FERTIGUNGSTECHNIK - MATURA
|
|
|
- Elizabeth Böhm
- vor 8 Jahren
- Abrufe
Transkript
1 FERTIGUNGSTECHNIK - MATURA 4. WALZEN VON BLECHEN von Thomas Lieber Walzen gilt als Unterpunkt des Fertigungsverfahrens Umformen: 4.1. Walzverfahren: Grundsätzlich wird beim Walzen zwischen Längs, Quer und Schrägwalzen unterschieden, dannach unterscheidet man noch zwischen Flach und Profilwalzen, wobei hier noch weiter unterschieden wird zwischen Flachwalzen von Voll- und Hohlkörpern als auch Profilwalzen von Voll- und Hohlkörpern. Walzen ist ein stetiges oder schrittweises Druckumformen mit einem oder mehreren sich drehenden Werkzeugen (Walzen) Längswalzen Hier wird das Walzgut senkrecht zu den Walzchsen ohne Drehung durch denn Walzspalt bewegt. Beim Flach-Längswalzen ist die Walzenfläche ist entweder ein Kreiszylinder oder ein Kegelmantel. Beim Profil-Längswalzen haben die Walzenflächen eine vom Kreiszylinder abweichende Form, die aber im allgemeinnen in der Umfangsrichtung gleich bleibt. 1
2 a) Flach-Längswalzen von Vollkörpern Das einzige Walzerfahren welches für Bleche inn Frage kommt. Walzen von Band oder Blech: Walzen mit Treib und Stütz(Planeten)walze: a) Flach-Längswalzen von Hohlkörpern b) Profil-Längswalzen von Vollkörpern und Hohlkörpern Querwalzen Das Walzgut wird um die eigene Achse gedreht ohne eine Bewegung in Achsrichtung zu machen, durch die rotation wird es von den Walzen in die gewünschte Form gebracht a) Flach-Querwalzen von Vollkörpern und Hohlkörpern b) Profil-Querwalzen von Vollkörpern und Hohlkörpern Schrägwalzen Das Walzgut dreht sich um die eigene achse macht aber auch eine Axialbewegung die durch die Schrägstellung der Walzen zustande kommt. Das Schrägwalzen ist eine Kombination des Längs- und des Querwalzens. a) Flach-Schrägwalzen von Vollkörpern und Hohlkörpern b) Profil-Schrägwalzen von Vollkörpern und Hohlkörpern 4.2 Greif und Durchziehbedingungen Damit ein Werkstück von Walzen erfaßt, in seiner Dicke verringert und durch den Walzenspalt geformt den Walzenstuhl verlassen kann, muß es mit einer gewissen Kraft gegen die rotierenden Walzen gestoßen werden. Dadurch tritt beim Berühren der Walzenoberfläche eine Normalkraft (N) auf. Da die Walze rotiert, bewegt sich der Berührungspunkt weiter => dadurch entsteht Reibung, die nach der Formel R=u*N erfaßbar ist. Diese Reibungskraft (R), die tangentiell zur Walzenoberfläche liegt, kann man in eine horizontale und in eine vertikale Komponente zerlegen (RH und. RV). RH zieht das Werkstück in den Walzenspalt ein, während RV das Werkstückk zusammendrückt und so seine Dicke reduziert. 2
3 Wenn man sämtliche an der Berührungsfläche von Punnkt A bis B auftretenden Normalkräfte vektoriell addiert, erhält man als Resultierende jene Kraft (F), die die Walzen beansprucht und die die Lager, die Walzenzapfen bzw. der gesamten Walzenstuhl aufnehmen müssen. Die beiden Punkte (A und B) schließen mit dem Walzenmittelpunkt den Einzugswinkel (AlphaE) ein. Dieser Winkel kannn nun nicht über ein bestimmtes Maß wachsen. Die Greifbedingung erhält man aus der Formel: N sinα R cosα = µ N cosα sinα = tgα E α E µ cosα Bei einem Einzugswinkel von 90 ist sofort einzusehen, daß R gleich groß ist wie RV, hingegen ist RH Null geworden, es kann kein Einzug mehr stattfinden. Wird hingegen der Einzugswinkel zu klein, dann ist auch RV sehr klein geworden, d.h. das Walzgut wird praktisch immer dünner gewalzt. Beim Kaltwalzen von Feinblech beträt AlphaE weniger als 9, sonst im Mittel ca. 16, der Einzugswinkel kkannn aber durch Riffelung der Walzen bis etwa 34 gesteigert werden, er hängt auch sehr vom Werkstoff ab. 4.3 Werkstoffe Die Walzen Aus der Erkenntnis, daß einerseits der Einzugswinkel eine gewisse Größe haben muß und andererseits die Dickenabnahme ein bestimmtes Maß anehmen soll, ergibt sich, daß für große Werkstücke der Walzendurchmesser groß sein muß; je dünner das Walzgut ist, um so kleiner muß der Walzendruchmesser sein. Da der Durchmesser der Arbeitswalzen begingt durch den Einzugswinkel der Blechdicke angepaßt werden muß, ergeben sich für dünne Bleche verhältnismäßig kleine Durchmesser. Diese dünnen Walzen würden sich selbstverständlich unter den Kräften durchbiegen. Daher verwendet man Stützwalzen mit dennen ist es dann möglich Folien zu erzeugen wo die Arbeitswalze bereits eine durchmesser von einer Stricknadel oder dünner haben kann. Für solche Folien benötigt man häufig mehr als 30-fache Walzwerke. Bombierung der Walze (MKW-Werk) 3
4 Würde man zylindrische Walzen verwenden, so würden sich die Walzenkörper auch bei großem Walzhendurchmesser unnd trotz vorhandener Stützwalzen durchbiegen, da die Walzen in der ganzen Breite des Bleches mmit annähernder Gleichlast belastet werden. Man würde Bleche erhalten, die in der Mitte dicker wären als am Rand. Um gleichmäßig dicke Bleche zu erhalten, wird daher die Biegelinnie der Walze vorausberechnet und der Walzenkörper nach einer Kurve geschliffen. Maan erhält dadurch tonnenförmige Walzenkörper. Biegen sich diese nun durch, so sind die dem Walzgut zugekehrten Linien parallel. Kaliber Um Profile bestimmter Form zu walzen, werden Walzen mit profilierter Oberfläche verwendet. Man unterscheidet dabei zwischen dem offenen undn dem geschlossenen Kaliber. 4.4 Produkte Profilbleche, Feinbleche, Grobbleche 4
5 4.5 Walzenstraßen Will man sehr große Mengen rationell walzen, dannn werden heute Walzenstraßen verwendet. In solchen kontinuierlich arbeitenden Straßen sind einne große Annzahl Duo- oder Quarto- usw. Walzwerkke hintereinander angeordnet. Bei jedem Durchgang wird das Walzgut dünner, aber kaum breiter, dadurch bewegt es sich immer schneller durch die Straßen. Nach dem letzten Walzgerüst erreicht man heute z.b. bei Drahtwalzstraßen Geschwindigkeiten von max. 40m/sec. Warmwalzstraße eines Blechwalzenwerkes: Eine solche Anlage gibt es in der Voest-Alpine Linz Kaltwalzenstraße eines Blechwalzwerkes: Um Feinblech kontinuierlich erzeugen zu können, werden Coils aneinander geschweißt. In einem Durchgang wird das Blech auf die Enddimension gewalzt. 5
40 Fragen und Lösungen zu Definitionen und Hintergrundwissen
Überprüfen des Walzprozess-Wissens! 40 Fragen und Lösungen zu Definitionen und Hintergrundwissen 1. Was ist die Grundbedingung für das Umformen von Werkstoffen? Umformen erfolgt oberhalb der Fließgrenze
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Übung zu Mechanik 1 Seite 65
Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus
Fertigungstechnik: Schnittwerkzeuge David
Schnittwerkzeuge 1. Allgemein: Das Trennen (siehe Bild 1) 1.1 Zerteilen Zerteilen ist mechanisches Trennen von Werkstücken ohne Entstehen von formlosem Stoff, also auch ohne Späne (spanlos). Es bezieht
Dynamik Lehre von den Kräften
Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische
Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.
Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,
11. Vorlesung Wintersemester
11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y
Praktikum Fertigungstechnik. Umformtechnik I
Praktikum Fertigungstechnik Umformtechnik I Theoretische Grundlagen Umformmechanismus gezielte Änderung der Form, der Öberfläche und der Werkstoffeigenschaften unter Beibehaltung der Masse und Stoffzusammenhalt.
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Wahlfach Fertigungstechnik Musterlösung zur Übung L Trennen
Wahlfach Fertigungstechnik Musterlösung zur Übung L Trennen Prof. Konrad Wegener Thomas Lorenzer SS 2008 1. Offener Schnitt Sie möchten Halbkreise gemäss Abbildung 1 aus Blech stanzen. Der Stempel hat
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
PN 1 Klausur Physik für Chemiker
PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.
Drehbewegungen (Rotation)
Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen
Wie misst man Symmetrie?
Wie misst man Symmetrie? Was ist Symmetrie? Beispiele Bewegungen Friesgruppen Verallgemeinerungen Was ist Symmetrie denn eigentlich? Kann man sie überhaupt messen? Symmetrie = Gleichmaß August Ferdinand
Fertigungstechnik I Umformtechnik. Halbzeugherstellung und Blechumformung
Fakultät Maschinenwesen, Institut für Fertigungstechnik, Professur Formgebende Fertigungsverfahren Fertigungstechnik I Umformtechnik Halbzeugherstellung und Blechumformung Prof. Dr.-Ing. Alexander Brosius
Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung
TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.
Kurze Einführung in die Darrieus Windturbinen
LA VERITAT (www.amics21.com) Kurze Einführung in die Darrieus Windturbinen Darrieus Windturbinen von Manuel Franquesa Voneschen 1 Diese Windturbinen mit vertikaler Achse sind ziemlich anspruchsvolle Maschinen,
Übungen zur Vorlesung PN1 Lösung zu Blatt 5
Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine
Füllstand eines Behälters
Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1
Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten
+m 2. r 2. v 2. = p 1
Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit
Gruppenarbeit Federn, Kräfte und Vektoren
1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser
Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)
Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren
Theoretische Physik 1, Mechanik
Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 9, 1 Bonuspunkte Dr. P. P. Orth Abgabe und Besprechung 1.1.14 1. Kollision
Basisexperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten
Lehrerversion Basiseperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten Lehrplanbezug: Reibungskraft, Gewichtskraft Ziel: Eperimentelle Bestimmung des Gleit- und Haftreibungskoeffizienten Voraussetzungen:
Inhaltsverzeichnis. Inhalt. 1 Umformen
3 Inhaltsverzeichnis 1 Umformen 1.1 Grundlagen der Umformtechnik... 9 1.1.1 Kenngrößen der Umformung... 11 1.1.1.1 Formänderungsgrad und Hauptformänderung... 11 1.1.1.2 Formänderungsfestigkeit... 14 1.1.1.3
Magnetpulverprüfung in Felddurchflutung mit Kreuz- und orthogonalen Zusatzspulen Prüfung von Werkstücken großer Abmessungen
DACH-Jahrestagung 2015 Poster 59 Magnetpulverprüfung in Felddurchflutung mit Kreuz- und orthogonalen Zusatzspulen Prüfung von Werkstücken großer Abmessungen Rainer LINK 1, Nathanael RIESS 2 1 Unternehmensberatung
Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:
Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben
Übungen: Kraftwirkung in magnetischen Feldern
Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1
3.2.5 Zerlegung von Kräften (am Beispiel der schiefen Ebene) Aus der Statik ist bekannt, dass sich resultierende Kräfte aus einzelnen Kräften zusammensetzen können (Addition einzelner Kräfte). Ebenso kann
LAGERLISTE FÜR DEN VERKAUF VON E D E L S T A H L
LAGERLISTE FÜR DEN VERKAUF VON E D E L S T A H L Ansprechpartner: Bärbel Ewert Tel. 030 683 93 228 Andrea Köberle 222 Mario Koslowski 233 Dominik Kura 223 Fax 030 683 93 299 2 0 1 2 Flachstahl, vom Band
3D-Transformationen. Kapitel Translation Skalierung
Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder
Mittel- und Oberstufe - MITTEL:
Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder
Mechanik 1. Übungsaufgaben
Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
6 Vertiefende Themen aus des Mechanik
6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
Mechanik. Entwicklung der Mechanik
Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik
Mechanische Spannung und Elastizität
Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die
Polarisation des Lichts
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion
Umformtechnik. Harald Kugler. Umformen metallischer Konstruktionswerkstoffe. mit 247 Abbildungen, 20 Tabellen, 273 Fragen sowie einer DVD
Harald Kugler Umformtechnik Umformen metallischer Konstruktionswerkstoffe mit 247 Abbildungen, 20 Tabellen, 273 Fragen sowie einer DVD rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis
Raumgeometrie - Zylinder, Kegel
Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1
Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie
3. Zentrales ebenes Kräftesystem
3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f
Aufgabe 1: (6 Punkte)
Aufgabe 1: (6 Punkte) Aus einer Kanone (Masse 5 t) wird eine Kugel abgeschossen. Die Kugel habe eine Masse von 50 kg und eine Geschwindigkeit von 200 m/s direkt nach dem Abschuss. Der Abschusswinkel betrage
Zugstab
Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des
KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds
Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit
() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2
Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.
Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64
1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:
Übung zu Mechanik 3 Seite 48
Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,
Elektrische Maschinen
1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis
Zylinder, Kegel, Kugel, weitere Körper
Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen
Wurzelfunktionen Aufgaben
Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0
Besondere Lage einer Gerade oder Ebene im Koordinatensystem
MK 5.. LageKoordsys.mcd Besondere Lage einer Gerade oder Ebene im Koordinatensystem Die Koordinatenachsen: Alle Koordinatenachsen enthalten den Ursprung als Aufpunkt. Beispiel g : = λ Die -Achse Die Einheitsvektoren
Mit eckigen Rädern fahren
Mit eckigen Rädern fahren Für Spielfreudige und mathematisch Interessierte Mit eckigen Rädern fahren: Das klingt reichlich unwahrscheinlich, aber möglich ist es. Zugegeben: Die Idee ist etwas wunderlich
Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015
Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt
Mathematischer Vorkurs Lösungen zum Übungsblatt 5
Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.1 Einführung
Mathematik II Frühlingsemester 2015 Kap 9: Funktionen von mehreren Variablen 91 Einführung wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/
1. Ebene gerade Balken
1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken
Grobblech Feinblech Blech Folien. >6mm <0,1 mm <6mm
Klassifizieren Sie folgende Blechsorten nach Ihrer Dicke. Kreuzen Sie das entsprechende Feld in nachfolgender Tabelle an (Achtung, Einträge nicht sortiert!). ~0,18 mm >6mm
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
2. Räumliche Bewegung
2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort
Aufgaben zum Thema Kraft
Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist
1.3. Aufgaben zur Statik
1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme
Klausur Technische Mechanik C
Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner
1.2 Kinematik des Massepunktes
1.2 Kinematik des Massepunktes Die Kinematik ist die Lehre der Bewegungen, wobei die Ursache der Bewegung nicht untersucht wird (Die Ursachen von Bewegungen werden im Kapitel 1.3 im Rahmen der Dynamik
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
Physik für Mediziner und Zahmediziner
Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf
Reibung S. Zusätzlich wird benötigt PC mit USB-Schnittstelle, Windows XP oder höher. Abb. 1: Versuchsaufbau.
1.1.2.3 Reibung S Im Alltag und in der Technik haben wir es überall mit Reibung zu tun. Ausnahmslos jede Bewegung auf der Erde ist mit Reibung verbunden, und dadurch mit einem Energieverlust und Abnutzung.
Kräftepaar und Drehmoment
Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.
Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik
Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner
10. Versuch: Schiefe Ebene
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen
Modernisierung der Blockstraße in Freital Inbetriebnahme einer iba-breitenmessung und eines dynamischen Stichplanrechners ibaneuronet
Modernisierung der Blockstraße in Freital Inbetriebnahme einer iba-breitenmessung und eines dynamischen Stichplanrechners ibaneuronet Dr.-Ing. Robert Krumbach Leiter Walzwerk Dipl.-Ing. Karsten Ruby Leiter
5 Kreisbewegung und Rotation (rotación, la)
5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1
2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach
Untersuchung der umformtechnischen Wirkmechanismen des Fliessformbiegens im Hinblick auf Prozessfähigkeit und Robustheit
Masterarbeit Nr. 07-004 Untersuchung der umformtechnischen Wirkmechanismen des Fliessformbiegens im Hinblick auf Prozessfähigkeit und Robustheit Patrik Horat Betreuer: Dr. Marcus Stolz, Klingelnberg AG
1 Waferherstellung. 1.1 Entstehung der Wafer Wafervereinzelung und Oberflächenveredelung. 1.1 Entstehung der Wafer
1 Waferherstellung 1.1 Entstehung der Wafer 1.1.1 Wafervereinzelung und Oberflächenveredelung Der Einkristallstab wird zunächst auf den gewünschten Durchmesser abgedreht und bekommt dann, je nach Kristallorientierung
6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation
Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Prüfung im Fach Konstruktion. - Teilprüfung , Bearbeitungszeit 120 Minuten
Fachhochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Angewandte Naturwissenschaften Prof. Dr.-Ing. Michael Heinzelmann Dr.-Ing. M. Stommel Prüfung im Fach Konstruktion - Teilprüfung
Einbindung von automatischen Walzenrissprüfsystemen in den Betriebsablauf von Walzenschleifereien in Warmwalzwerken
DGZfP-Berichtsband 94-CD DGZfP-Jahrestagung 25 Einbindung von automatischen Walzenrissprüfsystemen in den Betriebsablauf von Walzenschleifereien in Warmwalzwerken W. Weber, J. Bobbert, N. Rössler, H. Tamler,
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
