS 2014/2015, Zeien und Räume: Achung: Diensag, , 5.DS, SCH/A216/H und 6.DS, WIL/A124/H sons Räume der 1. Rechenübung! In dieser Übung werden zunächs evl. vorhandene Überhänge aus der 1. Rechenübung (z.b. Boxplos) besprochen. Bereien Sie von diesen Zeeln die Aufgaben 12, 15 und 16 für die 2. Rechenübung vor. 12. Bei 150 Aken zu Seuerhinerziehungen fand man die folgende gemeinsame Häufigkeisvereilung der Variablen X (Schulabschluss) und Y (Endeckungszeiraum). X (Schulabschluss) 1 (Volksschule) 2 (höhere Schule) Y(Endeckungszeiraum) 1 (bereis 2 (innerhalb 3 (nach bei Versuch eines Jahres einem Jahr endeck) endeck) endeck) (a) Vervollsändigen Sie die Tabelle. (b) Is der Aneil der ers nach einem Jahr endecken Seuerhinerziehungen bei den Täern mi höherem Schulabschluss größer als bei den Volksschülern? (c) Wie groß is der Aneil der späesens bis Ende eines Jahres erappen Seuersünder? (d) Haben die Volksschüler uner denen, die bereis beim Versuch erapp wurden, einen größeren Aneil als uner allen Seuersündern? (e) Berechnen Sie Prozensäze in den Zeilen, d.h. die bedingen Vereilungen von Y uner den verschiedenen Ausprägungen von X sowie die (relaive) Randvereilung von Y, und sellen Sie diese in Form gesapeler Balkendiagramme für die Kaegorien von X dar. Kann man aus dieser Darsellung auf eine Abhängigkei des Endeckungszeiraumes vom Schulabschluss schließen? (f) Berechnen Sie ausgehend von den Randvereilungen die Anzahl in den einzelnen Zellen, die sich im Falle der empirischen Unabhängigkei ergeben würde (Indifferenzabelle, erwaree Häufigkeien). 15

2 (g) Berechnen Sie den Wer χ 2 = (h ij h ij ) 2 als Maß für die Abweichung der h i,j ij beobacheen Tabelle von der bei Unabhängigkei zu erwarenden Tabelle. 13. Während der ALLBUS Umfrage 1988 wurden Kirchenmiglieder zur Häufigkei ihres Kirchganges befrag. Für die beiden in Deuschland bedeuendsen Kirchen sind in der folgenden Tabelle diese Häufigkeien dargesell: Evang. Kirche Röm. kah. Kirche mind. 1mal 1 3mal mehr- selener nie Gesam 2mal pro pro im mals Woche Woche Mona im Jahr Gesam (a) Gib es bezüglich der Aneile derjenigen Kirchenmiglieder, die die Kirche nie besuchen, Unerschiede zwischen der evangelischen und der römisch kaholischen Kirche? (b) Wie groß is der Aneil der Kirchgänger insgesam, die wöchenlich oder häufiger die Kirche besuchen? (c) Besimmen Sie die erwareen Häufigkeien für die Kaegorien selener und nie. Beureilen Sie anhand der erhalenen Resulae, ob empirische Unabhängigkei zwischen Konfession und Häufigkei des Kirchganges vorlieg. 14. Gegeben sind die folgenden Messwerpaare: X1 Y1 X2 Y2 2,33 2,08 3,40-7,48 4,96 1,72 2,01-3,43 2,80 0,71 2,66-5,93 3,59 1,65 4,33-9,20 3,45 2,56 4,25-12,01 3,64 3,27 2,81-4,91 3,04 1,21 4,70-11,59 3,00 1,58 2,83-5,68 3,41 2,13 4,93-13,39 2,03 2,92 2,63-3,87 (a) Skizzieren Sie die zugehörigen Scaerplos. (b) Berechnen Sie gerenn für beide Sichproben arihmeische Mielwere, Sandardabweichungen, Varianzen, Pearsonsche Korrelaionskoeffizienen. (c) Berechnen Sie außerdem die Rangkorrelaionskoeffizienen. (d) Inerpreieren Sie die Ergebnisse. 16

3 15. Die folgende Tabelle enhäl die Klausurergebnisse einer Gruppe von Sudenen in einer Mahemaik- und einer Saisikklausur. Suden Punke Punke Mahemaik Saisik (a) Welches Skaleniveau weisen die Variablen Punke Mahemaik und Punke Saisik auf? (b) Berechnen Sie für die Variable Punke Mahemaik folgende beschreibende Saisiken: arihmeisches Miel, Median, uneres Quaril, oberes Quaril, Sandardabweichung, Quarilsabsand, und zeichnen Sie den Boxplo. (c) Wieviel Prozen der Were einer beliebigen Daenreihe liegen (näherungsweise) zwischen dem oberen und dem uneren Quaril? 16. (a) Sellen Sie den in Aufgabe 15 angegebenen Daensaz mi Hilfe eines Scaerplos grafisch dar. Verwenden Sie dazu das vorbereiee Koordinaensysem: Scaerplo 56 P un k e S a i s i k Punke Mahemaik (b) Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen für die Variablen Punke Mahemaik und Punke Saisik. (c) Wie is die Abhängigkei zwischen den beiden Daenreihen einzuschäzen (sark, miel, schwach, nich vorhanden)? (d) Berechnen Sie den Pearsonschen Korrelaionskoeffizienen. (e) Wie is das Vorzeichen des Pearsonschen Korrelaionskoeffizienen zu inerpreieren? 17

4 17. Im Rahmen einer Sudie wurde bei 10 Personengruppen einerseis der Schulbildungssaus und andererseis der Berufssaus jeweils in Form eines Gruppendurchschnisweres erfass. Die Ergebnisse zeig die folgende Tabelle: B er u fs s a u s Gruppe Schulbildungssaus Berufssaus 1 13,0 50,4 2 13,8 58,0 3 11,4 46,5 4 13,7 59,2 5 12,2 49,9 6 10,2 36,0 7 9,5 32,0 8 12,0 44,1 9 11,2 43, ,7 51,1 (a) Zeichnen Sie den zugehörigen Scaerplo: Scaerplo Schulbildungssaus (b) Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen zwischen den Variablen Schulbildungssaus und Berufssaus. (c) Wie is die saisische Abhängigkei der erhobenen Merkmale einzuschäzen (sark, miel, schwach, nich vorhanden)? 18. Man läss 5 Personen, die sich für eine ausgeschriebene Selle beworben haben, jeweils die beiden Inelligenzess I und II durchlaufen und erhäl folgende Punkzahlen: Person Nr. i Punkzahl der Person i Punkzahl der Person i bei Tes I bei Tes II

5 (a) Zeichnen Sie den zugehörigen Scaerplo: Y Scaerplo X (b) Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen. 19. Bei einem Gebrauchwagenhändler wurde für 7 Wagen desselben Typs der Preis und das Aler fesgesell: Aler in Jahren Preis in 1000 EURO Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen und den Korrelaionskoeffizienen nach Pearson. Wie is das negaive Vorzeichen zu erklären? 20. (a) Ein Landwir möche fessellen, ob ein Zusammenhang zwischen Blüebeginn und Ernebeginn bei Süßkirschen beseh. In einem Jahr mache er an 5 Bäumen folgende Beobachungen: Baum: Blüebeginn: Ernebeginn: Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen für die beiden Daenreihen. (b) Die Leisungen von 6 Sudenen der Soziologie wurden von Prüfer M. wie folg geordne: Suden: A B C D E F Rang Prüfer M.: Rang Prüfer H.: Prüfer H. hae die Leisungen ebenfalls geordne und es ergab sich ein Rangkorrelaionskoeffizien (nach Spearman) von r s = 1 zwischen den Rangreihen von M. und H. Wie laue die Rangfolge der Leisungsbewerung von H.? 19

6 21. Ein Consulingunernehmen ese die analyischen Fähigkeien von Bewerbern. Von 2000 Bewerbern erzielen 600 ein gues, 900 ein mielmäßiges und 500 ein schleches Tesergebnis. Rouinemäßig wurde auch die Haarfarbe der Bewerber erfass: 1000 haen braune Haare, 400 waren blond und 600 waren schwarz. Man darf erwaren, dass das Tesergebnis weigehend unabhängig von der Haarfarbe is. Bei den 2000 Bewerbern lag sogar exake empirische Unabhängigkei vor. (a) Sellen Sie die zugehörige Koningenzafel auf. (b) Geben Sie χ 2 und den Koningenzkoeffizienen an. 22. Zwei Hochschullehrer A. und B. beureilen die Leisungen ihrer Sudenen durch Punke. Die folgende Tabelle enhäl die Bewerungen einer Teilgruppe von 8 Sudenen. Berechnen Sie den Spearmanschen Rangkorrelaionskoeffizienen für diese Daen. Suden: Punke A.: Punke B.: Das sudenische Evaluaionsbüro errechne aus den dor vorliegenden Daen für alle Sudenen einen Spearmanschen Rangkorrelaionskoeffizienen von 0.9. Welche der folgenden Aussagen sind richig? (a) Einer der Hochschullehrer beureil die Sudenen um 90% schlecher als der andere. (b) Die meisen Sudenen, die bei dem einen Hochschullehrer eine hohe Punkzahl haben, haben bei dem anderen Hochschullehrer eine niedrige Punkbewerung. (c) Die beiden Hochschullehrer haben hinsichlich der Leisungsreihenfolge in der Sudenengruppe weigehend engegengeseze Vorsellungen. (d) Der Spearmansche Rangkorrelaionskoeffizien kann keine negaiven Were annehmen. 20

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Kurzrepetition Ökonometrie I - Lösungen

Kurzrepetition Ökonometrie I - Lösungen . Einführung Ökonomerie II - Peer Salder Kurzrepeiion Ökonomerie I - Lösungen Aufgabe (Inerpreaion von Regressionsergebnissen) a) Der prozenuale Aneil der Varianz der abhängigen Variablen, der durch die

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgaben zur Ökonomerie I 4. Mulikollineariä 4. Worin beseh das Problem der Mulikollineariä? A. Perfeke Mulikollineariä Perfeke Mulikollineariä lieg dann vor, wenn zwei oder mehrere unabhängige Variable

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

Näherung einer Wechselspannung

Näherung einer Wechselspannung HL Seyr Wechselsromparabel Seie 1 von 1 Nieros Bernhard [email protected] Näherung einer Wechselspannung Mahemaische / Fachliche Inhale in Sichworen: Polynomfunkion, allgemeine Sinusschwingung,

Mehr

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung Termin Übungsinhal Übung zu Quaniaive Mehoden der Markanalyse Annahmen derols-schäzung 9.06.009 9.06.009 Tess zu den Annahmen der OLS- Schäzung 06.07.009 Klausurvorbereiung.07.009 Klausurvorbereiung 0.07.009

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Aufgaben: Repetition Ökonometrie I - Lösungen

Aufgaben: Repetition Ökonometrie I - Lösungen Ökonomerie I - Peer Salder Aufgaben: Repeiion Ökonomerie I - Lösungen Aufgabe (Radiowerbung für Kino): Die Schäzung der Regressionsgleichung U W u U : Wochenumsaz, W : Werbeausgaben ergib: 000, 07., SE

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

Saisonbereinigung ökonomischer Zeitreihen: Das Beispiel BIP

Saisonbereinigung ökonomischer Zeitreihen: Das Beispiel BIP Jürgen Kähler, Nicolas Pinkwar Saisonbereinigung ökonomischer Zeireihen: Das Beispiel BIP IWE Working Paper Nr. 01-2009 ISSN: 1862-0787 Erlangen, Dezember 2009 Insiu für Wirschafswissenschaf (Insiu of

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Investitionsrechnung in der öffentlichen Verwaltung

Investitionsrechnung in der öffentlichen Verwaltung GablerPLUS Zusazinformaionen zu Medien des Gabler Verlags Invesiionsrechnung in der öffenlichen Verwalung Rechenmehoden zur prakischen Bewerung von Invesiionsvorhaben 2011 1. Auflage Kapiel 3 Saische und

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Bodenschätze. Arbeitsblatt R2 Kupfer Chile

Bodenschätze. Arbeitsblatt R2 Kupfer Chile Aufgabe 1: Die welwei größen Förderländer für Kupfer Auf der Welkare unen sind die Länder aus der Tabelle auf der Inerneseie Kupfer: Jeder kenn es und nuz es... farblich hervorgehoben. Jedes Land is mi

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit 24 Versuche ohne Ausfälle Success un 24. Mindeszuverlässigkei und Aussagewahrscheinlichkei Um eine Aussage üer die Zuverlässigkei eines Baueiles oder einer Baugruppe zu erhalen, werden vor der eigenlichen

Mehr

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S.

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S. REA Eine Zeisudie Kapiel 10, S. 1-24 Gliederung Theoreische Grundlagen Ziele von REA Voraussezungen für eine REA-Zeiaufnahme Ablauf einer REA-Zeiaufnahme Vor- und Nacheile Praxiseil REA 2 Theoreische Grundlagen

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Übungsaufgaben zur Vektorrechnung, 6. Klasse (10. Schulstufe) 3 t 2 = 4. durch P an, welche die Gerade g schneidet.

Übungsaufgaben zur Vektorrechnung, 6. Klasse (10. Schulstufe) 3 t 2 = 4. durch P an, welche die Gerade g schneidet. Übungsaufgaben zur Vekorrechnung,. Klasse (0. Schulsufe) Übungsaufgaben zur Vekorrechnung. Klasse ) Zwei Geraden im R Gegeben sind die Gerade sind enweder schneidend, parallel oder. X : g der Punk P(-

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 5)

Aufgaben zur Zeitreihenanalyse (Kap. 5) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. 5) Aufgabe 5.1 Welches Phänomen läss sich mi ARCH-Prozessen modellieren und welche prognosische Relevanz

Mehr

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte Kapiel 1 Übungsaufgaben zu Kapiel 1: Offene Güer- und Finanzmärke Übungsaufgabe 1-1 1-1 Berachen Sie zwei Werpapiere, das eine wird in Deuschland in Euro emiier, das andere in den USA in Dollar! Nehmen

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Eine Sonderstudie im Rahmen des

Eine Sonderstudie im Rahmen des Eine Sudie der Iniiaive D21, durchgeführ von TNS Infraes Eine Sondersudie im Rahmen des Online-Banking Mi Sicherhei! Verrauen und Sicherheisbewusssein bei Bankgeschäfen im Inerne mi freundlicher Unersüzung

Mehr

Übung 2 im Fach "Biometrie / Q1"

Übung 2 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-897 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 3, 8975 Ulm Tel. +49

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

Testen von Regressionskoeffizienten bei multipler Regression (ausführlichere Erläuterungen und Zahlenbeispiele) 1

Testen von Regressionskoeffizienten bei multipler Regression (ausführlichere Erläuterungen und Zahlenbeispiele) 1 Prof. Dr. Peer von der Lippe (aisik) Januar 7 Universiä Duisburg-Essen, Campus Essen Tesen von Regressionskoeffizienen bei mulipler Regression (ausführlichere Erläuerungen und Zahlenbeispiele). Übersich

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr