LR(k)-Parser. CYK-Algorithmus ist zu langsam.
|
|
|
- Sven Langenberg
- vor 9 Jahren
- Abrufe
Transkript
1 LR(k)-Prser Ziele: Effizienter (und deterministischer) Test, ob ein gegebenes Wort w in der Sprche L(G) enthlten ist. Flls j: Konstruktion des Syntxbums Flls nein: Hinweise zum Fehler CYK-Algorithmus ist zu lngsm. 596
2 LR(k)-Prser Bedeutung der Abkürzung: L: left-to-right scn R: rightmost derivtion Berechnung einer Rechtsbleitung Der Syntxbum wird bottom-up ufgebut. k: Lookhed von k Zeichen Der Algorithmus muss nhnd der nächsten k Zeichen der Eingbe entscheiden, welche Ableitungsregel nzuwenden ist. 597
3 Nottion r α β, flls β us α mit einer Rechtsbleitung in einem Schritt herleitbr ist. α* r β, flls β us α mit einer endlichen Folge von Rechtsbleitungen herleitbr ist. 598
4 Beispiel: L={ i b i c j d j e k f k i,j,k 0} X S Y Z X b c Y d e Z f X ε b 4 ε 8 6 ε Links-Rechts-Scn erzeugt Num. der Regeln in bottom-up- Ordnung (Postorder) Anwendung der Regeln gemäß der umgedrehten Nummerierung ist Rechtsbleitung. Lookhed nötig. 599
5 Bemerkungen Alterntive Sichtweise: Syntxnlyse entspricht Reduzierung der Eingbe uf ds Strtsymbol durch umgekehrtes Anwenden der Regeln der Grmmtik. Syntxnlyse mit Hilfe von Lookhed ist nur für spezielle Grmmtiken möglich siehe folgende Beispiele. 600
6 Beispiel T8.2.6 Grmmtik G 1 für *c+*d: S C, S D, C C, C c, D D,D d S S C D C D C c D d Lookhed von 0 usreichend 601
7 Beispiel T8.2.7 Grmmtik G 2 für *c+*d: S Cc, S Dd, C C, C ε, D D, D ε S S C c D d C C C D D D Syntxnlyse mit endlichem Lookhed nicht möglich. ε ε 602
8 Beispiel T Grmmtik für {bbb,bb}: S CD, C, D EF, D G, E b, F bb,g bb. S S C D C D E F b b b G b b Lookhed von 2 nötig. 603
9 Definition von LR(k)-Grmmtiken Ziel: Ein Lookhed von k soll usreichen, um entscheiden zu können, welche Regel ngewendet werden muss. Definition: FIRST k (w 1 w n ):= w 1 w k, flls n k, w 1 w n, sonst. 604
10 Neues Strtsymbol S Ziel: Wir wollen einfch ds Ende einer erfolgreichen Herleitung erkennen. Dzu: Modifiziere die Grmmtik: Neues Strtsymbol S und Regel S S. Dnn: Wenn diese Regel erreicht wird und die gesmte Eingbe gelesen wurde, liegt eine erfolgreiche bottom-up Herleitung vor. 605
11 Definition T8.2.5 Eine kontextfreie Grmmtik G heißt LR(k)- Grmmtik, flls für lle α,β,γ (V T )*, lle A,B V und lle w,x,y T * gilt: * r S αaw αβw S γbx αβy α=γ, A=B und y=x. FIRST k (w)=first k (y) r * r r 606
12 Shift-Reduce-Prser Spezieller DPDA, der zusätzlich eine Rechtsbleitung berechnet. Aufbu: Eingbebnd Lookhed von k S t c k Steuerung mit Übergngstbelle Ausgbe 607
13 Übergngstbelle Enthält ds Progrmm des Prsers. Opertionen (in Abhängigkeit vom Lookhed und dem obersten Stcksymbol) Shift: Lies nächstes Zeichen der Eingbe ein und schiebe es uf den Stck. Zusätzlich speichere Zustnd uf dem Stck. Aktulisiere Lookhed. Reduce: Wende eine Regel A α n. Dzu entferne den zu α gehörenden Stckinhlt und lege A und ktulisierten Zustnd uf Stck. Error/Accept: Rechnung verwerfend/kzeptierend beenden. 608
14 Reduce-Opertion Anwendung der Regel A β 1 β r Entferne die obersten 2r Symbole vom Stck (β 1,,β r, sowie die Zustände dzwischen) Weicht vom bisherigen Modell b, d mehrere Zeichen vom Stck entfernt werden. Schreibe A uf Stck. Berechne nhnd Tbelle neuen Zustnd und lege ihn uf dem Stck b. 609
15 Bsp: S S, S SSb, S ε R0 Lookhed T 0 T 1 T 2 T 3 shift shift T 4 T 5 T 4 R2 R2 T 5 R2 shift R2 R1 R2 R2 Acc R1 T 6 shift shift T 4 T 7 T 7 R1 R1 Alter Zustnd R1 Aktion b ε S T 1 T 3 T 6 Oberstes Stcksymbol R2 neuer Zustnd b T 2 610
16 Wie berechnet mn die Tbelle? Algorithmus: siehe Kpitel T8.3 und T8.4 oder Aho, A., Sethi, R. und Ullmn, J.D. Compilers, Principles, Techniques nd Tools, Addison-Wesley, Für LR(0)-Prser: Zu ufwändig für diese Vorlesung. 611
17 Wie berechnet mn die Tbelle? Prxis: Verwende Prser-Genertor. Eingbe: Kontextfreie Grmmtik sowie zusätzliche Befehle, die beim Anwenden der Regeln uszuführen sind. Ausgbe: Prser. Beispiele (für sog. LALR(1)-Grm.): ycc (yet nother compiler compiler) bison 612
18 Beispiel: L={w w 0 = w 1 } Besprochene Grmmtik: S ε, S 0S1S, S 1S0S bison liefert: shift/reduce conflicts bedeutet: es gibt Situtionen, wo nicht klr ist, ob ein Eingbezeichen zu lesen ist oder eine Regel nzuwenden ist. Ursche: Grmmtik nicht eindeutig. Stz T8.4.10: LR(k)-Grmmtiken sind eindeutig. 613
19 Zusmmenfssung Kontextfreie Grmmtiken ermöglichen die Beschreibung von vielen Konstrukten us den gängigen Progrmmiersprchen. Mit Prser-Genertoren knn mn uf eine einigermßen einfche Weise zu speziellen Grmmtiken Prser erzeugen. Die Konstruktion von Compilern, die uch sinnvolle Fehlermeldungen liefern, ist ufwändiger. 614
Definition von LR(k)-Grammatiken
Definition von LR(k)-Grammatiken Ziel: Ein Lookahead von k soll ausreichen um entscheiden zu können, welche Regel angewendet werden muss. Definition: FIRST k (w 1 w n ):= w 1 w k, falls n k, w 1 w n, sonst.
FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch
FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme
Mitschrift Repetitorium Theoretische Informatik und Logik
Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl
FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.
FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch
FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten
Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder
Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet
Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.
Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,
Endliche Automaten 7. Endliche Automaten
Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte
Automaten und formale Sprachen Notizen zu den Folien
3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol
Grundbegriffe der Informatik Aufgabenblatt 6
Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude
Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit
1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt
vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA
Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen
Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)
Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein
Compilerbau Syntaxanalyse 68. LR(1)-Syntaxanalyse
Compilerbau Syntaxanalyse 68 LR(1)-Syntaxanalyse Bei der LL(1)-Syntaxanalyse wird allein aufgrund des nächsten Tokens die zu verwendende Produktion ermittelt. Bei der LR(1)-Syntaxanalyse braucht diese
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK. Compilerbau I. Dr. Michael Petter, Dr. Axel Simon. SoSe / 160
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Compilerbu I Dr. Michel Petter, Dr. Axel Simon SoSe 2012 1 / 160 Orgnistorisches Mster oder Bchelor b 6. Semester mit 5 ECTS Vorussetzungen Informtik
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
Automaten und formale Sprachen Notizen zu den Folien
5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl
Automaten und formale Sprachen Notizen zu den Folien
3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd
6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.
Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.
Klammersprache Definiere
Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere
Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten
Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer
Resultat: Hauptsatz der Differential- und Integralrechnung
17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:
Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35
Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion
Lineare Algebra und Numerische Mathematik für D-BAUG
R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten
Zusammenhänge zwischen Sprachen und Automaten:
Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen
dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +
Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}
Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder
Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem
8.4 Integrationsmethoden
8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung
Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)
Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,
Theoretische Informatik. Äquivalenzsatz und Anwendungen
Theoretische Informtik Äquivlenzstz und Anwendungen Reguläre Sprchen reguläre Ausdrücke NFA DFA regulärer Ausdruck Äquivlenzstz für reguläre Sprchen flex Reguläre Ausdrücke Gegeben: Regulärer Ausdruck
Umwandlung von endlichen Automaten in reguläre Ausdrücke
Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.
Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18
Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude
Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006
1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,
Shift Reduce Parser (Bottom up Parser) Historie Grundbegriffe Tabellengesteuerter LR(1) Parser Konstruktion der Elementmengen Tabellenkonstruktion
Shift Reduce Parser (Bottom up Parser) Historie Grundbegriffe Tabellengesteuerter LR(1) Parser Konstruktion der Elementmengen Tabellenkonstruktion Historie Die ersten Compiler entstanden in den 50ern.
11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
Informatik 3 Theoretische Informatik WS 2016/17
Zwischenklausur 2 20. Januar 2017 Informatik 3 Theoretische Informatik WS 2016/17 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Übungsgruppe: Schreiben Sie
Uneigentliche Riemann-Integrale
Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,
Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.
Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
6.4 Uneigentliche Integrale
6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen
Konstruieren der SLR Parsing Tabelle
Konstruieren der SLR Parsing Tabelle Kontextfreie Grammatik (CFG) Notation 1. Diese Symbole sind Terminals: (a) Kleinbuchstaben vom Anfang des Alphabets wie a, b, c. (b) Operator Symbole wie +,, usw. (c)
Musterlösung zu Blatt 9, Aufgabe 2
Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N
Protokoll zur Vorlesung Theoretische Informatik I
Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &
Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)
Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reguläre Ausdrücke als Suchmuster für grep
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.
Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik
Brüche gleichnamig machen
Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig
S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet
Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds
Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im
3 Hyperbolische Geometrie
Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die
Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im
6. Quadratische Gleichungen
6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel
Integrationsmethoden
Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()
Kontextfreie Sprachen
Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch
Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren
Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der
2 Trigonometrische Formeln
$Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
LR-Parser, Shift-Reduce-Verfahren
LR-Parser, Shift-Reduce-Verfahren Bottom-Up-Syntaxanalyse LR-Parser L: Eingabe von links nach rechts; R: Rechtsherleitung Shift-Reduce-Verfahren Beachte: Kein Backtracking nicht auf jede Grammatik anwendbar
Entwurf von Knoten und Anschlüssen im Stahlbau
Entwurf von Knoten und Anschlüssen im Sthlbu Technische Universität Drmstdt Institut für Sthlbu und Werkstoffmechnik Rlf Steinmnn 1 1 Schweißverbindungen Den Nchweis für die usreichende Trgfähigkeit von
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT
Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen
Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung
Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes
RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt
RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG
Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung
Thema 7 Konvergenzkriterien (uneigentliche Integrale)
Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Einführung in die Theoretische Informatik
Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:
