Vorlesung Physik für Pharmazeuten PPh - 09

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Physik für Pharmazeuten PPh - 09"

Transkript

1 Vorlesung Physik für Pharmazeuten PPh - 09 Elektrizitätslehre Mitteilungen: Übungsklausur-Besprechung am 9.Juli in der Übung 10:15 Uhr Klausur am 23. Juli

2 Mikroskopisches Modell der elektronischen Stromleitung Elektronen werden im E-Feld beschleunigt und durch Stöße abgebremst

3 Elektrische Ladungsverteilung eines Proteins Elektrostatische Kräfte dominieren die Wechselwirkungen zwischen Molekülen positive Ladung negative Ladung

4 Ursache für elektrische Effekte sind elektrische Ladungen - Es gibt zwei Arten von elektrischen Ladungen : positive (+) und negative (-) - Gleichnamige Ladungen stoßen sich ab, ungleichnamige ziehen sich an. - Die Kraft zwischen zwei ruhenden Ladungen Q 1 und Q 2 im Abstand r beträgt Q1 Q F = k 2 r (Coulombsches Gesetz) - In einem abgeschlossenen System ist die Summe aller Ladungen konstant. 2 (Ladungserhaltung) - Es gibt Materialien, in denen sich Ladungen leicht bewegen, sog. Leiter und andere Stoffe, sog. Isolatoren, ohne elektrisches Leitvermögen

5 Coulombsches Gesetz Zwischen den Ladungen wirken Kräfte, die von der Größe der Ladungen und dem Abstand abhängen. In Analogie zur Gravitation gilt das Coulombsche Gesetz F = 1 4πε 0 q1 q 2 r 2 ε 0 : Elektrische Feldkonstante r : Abstand der Ladungen q 1 und q 2 Vektorielle Schreibweise : r 1 q1 q 2 r F = r 2 r 4πε v r r 12 = r2 r1 q 1 q 2 r v 1 r v 2 r

6 Elektrische Ladung ist eine Eigenschaft der Elementarteilchen (Elementarladung) Ladung ist eine Eigenschaft der Materie. Materie besteht aus "Teilchen", die Ladung und Masse besitzen. Jeder Ladungstransport ist mit Massetransport verbunden Millikan Versuch (Öltröpfchenversuch) Jede Ladung ist ein ganzzahliges Vielfaches, Q=Z e der Elementarladung e = -1, C (Quantisierung der elektrischen Ladung) Die Ladungsträger, die in Leitern frei beweglich sind heißen Elektronen (e - ). Sie sind Elementarteilchen (Ladung e=-1,6022*10-19 C, Masse: 9*10-31 kg). Positive Ladungen tragen die Protonen in den Kernen (Ladung Q p =+1,6022*10-19 C, Masse:1,67*10-27 kg). Atome : Gebilde aus gleicher Anzahl Elektronen, Protronen (und Neutronen) sind exakt neutral

7 Superposition Elektrische Feldstärke am Ort 0 für mehrere Punktladungen q i v E ges = E = i i v i 1 4πε 0 q r i0 i 2 v r r i0 i0 Superpositionsprinzip r 2 q 2 r 10 r 20 r 40 q 1 r 0 q 4 r 30 r 1 r 3 q 3 r 4

8 Das elektrische Potential Äquivalent zur potentiellen Energie in der Mechanik ist die elektrostatische Arbeit v E + 1+ Q 2 2 r 2 v v v W12 = F ds = E Q ds r ϕ 1 r W ( ) Q 0 ( r0 ) = 1 das elektrostatische Potential ist definiert, als den negativen Wert der Arbeit, die aufgewendet werden muss, um eine Ladung vom Unendlichen bis nach r 0 heranzuführen = r 0 v v E ds Das Potential ist unabhängig vom Weg, auf dem Punkt r 0 erreicht wird. Die Potentialdifferenz zwischen 2 Punkten Feld heißt elektrische Spannung U =ϕ1 ϕ 2 [V]:Volt

9 Potential einer Punktladung ϕ(x) Äquipotentiallinien Zweidimensionale Darstellung der Linien mit ϕ(x,y)=const. x E-Feld + Vergleich mit Höhenlinien

10 Potential eines Plattenkondensators W 12 = x2 x1 v v Fds x2 v v = Q E ds x1 x2 = E Q cos( α) ds = E Q dx = E Q ( x x1 ) 2 x1 x2 x1 Potential: ϕ(x)=e x Die Spannung zwischen den 2 Platten mit Abstand d ist: Spannung : U = ϕ( d) ϕ(0) = E d

11 Kondensator und Kapazität -Q +Q U Frage: Welche Spannung U baut sich zwischen den Kondensatorplatten auf? E-Feld: E = U d = Q ε 0 A Q = C U Q = ε 0 A d U Kapazität C [F(arad)]

12 Elektrische Felder in Materie Metalle Q -Q E v Materie = 0 In einem Metallkörper ist das elektrische Feld immer 0 => "Faradayscher Käfig" Dielektrika E Pol +Q -Q v 1 r EMaterie = E0 ε In einem Dielektrikum ist das elektrische Feld um den Faktor 1/ε geschächt. ε: Dielektrizitätszahl

13 Elektrische Felder in Materie: Nichtleiter E 0 +Q -Q E E( + χ ) = E E = E + EPol = 1 ε 0 dielektrische Suszeptibilität Dielektrizitätskonstante σ E Pol Polarisation r r E Pol = χ E r r P = χ E ε 0 Bei gleicher Ladung des Kondensators nimmt die Spannung ab. U = U 0 ε Die Kapazität eines Plattenkondensators C = ε C erhöht sich um den Faktor ε 0

14 Piezoelektrizität Mechanische Deformation erzeugt Oberflächenladungen. Vorraussetzung : Kristalle dürfen keine Inversionssymmetrie zeigen (hier z. B. Quarz) Versuch: Piezoeffekt

15 Spitzenladungen auf elektrischen Leitern σ Q π R ϕ R 0 E = = = 2 ε0 ε0 4 Die Oberflächen von Leitern sind Äquipotentialflächen. => Die Feldlinien müssen senkrecht auf der Oberfläche stehen. Das Feld und die Oberflächenladungsdichte ist an Spitzen größer als an stumpfen Enden.

16 Funkenentladung in starken elektrischen Feldern (3 MV/m in Luft) Blitzableiter Elektrostatischer Staubabscheider

17 Wiederholung Ionenleitung Galvanisches Element Elektrochemische Spannungsreihe : Daniell-Element : Eine Kupferelektrode taucht in eine CuSO 4 Lösung, eine Zinkelektrode in eine ZnSO 4 Lösung. Eine poröse Trennwand verhindert die Durchmischung beider Lösungen

18 Stromstärke [Ampere] I = dq dt Der elektrische Strom Ladungsträger Unter elektrischem Strom, I, versteht man die gerichtete Bewegung von Ladungsträgern. Die Ladungsträger können sowohl Elektronen als auch Ionen sein. Ein elektrischer Strom kann nur fließen, wenn Ladungsträger in genügender Anzahl (Teilchenzahldichte, n) vorhanden und frei beweglich sind. Je mehr und je schneller Ladungsträger mit Ladung q durch einen gegebenen Leiterquerschnitt (A) fließen, um so größer ist die Stromstärke. q = z e I = z e n A v D n: Ladungsträgerdichte A: Querschnitt V D : Driftgeschwindigkeit

19 Analogie zwischen Flüssigkeitsströmung und Stromkreis U = R I Ohmsches Gesetz Pumpe erzeugt Druckdifferenz p Wasserstrom U Strömungswiderstand, R (hängt u.a. vom Rohrdurchmesser ab) Mechan ische Größe Druck p Volumenstrom V Strömungswiderstand R = 8 η l r 4 Elektrische Größe Spannung U Elektrischer Strom I Elektrischer Widerstand R Einheit [Ω=V/A] (Ohm)

20 Widerstand und Ohmsches Gesetz Die Stromstärke in einem kleinen Drahtstück ist zu der Potentialdifferenz zwischen den beiden Enden dieses Abschnitts proportional R = U I (Ohmsches Geset) R : Elektrische Widerstand G=1/R : Elektrischer Leitwert R = ρ L A ρ : Spezifischer Widerstand σ=1/ρ : SpezifischerLeitwert Versuch: Widerstandskurve & spez. Widerstand

21 Elektrische Schaltkreise "Schaltkreissymbole" + -

22 = n n I 0 1. Kirchhoff'sche Regel (Knotenregel) Versuch:Parallel Schalt Widerstandsnetzwerke und Kirchhoffsche Regeln I 1 R 1 U 0 R 2 R 3 I 3 I 2 R 6 R 5 R 4 I 6 I 5 I 4 Die Summe aller Ströme, die in einen Knoten hineinfließen bzw. hinausfließen ist Null.

23 Widerstandsnetzwerke und Kirchhoffsche Regeln U 1 R 1 U 1 + U 2 + U3 U EMK = 0 U EMK R 3 R 2 U 2 U n = n U EMK Die Summe der Spannungsabfälle ist gleich der Batteriespannung U 3 Werden die Batteriespannungen negativ gezählt gilt : In einem geschlossenen Stromkreis ist die Summe der Spannungen über alle Schaltelemente gleich Null U i i = 0 2. Kirchhoff'sche Regel (Maschenregel) Versuch:Reihen Schalt

24 Zusammenschaltung von Kondensatoren Gesamt- oder Ersatzkapazität C ges Für Parallelschaltung gilt: C ges = C 1 + C 2 Für Reihenschaltung gilt 1 C ges = 1 C C 2

25 Serienschaltung von Widerständen I ges I ges U ges I 1 I 2 R 1 R 2 U 1 U 2 R ges Das Ohm sche Gesetz gilt für jeden einzelnen Widerstand im Stromkreis. Sprechweise : Die Spannung U 1 fällt am Widerstand R 1 ab I ges = I 1 = I 2 Die Teilspannungen addieren sich U ges = U 1 +U 2 U ges = R 1 I 1 + R 2 I 2 = R 1 I ges + R 2 I ges = ( R 1 + R 2 ) I ges = R ges I ges R ges = R 1 + R 2 Widerstände in Reihe addieren sich

26 Parallelschaltung von Widerständen I ges U ges = U 1 = U 2 U ges I 1 R 1 I 2 R 2 U ges I ges Ströme addieren sich I ges = I 1 + I 2 1 I ges = U 1 R 1 + U 2 R 2 1 R ges = 1 R R 2 = U ges R 1 + U ges = R 2 R 1 R 2 R ges Uges In Parallelschaltung addieren sich die Kehrwerte der Widerstände zum Kehrwert des Gesamtwiderstands

27 Supraleitung Im Jahre 1911 entdeckte der Physiker Kamerlingh-Onnes den Effekt der widerstandfreien Leitung. Unterhalb einer kritischen Temperatur tritt bei gewissen metallischen Verbindungen der Effekt der Supraleitung auf. Der elektrische Widerstand im supraleitenden Zustand ist nach allen Beobachtungen unmessbar klein, d.h. er ist Null.

28 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist proportional zur Konzentration und Beweglichkeit der Ionen ( z n µ + z n ) σ = e µ + z : Wertigkeit der Kationen + n + µ : Anz. Kationen/Volumen : Beweglichkeit der Kationen µ = v D E

29 Elektrophorese Reibungskraft=el. Kraft 6π η r v D = z e E Elektrophoretische Beweglichkeit eines Proteins µ = v E D z e = 6π η r 0 Gelelektrophorese Versuch : Ionenwanderung

30 Faradaysche Gesetze der Elektrolyse 1. Die aus einem Elektrolyten an der Elektrode abgeschiedenen Stoffmengen sind der hindurchgegangenen Elektrizitätsmenge (Ladung) proportional m = const Q = M zf I t M: Molare Masse (g/mol) 2. Durch gleiche Ladungsmengen werden in verschiedenen Elektrolyten ihre Äquivalentmengen abgeschieden Def. : Äquivalentmenge = Stoffmenge x Wertigkeit C F = N A e = Faraday Konstante Mol

31 Schmelzflußelektrolyse Eine Ladung von C scheidet genau 1 Mol eines einwertigen Elements ab "Faradaysches Gesetz" Q = 96485C z N A Erzeugung von reinem Aluminium aus Aluminiumoxid 1 t Al entspricht 12 MWh

32 Wann ist Strom gefährlich? Warum stirbt man beim Laufen ueber den Teppich nicht? Die Gefährdung des Menschen durch elektrischen Strom hängt nicht - wie oft angenommen - nur von der Höhe der elektrischen Spannung (Volt) [V] ab. Die Stromstärke (Ampère) [A], die durch den Körper fließt bestimmt die Größe der Gefahr. Aber auch wenn der Strom nicht direkt durch den Körper fließt, kann Gefahr drohen. Beispielsweise verbrannte ein Finger an einer 6-Volt-Autobatterie. Der Ehering hatte die Pole kurzgeschlossen und einen sehr großen Entladestrom ausgelöst.

33 Wann ist Strom gefährlich? Körperströme bei mehr als 0,3 s Dauer Bereich 1 bis 0,5 ma in der Regel keine Reaktion Bereich 2 bis 12 ma leichte Muskelreizung Bereich 3 bis 30 ma Muskelreaktion, -verkrampfung, beginnende Atembeschwerden - kein Herzkammerflimmern Bereich 4 ab 30 ma Herzkammerflimmern (mit steigender Wahrscheinlichkeit) ab 50 ma mehr als 5% ab 80 ma mehr als 50 % Im Mittel kann der Widerstand mit etwa 1000 Ohm angesetzt werden (z.b. bei einer Durchströmung von Hand zu Hand oder von Hand zu Fuß).

34 Nervenleitung Die Nervenleitung erfolgt nicht durch elektrische Leitung von Ionen entlang des Axons. Der Ohm sche Widerstand eines 1cm langen Axons beträgt Ω!

35 Ersatzschaltbild der Membran Die Spannung die über der Membran anliegt wird als Membranpotential bezeichnet (typischerweise 70mV) V V Pumpe Na K Na-K- ATPase Nervenleitung: Fortpflanzung einer elektrischen Erregung (Veränderung des lokalen Membranpotentials)

36 Eigenschaften Magnetischer Felder Gleichnamige Pole stoßen sich ab Ungleichnamige Pole ziehen sich an "Magnetfelder sind quellenfreie Wirbelfelder" - Es gibt keine magnetischen Ladungen oder magnetische Monopole. - Nord- und Südpole treten immer zusammen auf - Das Magnetfeld hat keine Quellen - Magnetische Feldlinien sind immer geschlossen.

37 Das Elementarmagnetmodell Magnetismus und Materie beim Elementarmagnetmodell denkt man sich alle magnetisierbaren Materialien aus unvorstellbar vielen, kleinen Elementarmagneten zusammengesetzt.

38 Magnetisierung = Suszeptibilität magn. Erregung (Feldstärke) M = χ m H S N N S S N N S S N N S N S N N S S N S N S N N S S S N N N N N S NN N Diamagnet Paramagnet Ferromagnet χ Dia <0 µ<1 χ para >0 µ>1 χ ferro >> 1000 S S S N N N S N S S S S S N N N N S S S Bismut Quecksilber Silver Kohlenstoff Blei NaCl Kupfer Uran 40 Platin 26 Aluminum 2.2 Natrium 0.72 Sauerstoff 0.19 S S µ>>1 Eisen Nickel Kobalt

39 Ferromagnetismus und Hysterese Remanenz Koerzitivkraft Anwendungen: Permanentmagnete, Eisenkerne in Spulen, Magnetbänder, Festplatten, Kreditkarten...

40 Kraftwirkung von Magnetfeldern auf bewegte Ladungen 1) Ströme haben Magnetfelder 2) Magneten üben über ihre Magnetfelder Kräfte aufeinander aus Für B x F x x + v x x x v B F = q v B v F = q v v B Lorentzkraft allgemein Ein stromdurchflossener Leiter ist ein Magnet und muß deshalb im Magnetfeld eine Kraft erfahren v B F = q v B sinυ ( ) υ : Winkel zwischen v und B. v v v F Die Einheit der magnetischen Feldstärke ist [B] = N s C -1 m -1 = T "Tesla" Ein Magnetfeld hat die Stärke B = 1 T, wenn es auf eine Ladung q = 1 C, die sich mit einer Geschwindigkeit v = 1 m s -1 bewegt, eine Kraft F = 1 N ausübt.

41 Freie, geladene Teilchen in el. und magn. Feldern In einem elektromagnetischen Feld wirkt auf eine Ladung die Summe aus Coulomb- und Lorentzkraft v F el mag = q r v v ( E + v B) Fadenstrahlrohr Die "Flugbahn" freier Teilchen mit Ladung q wird durch F el-mag und die Masse der Teilchen bestimmt. Massenspektrometer Polarlicht

42 Magnetfeld eines stromdurchflossenen Leiters Magnetische Feldstärke B [Tesla=Vs/m 2 ] I B = µ 0 2 π r I : Stromstärke r : Abstand µ 0 : Magnetische Feldkonstante µ 0 = 4π 10 7 Vs Am "rechte Hand Regel" Magnetische Erregung (Feldstärke) H [A/m] I H = 2 π r B 0 =µ H

43 Induktion in einem bewegten Leiter Kraftwirkung vom Magnetfeld auf Ladungen im bewegten Leiter B I x v l Im konstanten Magnetfeld ist die induzierte Spannung proportional zur Änderung der von der Leiterschleife umschlossenen Fläche. Uind = dx dt B l = da dt B

44 Induktion im ruhenden Leiter bei veränderlichem Magnetfeld Induktion mit Stabmagnet u. Spule

45 Faraday sches Induktionsgesetz: A v s = v A A Definition Magnetischer Fluß Φ = v B v A Für A B allgemein Φ = B A Φ = B A cosα α : Winkel zwischen A und B. Magn. Feld =magnetische Flußdichte: B = Φ A [T](Tesla) Faraday sches Induktionsgesetz: Die in einem Leiter induzierte Spannung ist der zeitlichen Änderung des magnetischen Flusses durch die Leiterfläche proportional Uind dφ = dt Uind ( B A) d db da = = A + B dt dt dt

46 Grundgesetze des Elektromagnetismus 1. E = 1 4πε 0 Q r 2 Ladungen sind Quellen elektrischer Felder (Coulomb Gesetz) 2. Es gibt keine magnetischen Ladungen oder magnetische Monopole. 3. B = µ 0 N I l Ströme erzeugen Magnetfelder mit geschlossenen Feldlinien (Ampère'sche Gesetz) 4. Uind = d ( BA) dt Eine zeitliche Änderung des magnetischen Flusses in einer Leiterschleife erzeugt eine elektrische Spannung (Faraday'sche Induktionsgesetz). v F EM v = q v v ( E + B) In einem elektromagnetischen Feld wirkt auf eine Ladung die Summe aus Coulomb- und Lorentzkraft

47 Die Lenzsche Regel Infolge der induzierten Spannung U ind fließt in einer geschlossenen Leiterschleife ein Strom der selbst ein Feld eb ind ereugt. Die Richtung in die der Strom fließt wird festgelegt durch die Lenzsche Regel : dφ Uind = dt "Alle durch eine Änderung des magnetischen Flusses induzierten Spannungen sind stets so gerichtet, daß die von ihnen hervorgerufenen Ströme die Ursache der Induktion zu hindern versuchen." Der Induktionsstrom ist stets so gerichtet, daß sein Feld der Ursache der Induktion entgegenwirkt. Versuch Lenzsche Regel

48 Der Generator Φ= B A cos(ω t) Uind = d Φ dt ω : Winkelgeschwindigkeit, ω t : Winkel zwischen Fläche A und Feld (B). = B A d (cos(ω t)) dt = B A ω sin(ω t) Versuch Generator

49 Wechselstrom U(t) = U 0 sin(ω t +ϕ ) ω = 2π T f = ω 2π = 1 T Europa U 0 =325 V und f=50 Hz, Amerika U 0 =155 V f=60 Hz

50 Elektromotoren 7: Kommutatoren (Polwender)

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Baeyer-HS BUT-FU1.017 und Buchner-HS BUT-F0.001 Nachklausur:

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus

17. Vorlesung EP. III. Elektrizität und Magnetismus 17. Vorlesung EP III. Elektrizität und Magnetismus 17. Elektrostatik (Fortsetzung) Spannung U Kondensator, Kapazität C Influenz 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen) Stromkreise

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 18+19+20: Roter Faden: Heute: Elektrostatik, Magnetostatik, Elektrodynamik, Magnetodynamik, Elektromagnetische Schwingungen Versuche: Feldlinien, Kondensator, Spule, Generator, Elektromoter Applets:

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Für das elektrische Potential um eine Punktladung gilt: Das elektrische Potential zwischen den Platten eines Kondensators ist

Für das elektrische Potential um eine Punktladung gilt: Das elektrische Potential zwischen den Platten eines Kondensators ist E Für das elektrische Potential um eine Punktladung gilt: Das elektrische Potential eines Dipols ist: φ( r) = µ e µ e r 4πε 0 r 2 Das elektrische Potential zwischen den Platten eines Kondensators ist φ(z)

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren.

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren. Elektrizitätslehre 1 Ein elektrischer Strom fließt nur dann, wenn ein geschlossener Stromkreis vorliegt. Batterie Grundlagen Schaltzeichen für Netzgerät, Steckdose: Glühlampe Schalter Stoffe, durch die

Mehr

1. Statisches elektrisches Feld

1. Statisches elektrisches Feld . Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Mit 184 Bildern und 9 Tabellen

Mit 184 Bildern und 9 Tabellen Physik II Elektrodynamik Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Klaus Dransfeld und Paul Kienle Bearbeitet von Paul Berberich 5., verbesserte Auflage Mit 184 Bildern

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A 1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Elektrische Ladung, elektrostatisches Feld

Elektrische Ladung, elektrostatisches Feld ET 1 Elektrische Ladung, elektrostatisches Feld Elektrische Ladung Die elektrische Ladung Q eines (geladenen) Körpers wird durch diejenige Kraft festgestellt, die er auf andere geladene Körper ausübt.

Mehr

Das statische elektrische Feld

Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Elektrodynamik I Elektrische Schaltkreise

Elektrodynamik I Elektrische Schaltkreise Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen

Mehr

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10. Elektrostatik 10.11 Elektrische Ladung 10.2 Coulomb sches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10.1 Elektrische Ladung Es gibt

Mehr

Versuch 1 zu Physikalisches Praktikum für Mediziner

Versuch 1 zu Physikalisches Praktikum für Mediziner Versuch 1 zu Physikalisches Praktikum für Mediziner......... c Claus Pegel 7. November 2007 1 VERSUCH 1 1 LADUNGEN sind gequantelt, d.h. sie kommen nur in ganzen Vielfachen der ELEMENTARLADUNG vor. Der

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Beziehung zwischen Strom und Spannung

Beziehung zwischen Strom und Spannung Beziehung zwischen Strom und Spannung Explizit kein Ohm sches Verhalten; keine elektrische Leitfähigkeit im üblichen Sinne Beschleunigte Elektronen im Vakuum (Kathodenstrahlröhre) Elektronentransfer in

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14,

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, 20.05.2009 Vladimir Dyakonov Experimentelle Physik VI dyakonov@physik.uni-wuerzburg.de Professor Dr. Vladimir

Mehr

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2 THEMEN UND INHALTE Kapitel Themen Inhalte 1. Kapitel Made in Germany 1.1 Was in Ingenieurwesen? 1.2 Ingenieur Studium an der OTH Regensburg? 1.3 Überblick über die OTH Regensburg 1.4 Studienordnung: SWS,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Angabe Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Entropieänderung f S = Sf Si = i dq T Der zweite Hauptsatz der Thermodynamik: Carnot (ideale) Wärmemaschine Carnot Kältemaschine

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

B oder H Die magnetische Ladung

B oder H Die magnetische Ladung B oder H Die magnetische Ladung Holger Hauptmann Europa-Gymnasium, Wörth am Rhein holger.hauptmann@gmx.de Felder zum Anfassen: B oder H 1 Physikalische Größen der Elektrodynamik elektrische Ladung Q elektrische

Mehr

Elektrizitätslehre. Teil einer dynamischen Systemtheorie. Nicht aus jedem Bernstein wird eine Perle gedreht. Estland. ZHW 04/05 Prof.

Elektrizitätslehre. Teil einer dynamischen Systemtheorie. Nicht aus jedem Bernstein wird eine Perle gedreht. Estland. ZHW 04/05 Prof. Elektrizitätslehre Teil einer dynamischen Systemtheorie Nicht aus jedem Bernstein wird eine Perle gedreht. Estland Physik der dynamischen Systeme: Elektrizität 0 Elektrizität: Inhalt Grundlagen Ladung

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES

GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES HOCHSCHULBÜCHER FÜR PHYSIK Herausgegeben von F. X. Eder und Robert Rompe BAND 30 GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES K. SJMONYI ' - '»мяло : m VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1963

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg Physik-Skript Teil II Melanchthon-Gymnasium Nürnberg Volker Dickel 3. überarbeitete Auflage, 2014 2. überarbeitete Auflage, 2012 1. Auflage 2009 Inhaltsverzeichnis EINLEITUNG: ELEMENTARTEILCHEN UND WECHSELWIRKUNGEN...

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr