Übersicht. Einführung Universelles Hashing Perfektes Hashing

Größe: px
Ab Seite anzeigen:

Download "Übersicht. Einführung Universelles Hashing Perfektes Hashing"

Transkript

1 Hasing

2 Übersict Einfürung Universelles Hasing Perfektes Hasing 2

3 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen. Suce(x,S): Ist x S? Einfüge(x,S): Füge x zu S inzu, sofern noc nict voranden. Entferne(x,S): Entferne x aus S. 3

4 Triviale Implementierung Array A[0 N-1] wobei A[i] = 1 i S Jede Operation at Laufzeit O(1), aber der Platzbedarf ist Θ(N). A Ν 1 Ziel: Platzbedarf O( S ) ) und erwartete Laufzeit O(1). 4

5 Triviale Implementierung

6 Idee des Hasings Verwende ein Array der Länge O( S ). Berecne die Position, an der ein Element abgespeicert wird mit Hilfe einer Funktion aus dem Sclüssel. Universum Has-Tafel Has-Funktion U = [0 N-1] Array T[0 m-1] : U [0 m-1] Ein Element x S wird in T[(x)] gespeicert. 6

7 Idee des Hasings k 1 k 5 k 4 k 2 k 3 0 m 1 ( k 1 ) ( ) k 4 ( k ) ( ) = ( k 3 ) 2 k 5 7

8 Beispiel N = 100; U = [0 99]; m = 7; (x) = x mod 7; S = {3, 19, 22} Soll als näcstes 17 eingefügt gt werden,, so tritt eine Kollision auf, denn (17) = 3. 8

9 Kollisionsverwaltung Da m < U, gibt es Objekte, deren Sclüssel auf denselben Wert geast werden, d.., es gibt Sclüssel k 1,k2 mit k1 k2 und ( k1) = ( k2 ). Dieses wird Kollision genannt. Verwaltung von Kollision erfolgt durc Verkettung. Speicern Objekte, deren Sclüssel auf den Haswert abgebildet werden, in einer doppelt verketteten Liste T auf den Beginn der Liste. L. Dann verweist [ ] Insert, Delete, Searc jetzt mit Listenoperationen. 9

10 Kollisionsverwaltung k 1 k 1 k 5 k 4 k 2 k 3 k 4 k k 2 5 k 3 10

11 Offene Adressierung Hasing mit Kollisionsvermeidung weist Objekt mit gegebenen Sclüssel feste Position in Hastafel zu. Bei Hasing durc offene Adressierung wird Objekt mit Sclüssel keine feste Position zugewiesen. Position abängig von Sclüssel und bereits belegten Positionen in Hastafel. Für neues Objekt wird erste freie Position gesuct. Dazu wird Hastafel nac freier Position durcsuct. Reienfolge der Suce ängt vom Sclüssel des einzufügenden Objekts ab. 11

12 Offene Adressierung Laufzeit für Einfügen nur noc im Durcscnitt Θ(1). Entfernen von Objekten scwierig, desalb Anwendung von offener Adressierung oft nur, wenn Entfernen nict benötigt wird. 12

13 Offene Adressierung Hasfunktion legt für jeden Sclüssel fest, in welcer Reienfolge für Objekte mit diesem Sclüssel nac freier Position in Hastafel gesuct wird. Hasfunktion von der Form { 0, 1,,m 1} { 0, 1, K, 1} : U K m. m:=größe der Hastafel. Verlangen, dass für alle Sclüssel k die Folge ( ( k, 0),( k, 1), K,( k,m 1) ) eine Permutation der 0, 1, K,m 1 ist. Folge ( ) ( ( k, 0),( k, 1),,( k,m 1) ) K eißt Testfolge bei Sclüssel k. 13

14 Offene Adressierung

15 Lösungsmöglickeiten für Kollisionen Hasing mit Verkettung: T[i] entält eine Liste von Elementen. Hasing mit offener Adressierung: Statt einer Adresse für ein Element gibt es m viele, die der Reie nac ausprobiert werden. Universelles Hasing: Wäle eine Has-Funktion, so dass wenige Kollisionen entsteen. Kollisionen werden durc Verkettung aufgelöst. Perfektes Hasing: Wäle eine Has-Funktion, so dass keine Kollisionen entsteen. 15

16 Universelles Hasing Idee: Verwende eine Klasse H von Has-Funktionen. Die tatsäclic verwendete Has-Funktion H wird zufällig aus H gewält. Ziel: Für jedes S U soll die erwartete Laufzeit jeder Operation O(1 + β) sein, wobei β = S m der Lastfaktor der Tafel ist. Eigenscaft von H: Für zwei beliebige Elemente x,y U füren nur wenige H zu einer Kollision ((x) = (y)). 16

17 Universelles Hasing Definition: Seien N und m natürlice Zalen. Eine Klasse H { : [0 N-1] [0 m-1] } eißt universell, wenn für alle x,y U = [0 N-1], x y, gilt: { H : ( x) = ( y)} 1 H m Intuitiv: Ein zufällig gewältes ist genau so gut, als wenn die Tafelpositionen der Elemente zufällig gewält würden. 17

18 Eine universelle Klasse von Funktionen Seien N, m natürlice Zalen, wobei N prim ist. Für Zalen a {1,, N-1} und b {0,, N-1} sei a,b : U = [0 N-1] {0,, m-1} definiert durc: a,b (x) = ((ax + b) mod N) mod m Satz: H = { a,b (x) 1 a < N und 0 b < N} ist eine universelle Klasse von Has-Funktionen. 18

19 Beweis Betracte festes Paar x,y mit x y. a,b (x) = ((ax+b) mod N) mod m a,b (y) = ((ay+b) mod N) mod m 1. Paare (q,r) mit q = (ax+b) mod N und r = (ay+b) mod N durclaufen für variables a,b den gesamten Bereic 0 q,r < N mit q r -- q r : q = r impliziert a(x-y) = cn -- Versciedene Paare a,b ergeben versciedene Paare (q,r). (ax+b) mod N = q (ay+b) mod N = r (a x+b ) mod N = q (a y+b ) mod N = r implizieren (a-a )(x y) = cn 19

20 Beweis Festes Paar x,y mit x y. a,b (x) = ((ax+b) mod N) mod m a,b (y) = ((ay+b) mod N) mod m 2. Wieviele Paare (q,r) mit q = (ax+b) mod N und r = (ay+b) mod N werden auf die gleice Restklasse mod m abgebildet? Für festes q gibt es nur (N-1)m Zalen r, mit q mod m = r mod m und q r. { H : (x) = (y)} N(N-1)m = H m 20

21 Analyse der Operationen Annamen: 1. wird zufällig (gemäß Gleicverteilung) aus einer universellen Klasse H gewält. 2. Kollisionen werden durc Verkettung gelöst. Für H und x,y U sei δ ( x, y) = 1 0 ( x) = sonst ( y) und x y = y S δ ( x, S) δ ( x, y) ist die Anzal der von x versciedenen Elemente in T[(x)], wenn S gespeicert wird. 21

22 22 Analyse der Operationen Satz: Sei H eine universelle Klasse und S U = [0 N-1] mit S = n. 1. Für x U gilt: 2. Die erwartete Laufzeit einer Suce-, Einfüge bzw. Lösce-Operation ist O(1 + β), wobei β = nm der Lastfaktor ist S x m n S x m n S x H H 1) ( 1 1 )), ( (1 1 δ

23 23 Beweis = + = + S x m n H S x m n H m H H y x H y x H S x x S y S y H H S y H ) 1) ( (1 ) (1 ), ( ), ( )), ( (1 } \{ δ δ δ Folgt Folgt aus aus 1. 1.

24 Perfektes Hasing Wäle eine Has-Funktion, die für die abzuspeicernde Menge S injektiv ist. S sei im Voraus bekannt. Zweistufiges Hasverfaren 1. Die erste Stufe verteilt S auf kurze Listen. (Hasing mit Verkettung) 2. In der zweiten Stufe wird für jede Liste eine eigene injektive Has-Funktion benutzt. 24

25 Konstruktion von injektiven Hasfunktionen Sei U = [0 N-1] Für k {1,,N-1} sei k : U {0,,m-1} x ((kx) mod N ) mod m Sei S U. Kann k so gewält werden, dass k eingescränkt auf S injektiv ist? k eingescränkt auf S ist injektiv, wenn für alle x,y S, x y, gilt k (x) k (y) 25

26 Maß für Verletzung der Injektivität Für 0 i m-1 und 1 k N-1 sei b ik = { x S : k (x) = i } Dann gilt: { (x,y) S 2 : x y und k (x) = k (y) = i } = b ik (b ik 1) Definiere B k m = 1 i = 0 b ik ( b ik 1) B k misst, wie wenig injektiv k eingescränkt auf S ist. 26

27 Injektivität Lemma 1: k eingescränkt auf S ist injektiv B k < 2 Beweis: B k < 2 B k 1 b ik (b ik 1) {0,1} für alle i b ik {0,1} k eingescränkt auf S ist injektiv k eingescränkt auf S ist injektiv B k = 0 b ik {0,1} für alle i 27

28 Injektivität Lemma 2: Sei N Primzal, S U = [0 N-1] mit S = n. Dann gilt N 1 k = 1 B k 2 n( n 1) m ( N 1) Ist m > n(n-1), so existiert B k mit B k < 2, d.. es existiert ein k, das eingescränkt auf S injektiv ist. 28

29 29 Beweis von Lemma 2 Sei (x,y) S 2, x y, fest. Wie viele k mit k (x) = k (y) gibt es? = = = = = = = = = y x S y x k k N k m i k k N k m i ik ik y x k i y x y x S y x b b 2 ), ( )} ( ) ( : { } ) ( ) (, : ), {( 1) (

30 Beweis von Lemma 2 k ( x) = k ( y) (( kx)mod N)modm = (( ky)mod N)modm ( kxmod N ky mod N)modm = 0 k( x y)mod N = cm q = k(x-y) mod N -- versciedene k, k ergeben versciedene q, q. k(x-y) mod N = q k (x-y) mod N = q (k-k )(x-y) = c N -- nur (N-1)m viele q werden auf dieselbe Restklasse mod m abgebildet 30

31 Folgerungen Korollar 1: Es gibt mindestens (N-1)2 viele k mit B k 4n(n-1)m. Ein solces k an in erwarteter Zeit O(m+n) bestimmt werden. Beweis: Anname: ex. weniger als (N-1)2 viele k mit B k 4n(n-1)m. Dann ex. mindestens (N-1)2 viele k mit B k > 4n(n-1)m N 1 k = 1 B k > N 1 2 4n( n 1) m = N 1 2n( n m 1) Mit WSK ½ erfüllt ein zufällig gewältes k die Bedingung. Die erwartete Anzal der Versuce ist 2. 31

32 Folgerungen Korollar 2: a) Sei m = 2n(n-1)+1. Dann sind mindestens (N-1)2 der k injektiv auf S. Ein solces k findet man in erwarteter Zeit O(m+n)=O(n 2 ). b) Sei m = n. Dann gilt für mindestens (N-1)2 der k, dass B k 4(n-1). Ein solces k findet man in erwarteter Zeit O(n). 32

33 Zweistufiges Scema S U = [0 N-1] S = n = m Idee: Wende Kor. 2b an und teile S in Teilmengen der Größe O(n 12 ). Auf jede Teilmenge wende Kor. 2a an. 1. Wäle k mit B k 4(n-1) 4n. k : x ((kx) mod N ) mod n 2. W i = { x S : k (x) = i }, b i = W i, m i = 2b i (b i 1)+1 für 1 i n-1 Wäle k i so, dass k i : x ( k eingescränkt auf W i injektiv ist. i x mod N) mod m i 33

34 Zweistufiges Scema 3. = j <i s i m j Speicere x S in Tafelposition T[s i + j] wobei i = (k x mod N) mod n j = (k i x mod N) mod m i 0 W 0 (kx mod N) mod n S W 1 s 1 s n-1 W n-1 m-1 34

35 Platzbedarf für Has-Tafel und Has-Funktion m n 1 n 1 = mi = i= 0 i= 0 n + 8( n 1) (2b i ( b 9n i 1) + 1) = n + 2B k Zusätzlic brauct man Platz für die k i, m i und s i. Platzbedarf insgesamt O(n). 35

36 Zeitbedarf für den Aufbau Nac Kor. 2b kann k in erwarteter Zeit O(n) gefunden werden. Die W i, b i, m i, s i können in Zeit O(n) berecnet werden. Nac Kor. 2a kann jedes k i in erwarteter Zeit O(b i2 ) berecnet werden. Erwartete Gesamtlaufzeit: O n n + i= 0 2 bi = O( n + Bk ) = O( n) 36

37 Hauptergebnis Satz: Sei N eine Primzal und S U = [0 N-1] mit S = n. Für S kann eine perfekte Has-Tafel der Größe O(n) und eine Has-Funktion mit Zugriffszeit O(1) in erwarteter Zeit O(n) aufgebaut werden. 37

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL LARS KINDLER Dies sind Notizen für ein Seminar an der Universität Duisburg-Essen im Sommersemster 2011. Als Quelle diente das Buch A Course in the Theory of Groups

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1).

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1). Algorithmen und Datenstrukturen 213 9 Hash-Tabellen Viele Anwendungen erfordern dynamische Mengen, für welche die sog. Wörterbuch-Operationen INSERT, SEARCH und DELETE verfügbar sind. Beispiel: Symboltabelle

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Aufgaben zur Quantenphysik

Aufgaben zur Quantenphysik ufgaben zur Quantenpysik 187. In eine Nactsictgerät wird eine Fotozelle aus der Legierung gcso verwendet, das eine ustrittsarbeit von 1,04 ev at. a) b welcer Wellenlänge werden bei Bestralen it Lict aus

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

14. Landeswettbewerb Mathematik Bayern

14. Landeswettbewerb Mathematik Bayern 4. Landeswettbewerb Matematik Bayern Lösungsbeispiele für die Aufgaben der. Runde / Aufgabe David wirft einen besnderen Würfel und screibt jeweils die ben liegende Zal auf. Die Abbildung zeigt ein Netz

Mehr

Brandschutz 4. Nicht tragende, aber brandabschnittsbildende. (ohne Verklebung) sind die Bauteile nicht luftdicht. Bei brandabschnittsbildenden

Brandschutz 4. Nicht tragende, aber brandabschnittsbildende. (ohne Verklebung) sind die Bauteile nicht luftdicht. Bei brandabschnittsbildenden 4.1 optiolz und Brandscutz In der Lignum-Dokumentation Brandscutz sind optiolz -Bauteile für tragende und/oder brandabscnittsbildende Decken und Wände bis zu einer Feuerwiderstandsdauer von 60 Minuten

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Vervollständigung Lateinischer Quadrate

Vervollständigung Lateinischer Quadrate Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate

Mehr

Rotations-Schwingungsspektren einfacher Moleküle

Rotations-Schwingungsspektren einfacher Moleküle . Teorie Rotations-Scwingungsspektren einfacer oleküle. Rotationsspektroskopie Im Versuc Scwingungsspektroskopie wure nur ie Anregung von olekülscwingungen betractet. Dessen Feinstruktur, welce urc ie

Mehr

Teil IV DIGITALE UNTERSCHRIFTEN & ZERTIFIKATE

Teil IV DIGITALE UNTERSCHRIFTEN & ZERTIFIKATE Teil IV DIGITALE UNTERSCHRIFTEN & ZERTIFIKATE KAPITEL 14 EINFÜHRUNG Mit den biser vorgestellten Tecniken der symmetriscen und asymmetriscen Kryptograpie ist das Endziel, bei einer (räumlicen oder zeitlicen)

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5).

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5). Zeitplan Abitur Nac jedem Halbjareszeugnis: Überprüfung der erbracten Halbjaresleistungen und der recneriscen Möglickeit das Abitur zu besteen durc Sculleitung bzw. APK (Abiturprüfungskommission). Ab April

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Die Datei ist Teil der Ausbildung zum Energieberater an der FH Braunschweig/Wolfenbüttel

Die Datei ist Teil der Ausbildung zum Energieberater an der FH Braunschweig/Wolfenbüttel Dimensionierung von Wärmeerzeugern Im Folgenden werden Aussagen zu Dimensionierung von Wärmeerzeugerleistungen zur: Heizung, Trinkwarmwasserbereitung, kombinierten Heizung und Trinkwarmwasserbereitung

Mehr

Arithmetik und Algebra

Arithmetik und Algebra Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer Andreas Kalusce Researc Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer 1 Universität Trier Andreas

Mehr

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize):

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Sterbetafeln für die Schweiz 1998/2003

Sterbetafeln für die Schweiz 1998/2003 Sterbetafeln für die Scweiz 1998/2003 Neucâtel, 2005 Die vom Bundesamt für Statistik (BFS) erausgegebene Reie «Statistik der Scweiz» gliedert sic in folgende Facbereice: 0 Statistisce Grundlagen und Übersicten

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden.

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden. Grundwissenskatalog zu Pysik 8.Jargangsstufe, Seite von 5 Carl-Friedric Gauß Gymnasium Scwandorf Stand: Sept. 0 Wissen Können Beispiele, Ergänzungen Energie Energie kann in versciedenen Formen vorkommen.

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr